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A b s t r a c t  

In this work, a genetic algorithm is exploited for automatic detec-
tion of oil spills of small and large size. The route is achieved using ar-
rays of RADARSAT-2 SAR ScanSAR Narrow single beam data 
obtained in the Gulf of Mexico. The study shows that genetic algorithm 
has automatically segmented the dark spot patches related to small and 
large oil spill pixels. This conclusion is confirmed by the receiver-
operating characteristic (ROC) curve and ground data which have been 
documented. The ROC curve indicates that the existence of oil slick 
footprints can be identified with the area under the curve between the 
ROC curve and the no-discrimination line of 90%, which is greater than 
that of other surrounding environmental features. The small oil spill sizes 
represented 30% of the discriminated oil spill pixels in ROC curve. In 
conclusion, the genetic algorithm can be used as a tool for the automatic 
detection of oil spills of either small or large size and the ScanSAR Nar-
row single beam mode serves as an excellent sensor for oil spill patterns 
detection and surveying in the Gulf of Mexico. 

Key words: oil spills, small and large sizes of oil spill, Gulf of Mexico, 
RADARSAT-2 SAR, ScanSAR Narrow Beam, genetic algorithm. 
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1. INTRODUCTION 
In recent years, there has been an explosive increase in the scope of incidents 
of marine pollution. The Deepwater Horizon oil spill in 2010, for instance, is 
the worst marine pollution disaster that has occurred in the history of the pe-
troleum industry (Fig. 1). 

This disaster produced three months of oil flows in the coastal waters of 
the Gulf of Mexico. The Deepwater-Horizon oil spill has serious effects on 
feeble maritime spices, wildlife habitats, fishing in the Gulf', the coastal 
ecology (Fig. 2), as well as the tourism industry. For instance, the immediate 
impacts were severe, with oil-soaked birds (Fig. 2a), fish, and turtles 
(Fig. 2b) washing up on shore along the coast. Generally, oil spill pollution 
can cause tremendous destruction in marine ecosystems. As a result, oil spill 
that floats on top of the water, in addition to decreasing fauna populations, 
affects the food chain in the ecosystem (Alpers 2002, Brekke and Solberg 
2005, Garcia-Pineda et al. 2013, Xu et al. 2014). In fact, an oil spill reduces 
the amount of sunlight that penetrates the water, thereby limiting the photo-
synthesis of marine plants and phytoplankton. Moreover, when marine 
mammals, for instance, are exposed to an oil spill, their insulating capacities 
are reduced, thus making them more vulnerable to temperature variations 
and much less buoyant in seawater. The oil coats the fur of sea otters and 
seals, reducing its insulation capacity and leading to body temperature varia-
tions and hypothermia. Ingestion of the oil causes dehydration and damage  
 

Fig. 1. Oil spill disaster in Gulf of Mexico. 
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(a)                                                               (b) 

Fig. 2. Gulf oil disaster impacts on coastal ecology: (a) birds, and (b) turtle. 

to the digestive system (Fiscella et al. 2000). Moreover, the oil spill and its 
cleanup have caused a variety of health problems. Deepwater Horizon 
spilled nearly five million barrels of oil, constituting the world’s most mas-
sive accidental marine oil spill. Oil spills are difficult to bring under control 
because of the influence of coastal hydrodynamics, such as waves, currents, 
and tides. Therefore, advanced technologies are needed to achieve the accu-
rate surveying, and control of marine oil pollution (Marghany 2013).  

Numerous dissimilar sorts of sensor are conventionally used to detect 
and monitor oil spills in the ocean and were used during the Deepwater 
Horizon spill. These sensors are either mounted on satellite platforms or air-
borne. Like synthetic aperture radar (SAR), the microwave radiometer, the 
ultraviolet radiometer, as well as visible and near infrared radiometers are 
mounted on the satellite platform. Therefore, airborne remote sensing plat-
forms, which include multispectral expert systems, hyperspectral airborne 
sensors, and airborne thermal infrared spectrometers, are also important. 
Each sensor exploits different physical properties of oil spill and its sur-
rounding sea environment conditions (Cococcioni et al. 2012, Zhang et al. 
2014). 

Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra 
(2000-present) and Aqua (2002-present) satellites provides global coverage 
twice daily in near-real time and is equipped with two 250-m and five 500-m 
resolution bands. MODIS 250-m resolution data used to detect oil spills in 
the Gulf of Mexico, which displayed dark contrast against the bright back-
ground. In the presence of sun glint, which is strongly dependent upon the 
solar geometry and the wave fields, oil impacted areas are well visualized 
with high contrast compared to oil-free areas. In the absence of sun glint, the 
contrast between oil slick and background depends on their different spectral 
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characteristics. Therefore, optically remotely sensed data like MODIS’ and 
AVIRIS’ could be used to estimate oil slick thickness. Oil slick with differ-
ent thickness showed different visual characteristics and led to different 
spectral reflectance within the visible light wavelength (Zhao et al. 2014). In 
this regard, oil slick thickness and oil-to-water emulsion ratios are key spill 
response parameters for containment/cleanup. Further, the near infrared 
spectral library of AVIRIS (Airborne Visible/Infrared Imaging Spectrome-
ter) data can be used to quantitatively derive the thick (> 0.1 mm) slicks. 
Consequently, a multispectral expert system based on MODIS and AVIRIS 
used a neural network and provided rapid response of oil spill thickness class 
maps using a neural network technique (Zhao et al. 2014).  

