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The bidirectional decision feedback equalizer (DFE) performs two equalizations, one on the received signal and one on its time-
reversed version. In this paper, we apply the bidirectional DFE to wireless transmissions on rapidly time-varying dispersive chan-
nels and we propose an efficient implementation obtained by implementing the feedforward filter in the frequency domain. The
feedback filter is adapted to the channel variations within one block and we propose a simplified design of the feedback filter
coefficients based on a polynomial model of channel variations. Simulations performed on time-varying channels show that the
proposed structure significantly outperforms existing architectures.
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1. INTRODUCTION

Recent developments in wireless communications have seen
the extension to mobile applications of existing standards
originally conceived for static receivers [1–4]. The push to
provide access to wideband services on mobile terminals has
posed a number of issues in the design of transmit and re-
ceive physical layers. In particular, the channel on which
communication takes place is affected by both frequency se-
lectivity and time selectivity, thus yielding a time-varying in-
tersymbol interference (ISI) on the received signal.

In order to compensate for the distortion introduced by
doubly selective channels, equalization is required. Among
various equalization techniques, we mention the block lin-
ear equalizer (BLE) [5, 6] which has a high complexity, since
it requires the inversion and multiplication of huge matri-
ces. The time-invariant BLE has been considered in [5]. An
extension to a time-varying finite impulse response (FIR)
equalization has been considered in [6], where the doubly
selective channel is described using a basis expansion model.

For time-invariant dispersive channels, it is well known
that nonlinear equalization outperforms linear equalization,
due to its ability of reducing ISI by means of interference
cancelation through past detected symbols [7]. In particu-
lar, decision feedback equalization (DFE) is able to signifi-
cantly lower the bit error rate below linear equalization. This
comes in general at a relatively high cost in terms of com-
putational complexity, which can be reduced by implement-
ing the filters in the frequency domain (FD) with the use
of efficient discrete Fourier transforms (DFTs) [8–10]. The

FD implementation requires a particular transmission for-
mat that forces the circularity of the convolution between the
channel and the transmitted signal. On the other hand, DFE
is prone to error propagation, since errors in symbol detec-
tion are propagated to next detections through the feedback
part. This phenomenon can be partially alleviated with the
use of a bidirectional DFE, where equalization is performed
both on the received signal and on its time-reversed version
[11, 12]. In [12], the bidirectional DFE was studied for the
special case of a feedforward filter limited to be a pure gain.
It was later extended to the general case of a finite impulse
response feedforward filter and the research has focused on
how decisions are taken from the signals coming from the
two equalizers. The bidirectional arbitrated DFE performs a
selection on the basis of a local maximum a posteriori (MAP)
criterion [13] and achieves better performance than the lin-
ear combining of the equalized signals [14].

In this paper we propose a time-varying bidirectional
DFE (TV-Bi-DFE) for the equalization of broadband signals
distorted by time-varying channels. The TV-Bi-DFE com-
prises two blocks: (a) a direct time-varying FDDFE (TV-FD-
DFE) that processes blocks of the received signal, (b) a time-
reversed TV-FD-DFE that processes time-reversed blocks of
the received signal. The double processing provides signals
affected by partially uncorrelated errors. For an efficient im-
plementation, the feedforward (FF) part of TV-FD-DFEs is
implemented in the frequency domain by means of a static
equalizer. On the other hand, the variations of the chan-
nel are compensated for by the feedback (FB) part of the
DFEs, which is implemented with a time-varying filter. For
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Figure 1: PN-extended transmission format for TV-Bi-DFE.

the detection of the two equalized signals, we consider both a
maximum ratio combining approach and an arbitrated tech-
nique, which also takes into account the time-varying nature
of the channel. We also investigate the design of the TV-Bi-
DFE filters and we describe the variations of the channel taps
with a linear model, which allows a simple implementation,
while being sufficiently accurate in many scenarios. We show
that most of the operations necessary for the design can be
shared between the two TV-FD-DFEs. Moreover, the linear
channel model yields an easy adaptation of the FB filters,
as well as a simple implementation of the arbitration pro-
cess. Computer simulations have been carried out to assess
the performance of TV-Bi-DFE on dispersive time-varying
channels, and comparisons with static-equalizer structures
are presented.

