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Abstract

Since the first description of the case of Auguste Deter, presented in Tübingen in 1906 by Alois Alzheimer, there
has been an exponential increase in our knowledge of the neuropathological, cellular, and molecular foundation of
Alzheimer’s disease (AD). The concept of AD pathogenesis has evolved from a static, binary view discriminating
cognitive normality from dementia, towards a dynamic view that considers AD pathology as a long-lasting morbid
process that takes place progressively over years, or even decades, before the first symptoms become apparent,
and thus operating in a continuum between the two aforementioned extreme states. Several biomarkers have
been proposed to predict AD-related cognitive decline, initially in cases with mild cognitive impairment, and more
recently in cognitively intact individuals. These early markers define at-risk individuals thought to be in the
preclinical phase of AD. However, the clinical relevance of this preclinical phase remains controversial. The fate of
such individuals, who are cognitively intact, but positive for some early AD biomarkers, is currently uncertain at
best. In this report, we advocate the point of view that although most of these preclinical cases will evolve to
clinically overt AD, some appear to have efficient compensatory mechanisms and virtually never develop dementia.
We critically review the currently available early AD markers, discuss their clinical relevance, and propose a novel
classification of preclinical AD, designating these non-progressing cases as ‘stable asymptomatic cerebral
amyloidosis’.
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Introduction
In 1906, Alois Alzheimer documented the case of
Auguste Deter, a patient with a combination of cognitive
deficits, psychiatric symptoms, and macroscopic and
microscopic brain lesions [1,2]. This histopathological
and clinical constellation was first designated by Emil
Kraepelin as Alzheimer’s disease (AD), and later on as
dementia of the Alzheimer-type (AD-type dementia).
Since this first definition, an impressively broad spectrum
of mechanisms have emerged, including genetic vulner-
ability, and the molecular, cellular, and neurochemical
abnormalities closely related to AD pathogenesis [3-5].
Some examples illustrate the diversity of the field and the

difficulty in formulating and following up a unique causal
hypothesis for such a heterogeneous disorder. Initially,
abnormal protein filaments were described structurally in
amyloid plaques (APs) and neurofibrillary tangles (NFTs)
[6,7], and more than 200 large clinicopathological studies
in hospital-based and community-based series have
shown the differential effects of fibrillar amyloid deposits
and NFT formation on cognitive performances across the
age spectrum [8-11]. Following the pioneering observa-
tions of Tomlinson and coworkers, which indicated the
presence of substantial AD lesion densities in cognitively
intact older people [12], the systematic work of Braak
and collaborators showed the stepwise progression of
amyloid deposits and NFTs in brain aging and AD
[13,14]. Amyloidogenic fragments (monomers, dimers,
oligomers) were soon purified from AD-affected brains,
and tau protein was identified as the main constituent of
NFT [15-17]. Yankner and coworkers then identified the
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neurotoxic properties of the amyloid beta (Ab) protein
[18]. In the 1970s, the cholinergic hypothesis of AD
emerged and growing interest was raised with the identi-
fication of the first therapeutic targets for drug develop-
ment [19-21]. In the early 1980s, medial temporal lobe
subdivisions became the focus of interest, following the
detailed description of atrophy patterns in association
with progressive memory loss in mild and prodromal
forms of AD [22-25]. In the early 1990s, the first genes
conferring a risk for early-onset (amyloid beta (A4) pre-
cursor protein (APP) and presenilin (PSEN)1 and 2) and
late-onset (apoliprotein (APO)ε4) AD were identified
[26-29]. Recently, these discoveries have been followed
by identification of polymorphisms in other genes, prob-
ably involved in Ab processing and clearance. Large gen-
ome-wide studies have identified associations between
late-onset AD and polymorphisms in the genes clusterin,
CR1 (complement receptor 1), SORCS1 (sortilin-related
VPS10 domain containing receptor 1) and PICALM
(phosphatidylinositol binding clathrin assembly protein)
[30-32], observations that were subsequently confirmed
by other groups in diverse ethnic cohorts [33-40]. Stem-
ming from these milestones in the understanding of AD
pathology, the past decade saw the development of ani-
mal models and clinical trials with immunization-based
therapeutic strategies [41-49]. Despite these efforts,
numerous crucial questions remain unanswered. Why
are only some brain regions and neuronal types preferen-
tially affected? Why, despite the presence of Ab deposits,
do some individuals not present clinically overt demen-
tia? Is there any natural compensatory mechanism(s) that
might counterbalance the toxic effect of Ab? Is AD an
age- or aging-related pathology?
The major recent conceptual evolution has been the