Nevertheless, MODIS data cannot detect small areas of oil spill due to 
the limited resolution. Additional, heavy cloud covers do not allow for pre-
cise detection of oil spills in MODIS data. Likewise, oil spill detection algo-
rithms based on thermal signature will not efficiently succeed in isolating oil 
spill pixels, which can be easily mistaken for cloud edges. Under these cir-
cumstances, Grimaldi et al. (2011) have developed a new algorithm, based 
on the general robust satellite technique (RST) approach, for automatic near-
real-time oil spill detection and continuous monitoring (i.e., in both daytime 
and nighttime) by using MODIS satellite data. They found that the RST al-
gorithm was enabled to overcome possible false-positive problems related to 
not well-recognized cloud edges and sea surface local cooling effects that of-
ten reduce the reliability of the retrieval. 

As noted by Marghany and Hashim (2011), synthetic aperture radar 
(SAR) allows for the improvement of oil spill detection using various ap-
proaches. The SAR tools for the detection and surveying of oil spills include 
boats, airplanes, and satellites (Zhang et al. 2012). Vessels can detect oil 
spills at sea, covering relatively limited areas of approximately 2500 m × 
2500 m, when they are equipped with navigation radar (Zhang et al. 2011). 
Because they can probe broader areas, airplanes and satellites are the prima-
ry tools that are used to investigate sea-based oil pollution (Skrunes et al. 
2012). Several SAR sensors have been deployed for oil spill detection and 
surveying. Such data have been collected by ERS-1/2 (Brekke and Solberg 
2005), ENVISAT (Marghany 2013), ALOS (Zhang et al. 2012), 
RADARSAT-1/2 (Zhang et al. 2012, Xu et al. 2014), and TerraSAR-X 
(Velotto et al. 2011), and these data have been used on a global scale to 
identify and monitor the Deepwater Horizon oil spill. Furthermore, airborne 
SAR sensors such as the Uninhabited Aerial Vehicle Synthetic Aperture Ra-
dar (UAVSAR, operated by JPL, L-band) which has a 22-km-wide ground 
swath at incidence angles of 22° to 65° (Zhang et al. 2012) and E-SAR (op-
erated by DLR, multi-band) have also proven their excellent potential for 
monitoring coastal zone oil pollution. Recently, multipolarimetric high reso-
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lution SAR data have become a field of intensive research for oil spill detec-
tion (Skrunes et al. 2012, Shirvany et al. 2012). 

SAR sensors are imaging oil spill based on Bragg scattering theory. 
Bragg scattering is a significant concept to understand the radar signal inter-
action with ocean surface. Parenthetically, the presence of capillary wave 
will produce backscatter that assists radar in imaging sea surface. Short grav-
ity and capillary waves by the oil spill are damped by dynamic elasticity of 
the water surface, that is, by changes in surface tension which occur when 
the surface is stretched or compressed (Alpers 2002, Marghany et al. 2009, 
Zhang et al. 2014). As stated by Caruso et al. (2013), the imaging of oil on 
the sea surface with SAR data are function of the damping influence of the 
oil on the Bragg waves. Unfortunately, the reduced radar backscatter on the 
sea surface is not unique to oil. Gade et al. (1998) stated that low winds, bi-
ogenic films, wind sheltering by land or oceanic structures, grease ice, inter-
nal waves, ship wakes, and convergence zones also generate zones of 
reduced SAR backscatter (Fiscella et al. 2000). Moreover, thunderstorms, 
rain, and atmospheric and oceanic fronts can mask surface roughness or pro-
duce the so-called “lookalike” features (Caruso et al. 2013). 

Ocean surface wind pattern plays tremendous role for oil spills imaging 
in SAR data. When ocean surface winds are calm, surface gravity waves dis-
appear, the return radar backscatter is low, and the ocean surface appears 
featureless and uniformly dark across the image (Alpers 2002, Brekke and 
Solberg 2005, Zhang et al. 2014). As the winds increase to about 3 m s–1, bi-
ogenic slicks begin to appear. Biogenic surface slicks, such as those pro-
duced by plants and animals in the ocean, can also dampen radar return and 
cause look-alike false alarms for oil detection. At the lower end of this range, 
biogenic slicks blend in with the low wind zones of the SAR image (Gade et 
al. 1998). When the winds reach 2-3 m s–1, these slicks begin to highlight 
oceanic convergence zones along fronts and eddies. At these speeds, it is of-
ten difficult to distinguish biogenic slicks from anthropogenic oil or natural 
seeps (Fiscella et al. 2000). Once the winds begin to exceed 3 m s–1, the bio-
genic slicks start to disappear and the contrast between oil and the sea sur-
face is very strong (Alpers 2002). When the winds continue to increase, the 
short surface waves produce stronger radar backscatter. At the same time, as 
the wind speed is greater than about 8-10 m s–1, mixing by strong wind 
and/or wave action inhibits the formation of a surfactant layer, resulting in 
uniformly strong backscatter in all areas of an image, so that oil cannot be 
detected (Brekke and Solberg 2005, Caruso et al. 2013). 