The paper is organized as follows. We first describe in
Section 2 the received signal for a time-varying dispersive
channel and in Section 3 we provide a general description
of the proposed TV-Bi-DFE. In Section 4 we describe the de-
sign of the filters, including the adaptation of the FB filter.
Some simulation results are presented in Section 5, includ-
ing a comparison of TV-Bi-DFE with existing equalization
structures both in terms of bit error rate and in terms of
computational complexity. Lastly, conclusions are outlined
in Section 6.

2. SYSTEMMODEL

We consider a single user communication system over a
time-varying dispersive channel. In order to implement fre-
quency domain (FD) equalization at the receiver, the data
signal dn is divided into blocks of sizeM which are extended
with a PN extension of length L to obtain blocks of size
P =M + L:

s(k) = [skP , skP+1, . . . , skP+P−1
]

= [dkM ,dkM+1, . . . ,dkM+M−1, p0, p1, . . . , pL−1
]
,

(1)

where [p0, p1, . . . , pL−1] is the PN extension [9]. This trans-
mission format implements a single carrier communica-
tion that allows to exploit the benefits of the FD equaliza-
tion at the receiver, without having the high peak-to-average
power ratio of orthogonal frequency division multiplexing
(OFDM) and with a simpler bit and power allocation [9].
The PN-extended transmission has been adopted in the Wi-
MAX standard IEEE 802.16a [15]. The transmission for-
mat, including the PN extension, is shown in Figure 1. Upon
transmission, the formatted signal sn at rate 1/T is filtered by
a transmit filter and interpolated to obtain the continuous-
time signal s(t).

As a transmission model, we consider a time-varying
channel with impulse response at time t hCh(t, τ). The re-

ceived signal at time t can be written as

r(t) =
∫

hCh(t, τ)s(t − τ)dτ +w(t), (2)

where w(t) is the noise term, which we assume to be Gaus-
sian distributed with zero mean. The characteristics of the
considered time-varying dispersive channel will be described
with more details in Section 5.

At the receiver, r(t) is filtered by a receive filter and sam-
pled at time kT , k ∈ I where I is the set of integer numbers.
Let us indicate with {h�(n)} the sampled impulse response at
time n of the cascade of the transmit filter, the channel and
the receive filter, that is,

h�(n) = T
∫∫

dτ1dτ2hCh
(
nT − Δ− τ1, τ2

)

× htx
(
�T − Δ− τ1 − τ2

)
hrx
(
τ1
)
,

(3)

where Δ is a proper delay and htx(τ), hrx(τ) are the im-
pulse responses of the transmit and receive filters, respec-
tively. Then, the signal after sampling can be written as

rn =
L−1∑

�=0
h�(n)sn−� +w� , (4)

wherew� is the noise term and, by properly delaying the sam-
pling, we have assumed that the overall channel impulse re-
sponse has its support in [0,L− 1].

3. THE TIME-VARYING BIDIRECTIONAL DECISION
FEEDBACK EQUALIZER

The time-varying bidirectional DFE (TV-Bi-DFE) operates
on blocks of the received signal by means of DFTs. In partic-
ular, the received sampled signal rn is first divided into blocks
of size P:

r(k) = [rkP , rkP+1, . . . , rkP+P−1
]
. (5)

The direct TV-FD-DFE performs a nonlinear equaliza-
tion of r(k), while the time-reversed TV-FD-DFE operates
on the time-reversed block:

r(I)(k) = [rkP+P−1, rkP+P−2, . . . , rkP
]
. (6)

Since the FF filter operates in the FD, the time-reversal oper-
ation is integrated into the FD filter, by appropriately mod-
ifying the phase of the FD taps. Hence, the FF parts of both
the direct and the inverse DFEs operate on the block r(k).
Since all operations are performed on a per block basis, we
will assume k = 0 and will omit the block index k in the rest
of the paper.
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Figure 2: General scheme of the TV-Bi-DFE receiver. S/P and P/S blocks are serial-to-parallel and parallel-to-serial converters, respectively.
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Figure 3: Scheme of TV-FD-DFE.

The scheme of TV-Bi-DFE is shown in Figure 2. First, the
receiver transforms the received block into the FD to obtain
the vector signal:

R = [R0,R1, . . . ,RP−1
]
, (7)

where

Rk =
P−1∑

�=0
e− j2π(k�/P)r�. (8)

Then, the vector signal R is fed to the two TV-FD-DFEs
(dir. DFE and inv. DFE, in Figure 2) that operate in par-
allel. A detailed description of TV-FD-DFE is provided in
Section 3.1.