conversion from a ‘static and defensive’ view of AD
pathogenesis to one that is ‘dynamic and compensatory’.
According to the first model, AD lesions chronically
attack the human brain, leading to synaptic and neuron
loss before cognitive breakdown. Whether and when this
occurs depends mainly on the severity of the external
aggression and on the structural reserve [50-52]. The sec-
ond model suggests that the clinical expression of the
disease may vary widely over time, depending on indivi-
dual vulnerability to the initial phases of the degenerative
process, the severity of the AD pathological process at
the molecular and cellular levels, and the efficiency and
evolution over time of compensatory brain mechanisms.
According to this dynamic model, future curative treat-

ments should be administrated long before the emergence
of clinically overt symptoms, either to counterbalance the
biological compromise that precedes the cognitive break-
down or to promote functional compensation [53]. The
limited therapeutic efficacy of the first vaccination trials in
moderate AD may have reflected the irreversible brain

damage that had already taken place in these cases. This is
also supported by some data from animal models, which
showed that the efficacy of b-amyloid1-42 (Ab42) immuni-
zation was largely reduced in mice with significant amyloid
deposition [54]. In line with these findings, clinical trials
using acetylcholinesterase inhibitors in patients with mild
cognitive impairment (MCI) all failed to show any clear
benefit [55,56]. In fact, more recent evidence has shown
that all of the major pathophysiological processes asso-
ciated with AD have already occurred by the time MCI is
diangosed, introducing the notion that patients with clini-
cally early AD may display substantial biological deficits
[57-62]. Consquently, in order to set up true secondary
prevention in AD, it is crucial to identify cognitively intact
individuals at risk for AD, working on the assumption that
some objectively measurable AD markers exist that pre-
cede clinical symptoms by several years and define a stable
‘pre-AD’ stage.

Preclinical Alzheimer disease
AD was perceived for the first time more as a dynamic
process than a stationary state in the late 1980s, and the
idea that the pathological process begins long before clini-
cal symptoms become apparent has gained increasing
interest [63]. Even though normal brain aging and AD-
type dementia are both associated with loss of neurons
and accumulation of APs and NFTs, the extent and distri-
bution of the lesions is not the same in both case
[51,52,63]. In non-demented older individuals, NFTs are
mainly found in the hippocampus, whereas in the course
of dementia a progressive spread of NFTs into the tem-
poral neocortex is seen. It has been shown that the total
NFT counts in the hippocampus, entorhinal cortex and
prefrontal area 9 is strongly predictive of cognitive status
[9,64]. Moreover, the neuron loss and its spatial distribu-
tion in normal aging is also qualitatively and quantitatively
different from that in AD, where a massive loss of pyrami-
dal neurons takes place mainly in the cornu ammonis
(CA)1 field of the hippocampus [9,65-67]. The differences
between normal aging and AD were recently clarified and
formalized by Dubois and collegues, who proposed a novel
classification of AD, which distinguishes three stages of
the disease: preclinical AD, prodromal AD (equivalent of
MCI), and dementia [68] In this review, we focus on pre-
clinical AD cases by addressing the clinical relevance of
biomarkers that could predict their cognitive evolution.

Biomarkers of preclinical Alzheimer disease
CSF markers
Even though a definite diagnosis of AD can be formu-
lated only neuropathologically, CSF markers play an
important supportive role in the clinical diagnosis of
probable AD [68]. The levels of Ab42 in the cerebrosp-
inal fluid (CSF) are inversely correlated with AP burden,
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and the CSF tau levels reflect the progression of
tau-related pathology within the cerebral cortex [69].
Low levels of Ab42, together with increased levels of
phosphorylated (p)-tau and total (t)-tau, identify AD with
good accuracy, and can be useful in the differential diag-
nosis of dementia [70-73]. However, these markers are
not specific for dementia. Low levels of Ab42 appear
early in the course of AD, and have been shown to pre-
dict conversion from MCI to AD [74]. Other authors
have shown that abnormalities in CSF levels of Ab42 and
tau can be detected even earlier, in people who are still
cognitively normal (CN), preceding MCI by several years
[75-83].
Low CSF Ab42 levels in CN older adults correlate with