The detectability of oil with SAR is also a function of the sensor config-
uration. For C-band SAR, the detectability relies on polarization, incidence 
angle, spatial resolution, and noise equivalent sigma zero (Cheng et al. 
2011). For single polarization images, VV-polarization produces better re-
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sults than HH-polarization. The backscatter intensity decreases with increas-
ing incidence angle; therefore, small spills cannot be discriminated with 
lower-resolution beam modes. Although the NESZ (a measure of sensitivity 
of the SAR system) potentially limits the effectiveness at high incidence an-
gles, the effects of wind speed are more important (Cheng et al. 2011). 

Consequently, the highly accurate detectability of oil with SAR is ex-
posed to the identification of oil spill parameters. However, the detailed pa-
rameters of oil spill are a challenging task to be identified because of 
complicated sea surface statutes and smoothing interaction of oil spill with 
SAR signal. Mainly, the oil spill can be classified as: light sheen, silver 
sheen, rainbow sheen, brown oil, mousse, black oil, streamers, tar balls, tar 
mats, and pancakes. Zhang et al. (2014) declared that dielectric constant 
(permittivity) is a significant key of oil spill parameter recognition. It de-
scribes the material’s capability of holding electro-magnetic energy or polar-
izing, which is helpful in identifying the types and conditions of the oil. 
During Deepwater Horizon oil-spill accident, the extreme amount of oil 
leakage (approximately 700 000 m3) and the thickness of oil film/emulsion 
are sufficient to significantly affect the permittivity of sea surface at the fre-
quency of L-band (approximately 24 cm). 

Other oil spill parameters include area, average of normalized radar 
cross-section (NRCS) inside the dark area and in limited area outside the 
dark area (Topouzelis et al. 2009a). Then the statistical descriptions of oil 
spill dark patches are estimated based on standard deviation, as mean, mini-
mum and maximum, in relation to the SAR scene (Brekke and Solberg 
2005). The statistical descriptions are used to estimate, for example, the in-
tensity ratio of dark patch mean value to scene’s mean value and the intensi-
ty ratio of dark patch standard deviation value to scene’s standard deviation 
value (Topouzelis et al. 2009b) and Guo and Zhang (2014). Supplementary, 
the physical oil spill parameters can be commonly categorized based on: 
(i) the geometric features of oil spill (e.g., area, perimeter, complexity), 
(ii) the statistical of physical manners of oil spills (e.g., mean or max 
backscatter value, standard deviation of the dark formation or a bigger sur-
round area), and (iii) the oil spill circumstance in the SAR image (e.g., num-
ber of other dark formations in the image, or presence of ships) (Topouzelis 
et al. 2009b, Fingas and Brown 2014). 

Nevertheless, oil spill monitoring and detection using SAR technology 
and data are not trivial tasks because of the difficulties in discriminating be-
tween oil spills and other look-alike features such as low wind zones and 
shadows which appear as dark patches in SAR data. Despite the difficulties 
of automatically detecting oil spills using SAR data, significant achieve-
ments have been accomplished in recent decades. Frate et al. (2000) have 
proposed the semi-automatic detection of oil-spills using a neural network, 
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of which the primary parameter is a vector that describes the features of an 
oil-spill candidate. Topouzelis et al. (2007, 2009b) and Marghany and 
Hashim (2011) have proven that a neural network can be used to precisely 
discriminate between oil spills and look-alikes in SAR data. Topouzelis et al. 
(2007) have used neural networks for both dark formation detection and oil-
spill classification. In their experiment, 94% detection of the dark formation 
segmentation and 89% accuracy of classification were obtained. Topouzelis 
et al. (2009a) have also performed a detailed examination of the robustness 
of the results archived based on combinations derived from 25 features that 
are commonly used for the identification of oil spills. They found that a 
combination of 10 features yields the most accurate results. 

Topouzelis et al. (2009b) have reported that most studies use low resolu-
tion SAR data, such as quick-look datasets, which have a nominal spatial 
resolution of 100 m × 100 m, to detect oil spills. For this purpose, quick look 
data are sufficient for monitoring large scale areas of 300 km × 300 km. 
However, they cannot effectively detect small, fresh spills. 