The output signal vectors d̃(D) and d̃(I), from the direct
and inverse DFEs, are combined in the block comb. to pro-

vide the signal {d̃n}. Note that the combining block may also
perform an arbitrated ML sample selection. Lastly, a detector

(DET) or decoder follows, and user data {d̂n} are obtained.

3.1. Time-varying frequency-domain DFE

The purpose of the equalizer is to compensate for the time-
varying ISI of the channel. This objective is achieved by
a bidirectional nonlinear operation. The TV-FD-DFE com-
prises a feedforward (FF) filter implemented in the FD and
a feedback (FB) filter implemented in the time domain. The
implementation of the FF filter in the FD allows to reduce
complexity, in terms of complex operations per received
sample, with respect to the time-domain implementation. At
the same time, the FB filter is still implemented in time do-
main in order to allow adaptation to channel variations. The
overall scheme is similar to the DFE structure proposed in
[8, 9] while here the FB filter is time varying in order to track
the variations of the channel. Moreover, here the DFE is ex-
tended to operate on the time-reversed signal.

The scheme of TV-FD-DFE is shown in Figure 3. The
blocks with dashed lines are used for the implementation of
the time-reversed part of TV-Bi-DFE.

The input of the equalizer is the block of the received
samples after DFT, R. The first operation of the equalizer is
the FF filtering, implemented in the FD as the elementwise
multiplication of R by the feedforward (FF) vector of coeffi-
cients. The FF filter is static and this allows the efficient im-
plementation in the FD. The time variations of the channel
are compensated for by the FB filter. For the direct and time-
reversed TV-FD-DFEs, the FF coefficient vectors are denoted
as F(D) and F(I), respectively. In the scheme of Figure 3, the
coefficients are denoted by F to accommodate both direct
and time-reversed TV-FD-DFEs. The signal in the FD after
FF filtering for the direct TV-FD-DFE is

Y (D)
p = R(D)

p F(D)
p , p = 0, 1, . . . ,P − 1, (9)

while for the time-reversed TV-FD-DFE (9) holds with the
index (D) substituted with (I). The coefficients of the FF filter
are computed for each block, in order to track the channel
variations.

After FF equalization, the FB part of TV-FD-DFE is im-
plemented in the time domain. First, the signal in the FD is
converted into the time domain by means of an inverse DFT
(IDFT), providing the vector signal

y(D)n =
P−1∑

p=0
e2π j(np/P)Y (D)

p , n = 0, 1, . . . ,P − 1. (10)

Feedback filtering follows, which we describe now for the di-
rect and inverse TV-FD-DFEs.

FB for the direct TV-FD-DFE

For the direct TV-FD-DFE, the first FF equalized sample
in the time domain is fed to a threshold detector, and the
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decided symbols are used for the removal of residual interfer-
ence before the detection of the next sample follows. The re-
moval of ISI is performed by the FB filter which is time vary-
ing according to the channel variations. Details on the design
of the FB filters are provided in Section 4. Let us indicate with
{b(D)� (n)} the impulse response of the FB filter of the direct
TV-FD-DFE for the �th output sample at time n. The FB fil-
ter will be designed to have a support � = 1, 2, . . . ,NFB, where
NFB ≤ L.

Let us indicate with d̂ (D)
p the detected symbol at time p.

The generic sample p = 0, 1, . . . ,P − 1 at the input of the

detector is obtained by subtracting from y(D)n the interference
generated by the previously detected symbols, that is,

d̃(D)n = y(D)n +
NFB∑

�=1
b(D)� (n)d̂ (D)

n−� , n = 0, 1, . . . ,M − 1. (11)

Initially, the feedback filter is fed with the PN extension, that
is, in (11) we set

d̂ (D)
−n = pL−n, n = 1, 2, . . . ,L. (12)

FB for the time-reversed TV-FD-DFE

The time-reversed TV-FD-DFE processes the FF equalized
block in reverse order, that is, detection starts from the last
sample of the equalized block d̃ (I)