whole-brain volume [76], atrophy rate [66], and cortical
amyloid load [75,77]. CN carriers of the APOε4 allele,
which confers a risk for late-onset AD, and is associated
with slightly lower cognitive function in adulthood [84],
also have lower CSF Ab42 levels [83,85]. Contrastingly,
an increase in CSF tau and p-tau in cognitively intact
individuals correlates with cortical amyloid load [75] and
cerebral hypometabolism in the posterior cingulate, pre-
cuneus, and parahippocampal regions [79]. Interestingly,
a high CSF tau:Ab42 ratio in CN adults is related to cor-
tical lesions and pathological changes in the white-matter
microstructure, which probably precede structural altera-
tions in the cortex [83,86].
The exact timing of the appearance of these CSF mar-

kers is still a matter of debate. Even though it seems that a
decrease in CSF Ab42 concentrations precedes elevation
of tau levels [75], both parameters can be considered as
early hallmarks of AD. Reduction in CSF Ab42 levels was
shown to precede cognitive decline in non-demented sub-
jects for as long as 8 years, and a combination of CSF
Ab42 and p-tau might further increase its sensitivity and
specificity in prediction of dementia [82,87]. Indeed, high
CSF tau:Ab42 and p-tau:Ab42 ratios were shown to be a
powerful predictive factor for the conversion of normal
cognition to dementia, preceding the conversion by years
[77,80-82]. These observations are further supported by
independent studies of familial AD, in which decreased
levels of Ab42 and increased levels of tau and p-tau in the
CSF were found in asymptomatic carriers of PSEN1 and
APP pathogenic mutations, more than 10 years before the
clinical onset of the disease [88-90].
Positron emission tomography with Pittsburgh compound B
Positron emission tomography (PET) imaging of the
amyloid-binding agent Pittsburgh compound B (PET-
PiB) allows for semiquantitative in vivo analysis of the
brain Ab load and its spatial distribution. Like CSF Ab42
levels, PET-PiB is a valuable marker in the differential
diagnosis of dementia [91]. It is closely correlated with
amyloid plaque burden at autopsy [92], and is inversely
related to CSF Ab42 levels [75,77,93]. However, it is not

specific to dementia; up to 20% of CN people have a con-
siderable PiB load in the brain, falling into a ‘PiB-positive’
category [91,94-97]. However, though still within the
normal cognitive range, these PiB-positive controls have
slightly lower cognitive performance compared with PiB-
negative people [98]. They have a very subtle episodic
memory impairment [96,99], smaller hippocampus
volume [99], and accelerated rate of cortical atrophy
[100]. The conversion from a PiB-negative to a PiB-posi-
tive state reflects a very early step in AD development
[95]. These PiB-positive individuals clearly represent a
subpopulation at risk for dementia [93,101,102]. For
instance, there is a higher prevalence of PiB positivity
among CN subjects with known genetic AD risk factors,
and CN carriers of APOε4 have an increased incidence
rate of conversion from PiB-negative to PiB-positive sta-
tus, many years before the clinical onset of AD [95].
Similarly, asymptomatic carriers of pathogenic PSEN1 or
APP mutations, responsible for early-onset AD, have
increased PiB retention in the cortex and striatum
[103-105]. Together, these data support the idea that
increased PiB load may serve as a predictive factor of
AD-type dementia in healthy older individuals
[100,106,107]. Whether measurement of PET-PiB levels
is a better predictive factor than CSF Ab42 levels remains
unclear [75,108-111].
Individual risk estimation solely on the basis of PiB sta-