Marghany and Hashim (2011) have developed comparable automatic de-
tection procedures for oil spill pixels in Multimode RADARSAT-1 SAR da-
ta (Standard Beam S2, Wide Beam W1, Fine Beam F1). These procedures 
include supervised post classification (Mahalanobis) and a neural network 
(NN). They found that the NN exhibited superior performance for the auto-
matic detection of oil spills in RADARSAT-1 SAR data, compared to the 
Mahalanobis classification, with a standard deviation of 0.12. Recently, 
however, Skrunes et al. (2012), have reported that there are several disad-
vantages associated with oil spill detection using current SAR sensors. They 
stated that SAR sensors cannot detect the thickness distribution, volume, oil-
water emulsion ratio or chemical properties of an oil slick. Instead they rec-
ommended the use of multi-polarisation observations, such as the data ac-
quired by the RADARSAT-2 and TerraSAR-X satellites. They demonstrated 
that multi-polarisation data can accurately discriminate between mineral oil 
slicks and biogenic slicks. Garcia-Pineda et al. (2013) have developed the 
Textural Classifier Neural Network Algorithm (TCNNA) to map oil-spills 
by combining ENVISAT ASAR data and wind model outputs (CMOD5) us-
ing a combination of two neural networks. They have reported that TCNNA 
can be used as a semi-automatic tool for oil spill detection and provides a 
rapid and precise overview of oil spill footprints in ENVISAT ASAR data. 
They have also reported that TCNNA performance is dependent on wind 
conditions. 

Currently, Marghany (2015) developed optimization tool of Entropy 
based Multi-Objective Evolutionary Algorithm (E-MMGA) which is based 
on Pareto optimal solutions for oil spill automatic detection from Cosmo-
Skymed satellite data. He concluded that an optimization entropy based Mul-



AUTOMATIC  OIL  SPILL  DETECTION  FROM  RADARSAT-2 
 

1923 

ti-Objective Evolutionary Algorithm provides an accurate pattern of oil slick 
in Cosmo-Skymed satellite data. 

However, small-size oil spills are not detected because most of SAR sat-
ellites or airbone SARs overpassed the polluted zone after the spills have 
grown under the influence of the ocean surface dynamic changes. In addi-
tion, fresh oil spills of few-meter (e.g., 3 m) length cannot be detected with 
SAR pixel resolution of 6 to 12.5 m. The main question can be raised up 
whether such a GA is able to detect a small oil spill spreading between the 
large ones. 

We hypothesised that dark (small or large) spot pixels, in SAR data, re-
gardless of whether they represent oil spills, look-alikes, or low wind zones, 
can be automatically detected and discriminated using the genetic algorithm 
(GA). However, previous studies have applied post classification techniques 
(Marghany and Hashim 2011) or artificial neural networks (Topouzelis et al. 
2009b, Garcia-Pineda et al. 2013) which are considered to be semi-
automatic techniques only for a large area of oil spill. The primary objective 
of this work is to investigate the use of the GA (Marghany 2013) for the au-
tomatic detection of large or small oil spills in RADARSAT-2 SAR satellite 
data. 

2. METHODS 
2.1  Case study 
The Deepwater Horizon, an offshore oil-drilling rig, exploded on the night of 
20 April 2010, while working on a wall on the seafloor in the Gulf of Mex-
ico. The blast occurred 41 miles from the Louisiana coast and above the wa-
ter depth of 1500 m (Fig. 3a).  For nearly  three months,  oil leaked  from per  
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Fig. 3. Illustrations of: (a) bathymetry, and (b) location of Deepwater Horizon 
Blowout, Gulf of Mexico. 
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day (42 gallons per barrel) (Fig. 3b). The oil continued to flow until mid-July 
2010. In all, the well spilled 4.9 million gallons, creating the largest offshore 
oil spill in history. Furthermore, the oil slick spread quickly over the surface 
of the ocean, covering 1500 km2 (580 sq miles) by 25 April and over 
6500 km2 (2500 sq miles) by the beginning of May. An oil platform located 
70 km from the coast of Louisiana sank on Thursday, 22 April 2010, in the 
Gulf of Mexico, spilling oil into the sea (RADARSAT-2 2014). 

2.2  Data set 
In this study, RADARSAT-2 SAR data acquired by RADARSAT-2 operat-
ing in ScanSAR Narrow single beam mode (Table 1) on 27 April 2010, 
1 May 2010, and 3 May 2010 are investigated for oil spill detection in the 
Gulf of Mexico. The satellite is equipped with synthetic aperture radar 
(SAR) with multiple polarisation modes, including a fully polarimetric mode 
in which HH, HV, VV, and VH polarised data are acquired. Its highest reso-
lution is 1 m in Spotlight mode (3 m in Ultra Fine mode) with a 100 m posi-
tional accuracy requirement. In the ScanSAR Narrow beam mode, the SAR 
has a nominal swath width of 500 km and an imaging resolution of 100 m 
(MDA 2009). Finally, the wind speed data are retrieved from the studies  
of Shay et al. (2011), Walker et al. (2011), Garcia-Pineda et al. (2013), and 
NOAA OR&R (2013). The validation of oil spill occurrences in 
RADARSAT-2 SAR data was made using the ground information collected 
by NOAA/NESDIS (2013). The repeat cycle of ScanSAR Narrow beam 
mode is 12 days with 4 looks. Its incidence angle ranges between 20° and 
46° (Table 1). 