P−1 and the removal of the
residual ISI is performed from the last symbol to the first. In
other words, the equivalent channel model, obtained by the
cascade of the discrete-time channel and the feedforward fil-
ter, is an anticausal filter. In this case, we indicate with b(I)� (n),
� = 1, 2, . . . ,NFB, the impulse response of the FB filter for the
time-reversed TV-FD-DFE at time n. Then the signal at the
input of the detector is

d̃ (I)
n = y(I)n +

NFB∑

�=1
b(I)� (n)d̂ (I)

n+� , n = 0, 1, . . . ,M − 1, (13)

where we set

d̂ (I)
M+n = pn, n = 0, 1, . . . ,L− 1. (14)

In order to perform the FB time-reversed filtering, the FF
equalized block is time reversed (dashed block in Figure 3)
and a conventional FB follows. The result of the FB equaliza-
tion is again time reversed (indicated by the corresponding

dashed block in Figure 3) to obtain the signal d̃ (I)
� .

Note that both the direct and the time-reversed TV-FD-
DFEs rely on the presence of the PN extension. In fact, the ISI
on the first (last) samples of the FF equalized blocks is due to
the PN extension, which is known at the receiver and then
can be effectively removed. Indeed, any other permutation of
the block and consequent equalization could not remove ISI
from the beginning of the permuted block, since the FB filter
could not be properly initialized.

3.2. Signal combining and arbitration

The direct and time-reversed TV-FD-DFEs provide signals
that are affected by errors also due to error propagation in

the FB parts. Since they process the received block in oppo-
site directions, the errors are at least partially uncorrelated.
There are two major methods to combine the signals of the
two TV-FD-DFEs before decoding or detection: (a) maximal
ratio combining (MRC), (b) symbol arbitration.

In MRC, the two signals are linearly combined with
weights obtained by the signal-to-interference-plus-noise ra-
tio (SINR) of each equalized signal. As will be seen in
Section 4, by anMSE design of the filters, the average SINR is
the same for both signals and MRC boils down to equal gain
combining (EGC).

As described in [13], the arbitrated Bi-DFE performs the
decision on a symbol-by-symbol basis, according to a local
maximum a posteriori (MAP) criterion. In particular, the
quality of the local match between the estimated and the
received sequence is estimated in a window of W samples
around the bit of interest (see [13] for details). The symbol
which provides a closer match with the received sequence for
a set of neighboring samples is selected in the arbitration.

4. FILTER DESIGN

The filter design of the Bi-FD-DFE takes into account two
issues: (i) the transmission channel is time varying and the
FB filters track its variations; (ii) filters must be designed for
both the direct and time-reversed signals.

As a design criterion, we aim at the minimization of the
mean square error (MSE) at the equalizer output:

J = E
[∣∣yn − dn

∣∣2
]
, (15)

where yn must be read as y(D)n and y(I)n for the direct and
time-reversed TV-FD-DFEs, respectively.

Since the channel is time varying during one slot, each
sample will be characterized by a different MSE. The MSE
design criterion would require the minimization of a com-
pound function of the MSEs, for example, their arithmetic
average. However, this criterion would be exceedingly com-
plex since the MSE should be evaluated for each sample. On
the other hand, by considering that the FB filter compensates
for time variations of the channel, we can assume that the
MSE is almost constant for each symbol of a block.

Under this assumption and in order to obtain a simpler
solution, we model the time-varying channel by expanding
into a Taylor series each time-varying tap and truncating the
expansion to the linear terms. Overall, for each block, the �th
channel tap is modeled as

h�(n) = h�(0)
(
1− n

P

)

+ h�(P)
n

P
, n = 0, 1, . . . ,P − 1, � = 0, 1, . . . ,L− 1,

(16)

where h�(0) and h�(P) are the values of the �th tap at the
beginning of the current and the next blocks, respectively.
We design the filters according to the linear model of the
channel. For a practical implementation, h�(0) and h�(P) are
provided by channel estimation techniques, for example, by
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inserting a training sequence at the beginning of each trans-
mitted block [8].

In particular, the FF filter is designed through the average
channel on the block, that is,

h� = h�(P)− h�(0)
2

, � = 0, 1, . . . ,L− 1. (17)

The design criterion aims at minimizing the MSE at the de-
tector input, under the assumption that the channel is time
invariant with an impulse response h� . Let us define the P-
size DFT of h� as

Hp =
L−1∑

�=0
e− j2π(�p/P)h� , p = 0, 1, . . . ,P − 1. (18)

4.1. Feedforward filter design

We describe now the design of the FF filters of TV-FD-DFEs.