tus remains difficult because many CN individuals have a
brain PiB load practically indistinguishable from patients
with overt dementia [101]. These ‘PiB-high’ subjects have
a more rapid increase in PiB brain load over time than do
PiB-positive individuals with relatively lower PiB signal,
and are thought to be at higher risk for AD-type demen-
tia than ‘PiB-low’ individuals [107,112]. However, not all
‘PiB-high’ individuals evolve to dementia; in longitudinal
studies, some remained CN for at least 4 years [107].
Moreover, even in cases of monozygotic twins with
increased PiB load, cognitive discordance (one twin
demented and the other one CN) has been described
[113], suggesting that environmental and epigenetic fac-
tors modulate the effects of Ab on cognition.
Fluro-D-glucose positron emission tomography
PET imaging with 2-deoxy-2[18F]fluoro-D-glucose as a
tracer (FDG-PET) measures cerebral glucose metabolism,
which reflects the level of synaptic activity. Perturbations
in glucose metabolism have been repeatedly reported in
AD [114-117]. In order to investigate whether the synap-
tic dysfunction seen with FDG-PET precedes the clinical
symptoms in AD, numerous studies have been performed
in CN individuals at risk of AD, all of which documented
hypometabolism in the regions typically affected in AD
[118-131]. A substantial reduction in glucose metabolism
in the posterior cingulate, precuneus, parietal, and pre-
frontal cortex was shown in middle-aged CN carriers of

Lazarczyk et al. BMC Medicine 2012, 10:127
http://www.biomedcentral.com/1741-7015/10/127

Page 3 of 13



the APOε4 allele [120,124], and this observation was
recently reproduced in Latino populations [123]. A gene-
dosage effect was documented in this context, with a
more pronounced reduction in glucose metabolism in
CN APOε4 homozygotes than in heterozygotes [122].
Interestingly, this brain hypometabolism in APOε4 car-
riers is a gradually progressing process that leads to a
further decline after a 2-year period, as shown in follow-
up studies [121,125]. It is thus likely that the brain hypo-
metabolism in posterior cortical areas represents a valu-
able preclinical AD biomarker, preceding overt dementia
by several years [121,125]. Confirming this viewpoint,
Reiman and colleagues showed that low glucose metabo-
lism in the posterior cingulate, parietal, temporal, and
prefrontal cortex of CN APOε4 carriers can be detected
as early as the third decade of life [118] preceding clinical
disease onset as much as 40 to 50 years. This unexpected
observation (in view of the extremely long preclinical
period) is consistent with the substantial NFT formation
in brains of young (less than 40 years old) CN APOε4
carriers [132].
However, the exact pathophysiological significance of

the reduced cerebral glucose metabolism in CN indivi-
duals remains unclear. Although it may represent an indir-
ect marker of cortical vulnerability to the degenerative
process, it does not determine the occurrence of dementia;
for instance, reduction in glucose metabolism in temporal
cortex was found in cognitively discordant monozygotic
twins [126,127]. The link with APOε genotype is also diffi-
cult to interpret. Even though predominantly studied in
the context of APOε4 carriers, this hypometabolism seems
to be an integral element of AD pathogenesis, without a
strict association with a single genetic risk factor. In fact,
hypometabolism in parietotemporal, posterior cingulate,
and medial temporal cortex was reported in CN indivi-
duals with a family history of AD independent of their
APOε genotype [129,133], and also in asymptomatic indi-
viduals carrying pathogenic mutations in the APP gene
[130,131].
Structural MRI
Even though structural brain changes are usually preceded
by alterations in PET and CSF markers, abnormalities in
structural MRI become detectable well before the first
clinical signs of the disease, and thus might serve as a mar-
ker of preclinical AD. The exact hierarchical patterns of
cortical atrophy vary greatly over time, but there is broad
consensus that the atrophy of the medial temporal lobe
(particularly the hippocampus) and cortical thinning in
certain AD-vulnerable regions are the first MRI signs of
emerging AD [134-142].
In asymptomatic individuals at risk for early-onset famil-

ial AD (those carrying a pathogenic APP mutation), volu-
metric MRI analysis identified decreased hippocampus