Table 1  
RADARSAT-2 characteristics 

RADARSAT-2 characteristics Values 

Bandwidth  [MHZ] 

Polarization 

Nominal resolution  [m] 

Center frequency  [GHz] 

Swath width  [km] 

Repeat cycle  [days] 

Looks 

Incident angle  [°] 

100  

HH 

50 × 50 

5405  

300-500  

12 

4 

20-46 
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2.3  Genetic algorithm 
The genetic algorithm (GA) is a powerful tool in the field of artificial intelli-
gence in computer science. The GA is considered to be an optimal search 
and evolutionary algorithm that mimics the processes of natural selection. In 
other words, the GA spawns solutions to optimising problems using tech-
niques inspired by natural evolution, such as inheritance, mutation, selection, 
and crossover (Sivanandam and Deepa 2008).  

As described by Kahlouche et al. (2002), the genetic algorithm (GA) dif-
fers from a classification algorithm. In a classification algorithm, a single 
point is generated in each iteration. Moreover, a classification algorithm 
chooses the next point in the classification using a deterministic computa-
tion. In contrast, the genetic algorithm (GA) generates a population of cells 
in each iteration, of which one particular cell in the population most closely 
approaches the optimal solution (Fig. 4). Moreover, GA implements proba-
bilistic transition rules not deterministic rules as in classification algorithms 
(Marghany 2013). 

 
Fig. 4. Flow chart of genetic algorithm search pattern for small and large oil spills. 
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A large population of random chromosomes of different SAR backscat-
ters is created at the beginning of one iteration of a genetic algorithm. Each 
one, when decoded, will represent a different solution to the problem at 
hand. There are N chromosomes in the initial population. Then, the follow-
ing steps are repeated until sufficiently accurate solution is obtained: (i) Test 
each chromosome of the SAR backscatters to determine how effective it is 
as a solution to the problem at hand, and assign a fitness score accordingly; 
(ii) Select two members of the current population. The probability of being 
selected is proportional to the chromosomes’ fitness; (iii) In accordance with 
the crossover rate, crossover the bits from each chosen chromosome at a 
randomly chosen point; (iv) Loop over the bits of the chosen chromosomes 
and modify them in accordance with the mutation rate; (v) Repeat steps (ii), 
(iii), and (iv) until a new population of N members has been created.  

2.3.1  Data organisation 
Let the entire backscatter set of dark patches in the SAR data be  
[�1, �2, �3, …, �K] , where K is the total number of backscatters representing  
dark patches in the SAR data. Therefore, K is composed of genes that repre-
sent the backscatters � of the dark patches and their surrounding environ-
ment, and the genetic algorithm is begun with the population initialisation 
step. Following Marghany (2013), a constrained multi-objective problem for 
oil spill discrimination in SAR data encompasses more than one objective 
and constraint, namely, look-alikes; such features include currents, eddies, 
upwelling or downwelling zones, fronts and rain cells. The general form of 
the problem is adapted from Sivanandam and Deepa (2008) and can be de-
scribed as follows.  

Minimise 

 @ A1 2( ) ( ), ( ), ..., ( ) T
kf f f f: : : :�  (1) 

subject to the following constraints: 

 ( ) 0 ,ig : �      1,2,3,.. ,i I�  (2) 

 ( ) 0 ,jh : �      1,2,3,... ,j J�  (3) 

 ,L U: : :� �  (4) 

where fi(�) is the i-th pixel of backscatters � in the SAR data, and gi(�) and 
hj(�) represent the i-th and j-th constraints on the backscatter in the row di-
rection and the column direction, respectively. �L and �U are the lower and 
upper limits on the backscatter values. The transition rules for the automatic 
oil spill detection capability of the cells are designed based on the input of 
various backscatter values � to define the conditions required for a given 
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pixel to be identified as an oil-spill pixel among the neighbouring pixels of a 
kernel with a window size of 7 × 7 pixels and lines which preserve the 
boundary and edges of oil spill pixels (Marghany 2001). These rules can be 
summarised as follows:  
� IF the test pixel represents the sea surface, OR current boundary features 

THEN  � � 0,  and the test pixel is not an oil spill pixel.  
� IF the test pixel represents a dark patch (low-wind zone, OR biogenic 

slick OR shear zone ) and  � $ 0,  THEN the pixel is identified as an oil 
spill pixel.  

� IF the identified oil spill pixels are small (i.e., smaller backscatter is less 
than the main set of oil spill pixels) and  �small < �, THEN the pixel is 
identified as a small oil spill size. 

2.3.2  Population initialisation 

Let j
iP  be a gene that corresponds to the backscatter of a dark pixel and or 

its surrounding pixels. Consequently, the distribution of randomly selected 
j

iP  represents the backscatter variations of both the dark patches and their 
surrounding environmental pixels. Here, i varies from 1 to K and j varies 
from 1 to N, where N is the population size. 