FF filter design of the direct TV-FD-DFE

For the direct DFE, the FF filter minimizes theMSE by taking
into account that the FB filter removes up to NFB taps of the
residual ISI. For a time-invariant channel, in [9] it has been
shown that an efficient technique for the computation of the
FF filter coefficients is based first on the design of the FB filter
for {h�} through the solution of a linear system and then the
derivation of the FF filter. Following the procedure described
in [9], let us define the matrix AD and the column vector bD
as

[
AD]m,� =

P−1∑

n=0

e− j2π(n(�−m)/P)

∣
∣Hn

∣
∣2 + σ2w/σ

2
d

, 1 ≤ m, � ≤ L, (19)

[
bD
]
m =

P−1∑

n=0

e j2π(nm/P)

∣
∣Hn

∣
∣2 + σ2w/σ

2
d

, 1 ≤ m ≤ L, (20)

where σ2d = E[|d�|2] and σ2w is the noise power.
For the design of the FF filter, we first design the causal FB

filter that equalizes h� with coefficients gD = [gD,1, gD,2, . . . ,
gD,L]

T . Note that this filter will not be used in TV-FD-DFE
since it will be substituted by a time-varying filter. The FF
filter that minimizes the MSE is obtained by first solving the
following linear system [9]:

ADgD = bD, (21)

and then obtaining the FF filter as

F(D)
p =

H
∗
p

(
1−∑NFB

�=1 gD,�e
− j2π(p�/P)

)

∣
∣Hp

∣
∣2 + σ2w/σ

2
d

, p = 0, 1, . . . ,P − 1.

(22)

Note that {gD,�} is the FB filter that minimizes the MSE for

a time-invariant channel having impulse response {h�}. For
the direct TV-FD-DFE, the resulting MSE relative to the av-
erage channel is

JD = σ2w
P

P−1∑

p=0

1
∣
∣Hp

∣
∣2 + σ2w/σ

2
d

∣
∣
∣
∣∣1−

NFB∑

�=1
gD,�e

− j2π(�p/P)

∣
∣
∣
∣∣

2

.

(23)

FF filter design for the time-reversed TV-FD-DFE

The time-reversed TV-FD-DFE equalizes the transmission
on the time-reversed channel with the following impulse re-
sponse:

h
′
−� = h� , � = 0, 1, . . . ,L− 1. (24)

In the frequency domain, the DFT of h
′
−� is

H
′
p = H

∗
P−1−p, p = 0, 1, . . . ,P − 1, (25)

where ∗ denotes the complex conjugate.
On the other hand, the FB filter is still causal and with

L taps, since it is fed with time-reversed detected symbols.
Hence, for the design of the FF filter, we can model the time-
reversed TV-FD-DFE as a time-invariant FD-DFE that equal-
izes the channel {H′

p} byminimizing theMSE for the average

channel h
′
� . The solution is provided by solving the following

linear system:

AIgI = bI , (26)

where, similarly to (19) and (20), we obtain

[
AI
]
m,� =

P−1∑

n=0

e− j2π(n(�−m)/P)

∣
∣H

′
n

∣
∣2 + σ2w/σ

2
d

, 1 ≤ m, � ≤ L, (27)

[
bI]m =

P−1∑

n=0

e j2π(nm/P)

∣
∣H

′
n

∣
∣2 + σ2w/σ

2
d

, 1 ≤ m ≤ L. (28)

Now, by observing that e j2π(�n/P) = e− j2π(�(P−n)/P) and by
comparing (19) with (27) and (20) with (28), we conclude
that

AI = A∗D, bI = b∗D, (29)

and consequently

gI = g∗D. (30)

This observation has two important consequences: (a) the
design of the FF filters requires only the solution of one linear
system, (b) from (23), theMSE of the direct and inverse DFEs
is the same since

JI = σ2w
P

P−1∑

p=0

1
∣
∣HP−p

∣
∣2 + σ2w/σ

2
d

∣
∣
∣∣
∣1−

NFB∑

�=1
gI ,�e

− j2π(�p/P)