volume 2 to 3 years before dementia onset [143]. Other
authors have reported that decreased hippocampus
volume in community-based older individuals precedes
dementia by as much as 6 years [134-138], which fits well
with the neuropathological findings [144]. Further subre-
gional analyses have shown that in CN subjects, the
volume of restricted parts of the hippocampus (the CA1
and subiculum) is more closely associated with conversion
to MCI than is the total hippocampus volume [136,139].
The volume loss in these regions precedes cognitive
decline and conversion to MCI by a few years, and was
able to discriminate cognitively stable from declining indi-
viduals with up to 93% accuracy, especially when com-
bined with neurocognitive testing [136,139]. Using high-
dimensional diffeomorphic transformations, Csernasky
and colleagues evaluated the surface of the hippocampus,
and found that inward deformation of the left hippocam-
pal surface within the CA1 field is an early predictor of the
conversion to dementia in CN older subjects [135].
Volume reduction in other medial temporal lobe subdi-

visions besides the hippocampus, and acceleration of ven-
tricular volume expansion [145], have also been described
in CN individuals at risk for AD [136,143,146-148].
Decreased entorrhinal cortex volume was shown to pre-
cede significant cognitive decline by 4 years and, together
with hippocampus volume, to predict cognitive decline in
CN subjects with an accuracy reaching 80% (up to 90%
when combined with decreased hippocampus volume)
[136]. Similar results were reported for the reduced
volume of the anteromedial temporal cortex [146,147], the
prediction accuracy of which was further improved when
neuroimaging data were combined with neuropsychologi-
cal testing [136,146].
Recently, early structural abnormalities in the neocor-

tex have aroused growing interest [143,146,149,150].
Decreased gray-matter volume in the parietal lobe, nota-
bly in the angular gyrus, has been described in CN indivi-
duals in advance of MCI development [146]. Moreover,
prefrontal cortex atrophy in CN individuals was found to
precede dementia onset over a 6-year period, and
appeared to be even a more sensitive predictive factor
than hippocampal volume [149]. Dickerson et al.
reported that the analysis of multiple regions preferen-
tially affected in mild AD (referred to as the ‘cortical AD
signature’) could be useful in predicting AD conversion
in CN individuals [140-142]. Subtle cortical thinning in a
set of seven to nine preselected neocortical regions was
shown to be associated with increased risk for AD devel-
opment, and it preceded loss of hippocampus volume
[140,142,151]. Notably, atrophy in these regions was
detectable more than 10 years before clinical onset of the
disease, and correlated with the CSF Ab42/tau ratio and
amyloid load measured by PiB binding [142,150,152].
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Functional MRI
Functional connectivity between different brain regions
is disrupted early in the course of AD [153-156], possi-
bly reflecting the deleterious effects of Ab on synapses
and glucose metabolism. At the whole-brain level, such
early dysfunctions trigger multiple compensatory func-
tional rearrangements of the neural networks to pre-
serve cognitive performance [157-164]. Using functional
(f)MRI, it was shown that in CN APOε4 carriers, the
magnitude of brain activation in the parietal and pre-
frontal regions during memory tasks is higher than in
controls, and the extent of brain activation correlates
with subsequent memory decline in these subjects
[157-160]. This extensive extrahippocampal activation
may represent an attempt to counterbalance subtle defi-
cits in hippocampal function, and is thought to repre-
sent an early functional sign of emerging AD in CN
individuals [161]. The same kind of overactivation in the
frontal and temporal lobes during memory encoding has
been seen in older people at high risk for late-onset AD,
independently of their APOε genotype, as much as 10
years earlier than the estimated AD onset [162]. Inter-
estingly, such a functional reorganization is not limited
to the memory-related tasks, but has been also reported
in the parietal lobes during a mental rotation test [163],
and in the medial temporal lobe, posterior cingulate cor-
tex, bilateral thalamus, and caudate nucleus, during
divided-attention tasks [164].

The dynamic cascade in preclinical AD
Accumulating data on preclinical AD markers obliges us
to revisit the traditional view of the degenerative process
and its temporal evolution in brain aging. Jack and cow-
orkers recently proposed such a hypothetical model,
which defines ordered, sequential appearance of early
markers during preclinical phase of AD [165]. According
to this model, the markers related to amyloid formation,
namely decreased CSF Ab42 levels and increased PiB-
PET Ab brain load, become detectable first. Later on, the
markers of synaptic dysfunction and neurodegeneration,
such as abnormalities in FDG-PET and fMRI patterns,
appear followed by an increase in CSF tau protein levels.
At more advanced stages, structural brain changes, such
as cortical atrophy and decreased hippocampus volume,
can be detected by MRI. All of these markers become
positive before the first signs of cognitive decline. These
authors suggested that the changes in these preclinical
markers gradually increase over time, probably following
a sigmoid trajectory [165], an idea that has been partly
confirmed by recent experimental studies [166].
This model cannot be seen as definitive, and several