2.3.3  The fitness function 
Following Kahlouche et al. (2002) and Marghany (2013), a fitness function 
is selected to determine the similarity of each individual backscatter corre-
sponding to dark patches in RADARSAT-2 SAR data. The backscatters of 
the dark patches in the RADARSAT-2 SAR data are denoted by �i, where  
i = 1, 2, 3, …, K,  and the initial population j

iP , where  j = 1, 2, 3, …, N  and  
i = 1, 2, 3, …, K.  Formally, the fitness value f (Pj) of each individual member 
of the population is computed as follows: 

 
1

1

( ) , 1,..., ,
K

j j
i i

i

f P P j N:
�

�

# $
� � �% &
% &' (
�  (5) 

where N is the total number of individuals in the population, and K is the 
number of individuals from the population considered in the fitness determi-
nation. Generally, eq. 5 is used to determine the level of similarity amongst 
dark patches that correspond belong to oil spills in the RADARSAT-2 SAR. 

2.3.4  The selection step 
The key element of the selection step of the genetic algorithm is to select the 
fittest individuals f (Pj) from the population j

iP . The threshold value � is de-
termined by the maximum fitness value of the population, Max f (Pj), and the 
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minimum fitness value of the population, Min f (Pj). In subsequent genera-
tions, this step defines of the populations P. The fittest individuals that are 
most likely to present dark patches in the RADARSAT-2 SAR data are those 
with values greater than the threshold �, which is defined as 

 0.5 Max ( ) Min ( )  .j jf P f P+ # $� �' (  (6) 

Equation 6 is used for the selection step to determine the maximum and 
minimum acceptable values for the fitness of the population. This is consid-
ered to be the step in which the dark patch population is generated in the GA 
procedure.  

2.3.5  The reproduction step 
According to Sivanandam and Deepa (2008), the bulk of the calculation in-
volved in the genetic algorithm lies in the reproduction step, which involves 
the implementation of the crossover and mutation processes on the backscat-
ter population j

iP  determined from the SAR data. The crossover operation 

constructs a population j
iP  that will converge to solutions with high fitness. 

Thus, the closer the crossover probability is to 1, the more rapid the conver-
gence (Marghany 2013). In the crossover step, genes are interchanged be-
tween the chromosomes. A local fitness value is assigned to each gene as 
follows: 
 � 	 .j j

i i if P P:� �  (7) 

The crossover between two individuals serves to preserve all individual 
populations of the first parent that have a local fitness greater than the aver-
age local fitness av( )jf P  and replaces the remaining genes with the corre-
sponding genes from the second parent. The average local fitness is defined 
by  

 � 	 � 	av
1

1 .
K

j j
i

i

f P f P
K �

� �  (8) 

Meanwhile, the mutation operator represents extraordinary random phe-
nomena in the evolution process. It is possible that some useful genetic in-
formation may be lost from selected population during the reproduction step. 
To compensate for this potential loss, the mutation operator is applied to in-
troduce new genetic information into the gene pool (Marghany 2013).  

2.3.6  Morphological operations 
Morphological operations are performed on selected individuals prior to the 
crossover and mutation processes. In the crossover process, the probability  
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(a)                                                              (b) 

Fig. 5. Crossover process: (a) selected two random genes, and (b) output of 
crossover. 

that any given pair of chromosomes will exchange their bits (Fig. 5a) is ap-
proximately 0.7. Crossover is performed by selecting a random gene along 
the length of the chromosomes and swapping all genes after that point 
(Michalewicz 1994). In other words, a random bit is chosen, for example, 
the bit at position 9, and all bits after that point are swapped (Fig. 5b). 

In the mutation process, the probability that the value of a given bit with-
in a chromosome is flipped (0 becomes 1, 1 becomes 0) is usually very low 
for binary encoded genes, perhaps 0.001. Every time chromosomes are se-
lected from amongst the population, the algorithm first checks whether the 
crossover has been applied, and the algorithm then iterates down the length 
of each chromosome, mutating bits if applicable (Davis 1991). This proce-
dure is designed to exploit the connectivity property of the RADARSAT-2 
SAR data. The morphological operations are implemented during the repro-
duction step as follows: (i) closing, followed by (ii) opening. The accuracy 
of the dark patch segmentations achieved in this manner depends on the size 
and shape of the structuring element. Therefore, a structuring kernel with 
square window size of 7 × 7 pixels is chosen to preserve the fine details of 
the oil spill present in the RADARSAT-2 SAR data (Sivanandam and Deepa 
2008). 

3. RESULTS  AND  DISCUSSION 
An oil platform located 70 km from the coast of Louisiana sank on Thurs-
day, 22 April 2010, in the Gulf of Mexico, spilling oil into the sea. In the 
RADARSAT-2 SAR Scan Narrow Beam (SCNB) data that were acquired at 
the time, the rapid growth of the oil slick footprint from 27 April 2010, to 
5 May 2010, can be clearly seen (Fig. 6). 