∣
∣
∣∣
∣

2

= σ2w
P

P−1∑

p=0

1
∣∣HP−p

∣∣2 + σ2w/σ
2
d

∣
∣∣
∣
∣1−

NFB∑

�=1
g∗D,�e

− j2π(�p/P)

∣
∣∣
∣
∣

2

= σ2w
P

P−1∑

p=0

1
∣
∣HP−p

∣
∣2 + σ2w/σ

2
d

∣∣
∣
∣∣1−

NFB∑

�=1
gD,�e

− j2π(�(P−p)/P)
∣∣
∣
∣∣

2

= JD.
(31)

Note that the equivalence of the MSE of the two DFEs also
holds for time-domain implementation, as shown in [12],
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even if both the architecture and the filter derivations are dif-
ferent. Since both direct and time-reversed DFEs yield the
same useful signal gain, we conclude that both DFEs provide
the same SINR at the detection point.

The resulting FF filter for the inverse DFE is

F(I)
p =

H
∗
P−p
(
1−∑NFB

�=1 gI ,�e
− j2π(p�/P)

)

∣
∣HP−p

∣
∣2 + σ2w/σ

2
d

, p = 0, 1, . . . ,P − 1.

(32)

4.2. Adaptation of the feedback filter

The feedback filter tracks the variations of the channel and
compensates for the residual ISI after the feedforward equal-
ization. We now describe how that FB filter is adapted for the
direct and time-reversed TV-FD-DFEs.

Direct TV-FD-DFE

For the direct TV-FD-DFE, the FB filter cancels the interfer-
ence generated by the previousNFB symbols, that is, compen-
sates for the first NFB taps of the overall impulse response of
the cascade of the channel and the FF filter. In particular, by
indicating the impulse response of the FF filter as

f (D)� =
P−1∑

p=0
F(D)
p e j2π(p�/P), � = 0, 1, . . . ,P − 1, (33)

the overall impulse response of the cascade of the channel
and FF filter seen by the direct DFE at time n is

h
(D,eq)
� (n) =

P−1∑

m=0
f (D)m ĥ�−m(n), (34)

and the FB filter is

b(D)� (n) = −h(D,eq)� (n), � = 1, 2, . . . ,NFB. (35)

For a general time-varying channel, (34) and (35) provide
the equations for the update of the FB filter, independently
of the channel model. In the following, we derive the partic-
ular expression of the FB filter update when the channel is
modeled as linearly time varying. Note that for a higher or-
der polynomial model the derivation of the FB coefficients
would be straight forward, though with a consequent in-
crease in complexity, due to the higher number of coefficients
that must be taken into account.

Considering that the channel is modeled in (16) as lin-
early time varying, the FB filter can also be described as lin-
early time varying. In particular, by inserting (16) into (34)
and (35), we obtain

b(D)� (n) = −h(D,eq)� (0)
(
1− n

P

)
− n

P
h
(D,eq)
� (P),

� = 1, 2, . . . ,NFB,
(36)

where h
(D,eq)
� (0) and h

(D,eq)
� (P) are the equivalent filters com-

puted from (34) with the channel at the first symbol of the
current and next blocks, respectively.

Time-reversed TV-FD-DFE

For the time-reversed TV-FD-DFE, (33) and (34) hold with
the indices (I) instead of (D), and the FB filter is

b(I)� (n) = −h(I ,eq)−� (0)
(
1− n

P

)
− n

P
h
(I ,eq)
−� (P),

� = 1, 2, . . . ,NFB.
(37)

Note that if NFB < L, the time variations of the chan-
nel are only partially tracked by TV-FD-DFE, since taps

{h(D,eq)� (n)} and {h(I ,eq)� (n)} are not compensated for by the
FB when � > NFB. On the other hand, if the FB filter has
NFB = L taps, then all taps of the equivalent channels are
tracked.

4.3. Time-varying gain adaptation

The variations in the channel impulse response yield changes
not only on the ISI but also on the gain of the useful signal,

that is, h
(D,eq)
0 (n) and h

(I ,eq)
0 (n). These variations change the

amplitude and the phase of the signal at the input of the de-
tector/decoder. In order to compensate for these variations,
we multiply the equalized signal by the complex conjugate of
the gain, and arbitration orMRC combining is performed on
the signals

d̃(D)
′

n = h
(D,eq)∗
0 (n)d̃(D)n ,

d̃(I)
′

n = h
(I ,eq)∗
0 (n)d̃(I)n .