issues remain to be addressed. For instance, abnormal
brain glucose metabolism is seen as early as the third
decade of life, and is the earliest detected change in

individuals at risk for late-onset AD [118]. Whether Ab
could also be detected in these subjects if sufficiently sen-
sitive techniques were available remains unknown. Cer-
tainly, the exact order of marker appearance depends on
the accuracy of the diagnostic techniques, and thus is
likely to changeas new developments arise. Nevertheless,
the concept surrounding this model is innovative,
because it describes AD as a dynamic and biologically
unstable process, rather than a stable nosological condi-
tion, and takes into account sequential marker changes
during preclinical stages. In line with this model, new
diagnostic research guidelines have recently been formu-
lated, discriminating three stages of preclinical AD [167].
Stage 1 refers to asymptomatic brain amyloidosis, and is
based on positive amyloid markers (PiB-PET and/or low
CSF Ab42 levels). Stage 2 encompasses brain amyloidosis
accompanied by markers of neurodegeneration (abnorm-
alities in FDG-PET/fMRI or high CSF t-tau and p-tau
levels or atrophy on structural MRI). Stage 3, which
refers to brain amyloidosis with signs of neurodegenera-
tion as specified for stage 2, is accompanied by a subtle
cognitive decline that does not yet fulfill the criteria for
MCI. In population-based studies, 43% of CN oldersub-
jects had none of the early AD markers, while 16% met
the criteria for stage 1, 12% for stage 2, and 3% for stage
3. Notably, 23% of subjects were not compatible with any
of the stages and were defined as ‘suspected non-AD
pathophysiology’ [97]. Interestingly, the transition
through these preclinical stages (stage 1 to stage 2 to
stage 3) was associated with an increased risk of conver-
sion to MCI or dementia [168], suggesting that this clas-
sification adequately reflects the natural course of the
disease.

Presymptomatic or asymptomatic Alzheimer disease:
what exactly do we detect?
Different terms have been proposed to label these symp-
tom-free individuals, who are positive for one or more
early AD biomarkers. Most commonly, this phase of the
disease has been called ‘preclinical’, ‘presymptomatic’, or
‘asymptomatic’ AD. In their recent recommendations, the
National Institute on Ageing and the Alzheimer’s Associa-
tion workgroup have advocated the term ‘preclinical’ as
the one that ‘was felt to best encompass this conceptual
phase of the disease’ [167]. Even if these terms are still
applied interchangeably, their use could reflect different
viewpoints about the natural course of AD and the clinical
significance of the early markers. Terms such as ‘presymp-
tomatic’ or ‘preclinical’, in contrast to ‘asymptomatic’,
imply that early markers not only indicate increased risk
of AD-type dementia but that they precede and predict, at
the individual level, clinical disease onset. It is now widely
accepted that a morbid process that conveys transition
from asymptomatic cerebral amyloidosis to AD-type

Lazarczyk et al. BMC Medicine 2012, 10:127
http://www.biomedcentral.com/1741-7015/10/127