Figure 6 shows that oil slick and sheen extended across 19 112 sq. miles 
(49 500 km2) of the Gulf. In addition, it is worthy of note that the oil slick 
spun in a counter-clockwise direction. This behaviour is attributed to the in-
fluence of the Gulf Stream. Nevertheless, the RADARSAT-2 SAR data did 
not indicate that the oil-slick footprint coincided with the loop current in the 
Gulf of Mexico. According to Zangari (2010), the oil slick was one of the 
causes of the disconnection of the loop current in the Gulf of Mexico. 
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(a)                                                                         (b) 

(c)                                                                         (d) 

Fig. 6. RADARSAT-2 SAR Scan Narrow beam SCNB data on: (a) 27 April, 
(b) 1 May, (c) 3 May, and (d) 5 May 2010. 

Fig. 7. Backscatter of ship pixels which are identified by white box. 
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It is clear that the oil spill, which covered an area greater than 150 km2 in 
the Gulf of Mexico, had a darker tone than both the surrounding water and 
some boats in the area (Fig. 7). The data represent some regions that are lo-
cated at the farther extent of the area that is probed by RADARDSAT-2 
SAR Scan Narrow Beam (SCNB) with a revisit period. Figure 6 shows the 
variation in the average backscatter intensity along the oil slick footprint. 
The average backscatter intensity was damped by –30 to –25 dB and de-
creased over time as the oil slick footprint was gradually increasing (Fig. 7). 
By contrast, ship footprints are characterised by a maximum backscatter of  
–5 dB (Figs. 6 and 7) because the SCNB mode has nominal near and far res-
olutions of 7 m (MDA 2009).  

Clearly, oil spill is portrayed in SCNB mode by shallower incidence 
angle ranges between 36° to 46° and the maximum wind speed of 10 m/s 
(Fig. 8). Clearly, the backscatter increases with increasing wind speed, and 
decreases with increasing incidence angle. This study confirms the work of 
Cheng et al. (2011), Caruso et al. (2013), and Garcia-Pineda et al. (2013). 
However, Garcia-Pineda et al. (2013) stated that the ideal detection of oil 
spills in SAR images requires moderate wind speeds, not exceeding 6 m/s. 

Neverthless, the SCNB mode beam date acquired on 3 and 5 May 
(Figs. 6c and d, respectively) can detect oil spill under extremely high wind 
speed of 10 m/s (Fig. 8) which caused the intense turbulence of sea surface 
(Figs. 5c and d). This could be due to the extreme amount of oil leakage (ap- 
 

 
Fig. 8. Radar cross-section backscatter along oil slick locations, incident angle, and 
wind speed distribution during date of acquisitions. 
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proximately 60 000 barrels per day) which cannot be dissipated by such ex-
treme wind and turbulent conditions. This study confirms the work of Gar-
cia-Pineda et al. (2013). 

The SCNB mode provides images of very wide swaths in a single pass of 
the satellite with single linear HH co-polarisation and a pixel spacing of 
25 range × 25 azimuth [m]. The SCNB mode provides coverage over the 
shallow incident angle range of 31° to 47°. This data source was selected be-
cause of its large swath (300 km), acceptable pixel size, spacing (25 m), high 
temporal resolution (2/3 side-lap pass within 7 days), and relatively low vol-
ume of data. The C-band and shallow incidence angle (31°-47°) data have 
been found to be suitable for the identification of oil slick footprints. The 
sensitivity of the SAR backscatter measurements to the water surface rough-
ness created by wind-induced ripples can be reduced by using HH polarisa-
tion and a large incidence angle (Ivanov et al. 2002, Choudhury and 
Chakraborty 2006). Furthermore, Ivanov et al. (2002) have confirmed that 
the RADARSAT-1 SAR, when operating in the ScanSAR Narrow mode 
with a swath width that exceeds 300 km, is a promising tool for marine oil 
pollution detection.  

Figure 9 provides an example of the crossover process with 10 individu-
als. Of these 10 individuals, the positive dark patches represent oil spill pix-
els, whereas the negative dark patches represent the surrounding pixels. 
Accordingly, every cell is compared to the other corresponding cells to de-
termine whether its value is positive or negative (Figs. 9c and d). Further, the 
crossover process is begun with cell of small oil spill pixel which is domi-
nated by a small backscatter (Fig. 9b). Further, the crossover process is be-
gun with cell of small oil spill pixel which is dominated by a small 
backscatter (Fig. 9b). 

According to Marghany (2013), in the GA procedure, a cell has a posi-
tive value and should be propagated to subsequent generations when the cell 
in the intermediate prototype has a value larger than zero and greater than 
the threshold value. Such cells represent an oil spill event in RADARSAT-2 
SAR data. Subsequently, in crossover, the cells of small oil spill have been 
generated first because they are located along the edge of large oil spill cells. 
By contrast, a cell that has a negative value represents a look-alike feature. 
In such a case, the cell in the intermediate prototype has a value of less than 
zero and below the threshold value and this cell’s influence on subsequent 
generations should be diminished. The variation in the cell value (positive or 
negative) is a function of the cell’s dissimilarity with comparable cells (Da-
vis 1991). This study confirms and extends the capabilities of the GA that 
were introduced by Kahlouche et al. (2002) and Marghany (2013). 