(38)

4.4. Time-invariant bidirectional DFE

For comparison purposes, we consider also a time-invariant
bidirectional FD-DFE, implemented with the scheme of
Figure 2. In this case the FF filters are designed as for TV-
Bi-DFE, while the FB filters are not adapted to the channel
variations but are kept static for the entire burst. In partic-
ular, the FB filters for the direct and time-reversed DFEs are
provided by gD and gI in (26) and (30), respectively.

5. NUMERICAL RESULTS

In order to assess the performance of TV-Bi-DFEs, we have
evaluated the averaged uncoded bit error rate (BER) for
transmissions on time-varying dispersive channels. TV-Bi-
DFE has been compared with the static FD-DFE, designed
according to theMSE criterion outlined in [9] for the average
channel h� . Moreover, we also compared the performance of
TV-Bi-DFE with the time-invariant bidirectional FD-DFE.

We have considered two channel scenarios. In the first
scenario, the BER is averaged over randomly time-varying
channels according to the Jakes model [16]. In the second
case, the channel taps are linearly varying. In both cases, we
assume that the channel is perfectly estimated at the begin-
ning of each block, that is, {h�(0)} and {h�(P)} are available
at the receiver.
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Figure 4: Average BER as a function of the speed. The performance of TV-Bi-DFEs is shown in dashed lines, while dotted lines show the
performance of TI-Bi-DFEs.

Randomly time-varying dispersive channels

First, we assume that the channel taps have a Rayleigh statis-
tic and a uniform random phase. The power profile is expo-
nentially decreasing and the average root mean square delay
spread is 2T , where T is the duration of a transmitted sym-
bol. The time-varying taps have a Jakes’ spectrum which is
related to the Doppler frequency:

fD = v

c
f0, (39)

where v is the terminal speed, c is the light speed, and f0 is
the carrier frequency. We consider a transmission operating
at f0 = 20GHz, with a symbol rate 1/T = 2MHz.

Linearly time-varying channels

The second scenario that we consider is a time-varying chan-
nel that evolves linearly from the channel impulse response
[13]

h(ref ,1)

=
[
0.183 0.916 0.289 −0.183 0.092 −0.046 0.018

]

(40)

to the impulse response of the channel C of [17]

h(ref ,2) =
[
0.227 0.460 0.688 0.460 0.227 0 0

]
. (41)

The variation of the channel from h(ref ,1) to h(ref ,2) is made
linearly on a per tap basis, that is,

h�(n) =
(
1− n

N − 1

)
h(ref ,1)� +

n

N − 1
h(ref ,2)� ,

n = 0, 1, . . . ,N − 1,
(42)

where the number of symbols N determines the speed of
variation between the two channels. Although being favor-
able to our TV-Bi-DFE with linear interpolation of the FB
filter, this scenario provides an insight into the capabilities of
the equalizers against channels with spectral nulls, which are
usually hard to equalize.

We will indicate with BiMRC-DFE the TV-Bi-DFE using
the MRC rule for the combination of the TV-FD-DFE sig-
nals, while TV-Bi-DFE using the arbitration technique is de-
noted as BiA-DFE.

For both TV-Bi-DFEs, we consider blocks of size P =
128, a PN extension of L = 16 symbols, and QPSK modu-
lated data. For the feedback filter, we consider NFB = 16 taps,
and for the arbitration of BiA-FDE, we consider a window
sizeW = 5.

Figure 4 shows the average BER as a function of the speed
for an SNR of 30 dB. Dashed lines report the results for TV-
Bi-DFEs, while the dotted line shows the performance of the
time-invariant bidirectional DFE (TI-Bi-DFE) with arbitra-
tion. Indeed, the TI-Bi-DFE with MRC has not been shown
since it has a performance very close to FD-DFE. We observe
that TV-Bi-DFE provides an advantage of about 15 km/h
over FD-DFE, and BiA-DFE further outperforms BiMRC-
DFE by about 5 km/h. We also observe that by adapting the
FB filter to the channel variations, TV-Bi-DFEs significantly
outperform TI-Bi-DFEs. Lastly, from this figure we can also
derive the impact of the block length P on the system perfor-
mance. In fact, a higher P yields a larger time variation of the
channel within each block.