Page 5 of 13



dementia takes on average about 10 years [167]. There is
indirect evidence in support of this point of view. At the
population level, there is a lag of 10 years between the first
detectable Ab deposits (at autopsy) and dementia onset. In
fact, the prevalence of CN people with Ab deposits in
their sixth decade of life is roughly the same as the preva-
lence of AD-type dementia one decade later [167]. How-
ever, such estimation is uncertain in the absence of
definitive data on the dynamics of conversion to dementia
of the CN population at risk of AD. Theoretically, various
trajectories are possible. The conversion of CN to AD
could be a linear process, with a steady cognitive decline
and a constant number of converters over a given period
[169]. In this case, the group at risk of AD would include
CN individuals with a more or less advanced morbid pro-
cess, which lasts a constant period of time. All of the CN
individuals would convert to AD, and the more advanced
the process in a given subject, the smaller the lag time to
AD conversion. If the group comprised roughly the same
number of individuals at each preclinical stage (1, 2 or 3),
the process would be linear, but if the distribution of the
different stages were Gaussian (most people being at the
intermediate advanced stage), the conversion process
would be better represented by a sigmoid curve (Figure
1A). Alternatively, conversion from preclinical AD to
MCI/dementia could be determined by a purely stochastic
process, with a constant percentage of individuals convert-
ing in a given period. This may correspond to a ‘two-hits
model’, where the first hit (represented by the presence of
a first preclinical AD marker) generates vulnerability,
which increases at a constant rate the risk for a second hit
and conversion to AD-type dementia. In this scenario,
most people would convert to MCI/dementia early, and
the median of the conversion time would be much shorter
than with the linear or sigmoid models (Figure 1A). How-
ever, he recent data of Knopman and coworkers, showing
a gradual increase in risk of conversion to MCI/dementia
across the preclinical AD stages, do not support this possi-
bility [168].
Independently of the dynamics involved, the conversion

of the CN population at risk for AD to dementia may be
influenced by compensatory mechanisms. Numerous data
from both fMRI (for example, extensive extrahippocampal
activation during memory activation tasks [157]) and bio-
chemical studies (for example, increased choline acetyl-
transferase activity and the level of neurotrophic factors
[170,171]) seem to support the idea that functional com-
pensation is a major event in the course of AD. These
compensatory mechanisms could be ‘passive’ or ‘active’. A
‘passive’ compensatory process, referring to the notion of
cognitive reserve, may only delay the conversion to
dementia (Figure 1B). In agreement with this possibility,
the cognitive decline preceding AD-type dementia fits a
bi-logistic model with a plateau phase, and thus favorsthe

idea of such compensation [172]. On the other hand, an
‘active’ and potentially inexhaustible compensatory
mechanism could stop the progression of the disease at
the preclinical phase, and prevent conversion to dementia.
The efficiency of such active compensatory mechanisms is
of key importance, as they may prevent the development
of clinically overt dementia in some carriers of early AD
marker(s) (Figure 1C).
The existence of effective compensatory mechanisms

and the fate of cognitively intact individuals carrying an
early AD marker is a matter of debate, and some authors
believe that all individuals with an ongoing AD morbid
process will inevitably progress to AD-type dementia if
they were to live long enough [106,167]. In the absence
of long-term longitudinal studies, the issue remains unre-
solved; however, certain lines of evidence challenge this
idea. For instance, in an 8-year longitudinal study, Fagan
and coworkers reported that only some CN older indivi-
duals with increased CSF tau/Ab42 ratio converted to
dementia [77]. Similarly, only a small number of CN indi-
viduals with increased PiB load converted to MCI or AD
within 3 years [107]. Of course, it cannot be formally
excluded that at least some of these CN individuals
would eventually develop dementia if they were followed
up for a sufficiently long period. However, the curve
representing the conversion of CN individuals at risk for
AD to dementia is strikingly biphasic. Some individuals
convert to dementia rapidly within the first 3 years,
whereas others remain cognitively stable over at least 8
years [77]. It is thus likely that some of the preclinical
AD cases do not progress to dementia because they have
efficient compensatory mechanisms. In line with this pre-
sumption, it has been shown that some CN subjects can
maintain or even decrease their Ab burden over time.
Most interestingly, even those patients with high Ab
load, indistinguishable from the ones with AD-type
dementia, can remain cognitively stable [95,107].
Several medical conditions share with AD the long

clinical evolution and presymptomatic phase. It has been
suggested that preclinical AD markers play a similar role
in the early detection of AD as do increased blood glu-
cose level or preclinical tumor markers in the early diag-
nosis of type II diabetes or cancer, respectively, for
instance [167]. However, it needs to be kept in mind that
in contrast to asymptomatic hyperglycemia or carcinoma
in situ, which, if not treated, will inevitably progress to
clinically overt disease, there is to date insufficient evi-
dence to assert that preclinical AD imposes such deter-
minism. Thus, any reliable predictions at the individual
level on the basis of available preclinical AD markers are
still very difficult. This, in turn, might raise important
ethical concerns about disclosure of the information
based on biomarker status and pre-AD state [173], espe-
cially in view of the current lack of curative treatments.
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Alzheimer disease-related neurodegeneration: in vivo
indices of compensatory mechanisms
It is commonly believed that curative interventions in
AD, especially those targeting Ab, might be most effec-
tive when applied at the preclinical phase, because this
precedes irreversible brain lesions [53,174]. However, the
preclinical phase of AD could also be seen as a unique
therapeutic window because at this stage the brain com-
pensatory mechanisms are still efficient. Regardless of its
exact molecular substrates, AD-type dementia may be
viewed as a failure of these compensatory mechanisms in
the course of progressive cerebral amyloidosis. One
attractive scenario would be to treat AD not only by
decreasing Ab or tau brain load, but also by preserving
these natural compensatory mechanisms. However such
approaches remain purely speculative, as our understand-
ing of the compensatory mechanisms is still very limited.
Nevertheless, some evidence sustains the presence of
active compensatory mechanisms in AD. For instance,
there is a differential sensitivity of neurons to Ab oligo-
mers toxic effect. Although Ab deposits are often loca-
lized in the striatum in both familial and sporadic AD
cases, they are not associated with neuron loss in this
brain region or with extrapyramidal symptoms [103,175].
Moreover, the APOE ε3 genotype, which in contrast to
the APOE ε4 allele, decreases the risk of AD, has been
shown to protect neurons from hyperexcitability

[176,177], further supporting the notion that active neu-
roprotection plays an important role in cell vulnerability
in AD.

Conclusions
Preclinical AD markers may represent a double-edged
sword. On the one hand, they make it possible to define
a group at risk for AD-type dementia (in terms of disease
prevalence), but on the other hand, this group may com-
prise an increased proportion of ‘resistant’ individuals,
who do not develop dementia despite substantial brain
cerebral amyloidosis. Within the preclinical AD spec-
trum, the firstgroup includes presymptomatic individuals
who are positive for at least one amyloid marker (for
example,, PiB-PET, low Ab42 CSF levels) and correspond
to stages 1, 2 or 3 as defined by the recommendations
from the National Institute on Aging and Alzheimer’s
Association workgroups [167]. Virtually all of these sub-
jects will convert to MCI or AD-type dementia within 8
to 10 years. A second group includes individuals with
stable asymptomatic cerebral amyloidosis, who will
remain cognitively stable indefinitely, even though they
have positive amyloid marker(s) and would fall into the
stage 1 (or even stage 2) of preclinical AD (Figure 2).
Defining distinct biomarkers for these stable cases would
enable more reliable predictions of clinical evolution at
the individual level. Moreover, comparative analysis of
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Figure 1 Possible trajectories of the conversion process from cognitively normal to Alzheimer’s disase (AD)-type dementia. (A) Three
different possible trajectories of the conversion to dementia in a group of cognitively normal (CN) individuals (100% of non-demented subjects
at t0), at risk of AD. In the first trajectory (red line), the group comprises at baseline (t0) CN individuals at different stages of preclinical AD, with
roughly the same number of subjects at each stage. The total conversion time (the time between appearance of an early AD marker and
dementia onset) is constant and is the same for all subjects (t), and the number of converters in a given period is constant. In the second
scenario (green line), the group comprises peole with preclinical AD, with a Gaussian distribution of the individuals at different stages of
advancement (most individuals being at the intermediate stage). The total conversion time is constant and the same for all the individuals (t).
Most of the group converts to dementia at around t1/2. Finally, the black line shows the group comprising CN at preclinical AD, with the
constant conversion rate (proportion of the individuals that develop dementia in a given time period). Most individuals convert to dementia
early, and the mean time of conversion is higher than the respective median. (B) Preclinical AD individuals with a passive compensatory
mechanism that delays conversion for a given time (Δt), until the mechanism is exhausted. Subsequently, all patients convert to dementia,
following one of the trajectories presented on the panel A. (C) Preclinical AD individuals with an active compensatory mechanism that prevents,
in a certain proportion of cases (p), conversion to dementia, whichever trajectory the conversion process follows.
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these two groups could allow better insight into the nat-
ure of compensatory mechanisms and into the reasons
for their failure, which marks the beginning of AD-type
dementia.
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