Figures 5, 5, and 7 show the average BER for different
equalizer structures operating on linearly time-varying chan-
nels as described by (42), for increasing values of N . We ob-
serve that for a low N , the channel changes more rapidly and
FD-DFE is more affected by the variations of the channel
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Figure 5: Average BER as a function of the average Eb/N0 for different equalizer structures. Linearly time-varying channel according to (42),
with N = 3P.
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Figure 6: Average BER as a function of the average Eb/N0 for different equalizer structures. Linearly time-varying channel according to (42),
with N = 30P.

within each frame. Moreover, we note that BiA-DFE out-
performs significantly BiMRC-DFE since it performs a MAP
choice on the equalized signals provided by the DFEs.

5.1. Computational complexity

The computational complexity of the proposed schemes is
compared with existing schemes in terms of number of com-
plex multiplications (CMUL) required both for signal pro-
cessing and for filter design. For the computation, we assume
that a P-size DFT requires (P/2) log2(P)− P CMULs.

The TV-Bi-DFE requires one DFT and two IDFTs, and
CMULs for two FF filters. When BiMRC-DFE is considered,
the combining does not require additional CMULs, while for
BiA-DFE, two filters with L taps are applied to the equalized
signals, requiring L CMULs per received sample each.

Table 1 shows the computational complexity of the var-
ious equalization architectures in terms of CMULs per re-
ceived sample. We observe that the complexity of BiMRC-
DFE is almost doubled with respect to FD-DFE. When the
arbitration is included, the complexity further increases by
about 30%. For comparison purposes, we considered the
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Figure 7: Average BER as a function of the average Eb/N0 for different equalizer structures. Linearly time-varying channel according to (42),
with N = 300P.

Table 1: Computational complexity of the system.

Structure
Computational complexity

CMULs/sample
Simulation

scenario

FD-DFE
P

M
log2(P) +NFB 24

BiMRC-DFE
3P
2M

log2 P −
P

M
+ 2NFB 43

BiA-DFE
3P
2M

log2 P −
P

M
+ 2NFB + 2L 58

Block DFE [5] 2P 256

TV-FIR-DFE [18] (Q′ + 1)(L′ + 1) + (Q′′ + 1)L′′ 169

block DFE (B-DFE) of [5] and TV-FIR-DFE of [18]. The B-
DFE requires a signal processing complexity of 2P CMULs/
sample. For TV-FIR-DFE, we model the channel with L = 16
taps and with Q = 2 basis functions (corresponding to a
speed up to 100 km/h) and we consider a feedforward (feed-
back) filter with L′ = 10 (L′′ = 16) taps and Q′ = 10
(Q′′ = 2) basis functions. The signal processing complexity
of TV-FIR-DFE is (Q′+1)(L′+1)+(Q′′+1)L′′ CMULs/sample
[18].

For the design of the filter coefficients, we observe that
the most relevant operation is the solution of the linear sys-
tem (21) which is shared by both the direct and the inverse
TV-Bi-DFEs. Hence, the design of BiA-DFE does not yield an
increase in complexity with respect to FD-DFE, providing in
particular [9]

Cdesign = O
(
L2 +

L

2
log2 L +

P

2
log2 P

)
. (43)

The TV-FIR-DFE [18] has a complexity in design of [(Q +
Q′ + 1)(L + L′ + 1)]3, which is considerably higher than that
of our proposed scheme.

6. CONCLUSIONS

In this paper we presented a novel bidirectional time-varying
FD-DFE structure which is suitable for the equalization of
rapidly time-varying channels. By exploiting the duality of
time convolution and frequency-domain multiplication, the
feedforward filtering is implemented in the frequency do-
main by means of efficient discrete Fourier transforms. At
the same time, the feedback part of DFEs is implemented in
the time domain and adaptively changed in order to track
the channel variations. Moreover, two DFEs are applied on
blocks of the received signal and their time-reversed ver-
sions, thus achieving a diversity gain. For the combination
of the two equalized signals, we considered two alternatives
and we evaluated the bit error rate of the proposed schemes
for a time-varying transmission scenario. We conclude that
the proposed structure is effective in equalizing time-varying
channels with an efficient architecture.
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