Clearly, the genetic algorithm is able of discriminating dark oil spill pix-
els from the surrounding environment.  In the algorithm’s output,  look-alike 
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Fig. 9. Crossover procedures: (a) original data, (b) first individual small oil spill, 
(c) second individual large oil spill, (d) resulting from an individual prior 
cancellation, and (e) after cancellation. 

features, low wind zones, rough patches on the sea surface and land, are in-
dicated by white coloured regions, whereas oil spill pixels are marked in 
black (Fig. 10). Figure 10 presents the GA results in which 100% of the oil 
slick pixels in the test set were correctly classified. Figure 11 confirms the 
ability of the GA for automatic detection and discrimination of small oil spill 
sizes from the large oil spill. It is interesting to notice that small oil spill 
sizes are located out of the area of large ones or at the edge of large oil spill 
areas (Fig. 11). This is excellent evidence that the crossover process is com-
menced by searching and matching small cells of oil spills (Fig. 9b). After 
several iterations, the crossover process has reconstructed the full prototype 
of large oil spill cells (Figs. 9e, 10, and 11). 

This study differs from the previous work performed by Marghany and 
Hashim (2011) because this work presents an automatic detection based on 
GA, whereas the study performed  by Marghany and Hashim (2011)  used an 
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(a)                                                                         (b) 

(c)                                                                         (d) 

Fig. 10. Genetic algorithm oil spill automatic detection for RADARSAT-2 ScanSAR 
Narrow during: (a) 27 April, (b) 1 May, (c) 3 May, and (d) 5 May 2010. 

approach that is considered to be a semi-automatic tool for oil spill detection. 
In contrast to the previous studies of Fiscella et al. (2000) and Marghany and 
Hashim (2011), the Mahalanobis classifier provides an oil spill classification 
pattern in which slight oil spill pixels can be distinguished from medium and 
heavy oil spill pixels. Nevertheless, the findings of this study are consistent 
with the results of Topouzelis et al. (2009a). The genetic algorithm was able 
to automatically extract oil spill pixels from the surrounding pixels without 
using a separate segmentation algorithm, as was done by Skrunes et al. 
(2012). Further, the GA algorithm is able to identify a small oil spill from 
large ones which has not been shown in previous studies (Fiscella et al. 
2000, Marghany 2001, 2013, 2015; Topouzelis et al. 2009a, Marghany and 
Hashim 2011). 
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                                                    (a)                                                           (b) 

                                               (c)                                                           (d) 

 

Fig. 11. Genetic algorithm for detection of small oil spills for RADARSAT-2 
ScanSAR Narrow during: (a) 27 April, (b) 1 May, (c) 3 May, and (d) 5 May 2010. 

The receiver-operating characteristic (ROC) curve presented in Fig. 12 
indicates a significant difference in discrimination power among oil spill, 
look-alike and sea surface roughness pixels. In terms of the ROC area, small 
oil spill pixels exhibit an area difference of 30% compared with 60% for 
large oil spill pixels; 3% for look-alikes and 7% for sea roughness, and a � 
value of less than 0.0005; these findings confirm the results of the study of 
Marghany (2013). Nevertheless, the work of Marghany (2013) cannot track 
small oil spill pixels from the large ones. It suggests that GA is an excellent 
promise for separating small oil spill pixels from the large ones and also 
from other features such as look-alikes and sea surface roughness. 
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Fig. 12. ROC for discrimination of small and large oil spills using Genetic Algo-
rithm (GA). 

The power of the genetic algorithm lies in the crossover procedure. 
A new population is generated in each crossover process. As a result, multi-
ple individual populations are examined by the fitness function and incorpo-
rated in subsequent populations began by small oil spill pixels. Thus, new 
populations of large oil spill are continuously generated based on the dissim-
ilarities between two successive fitness values. In addition, the crossover 
procedure produces a more refined oil spill pattern, i.e., small and large oil 
spill pixels by despeckling and maintaining the morphology of the features 
of the oil spill pattern by virtue of the fitness function that is used to imple-
ment the oil spill pixel classification. Indeed, the fitness function selects a 
morphological pattern for the small oil spill pixels rather than large ones that 
are similar to the requested small and large spill arch types.  

Previous studies were concerned with automatic detection of oil spilling 
from SAR images, which is based on the dark spot feature extraction and 
classification using Artificial Neural Networks (ANN) (Frate et al. 2000, 
Topouzelis et al. 2007, 2009a; Marghany and Hashim 2011), fractal (Mar-
ghany et al. 2009), texture algorithm (Marghany 2001), and Local Probabil-
ity Maximization (LPM) (Lounis and Belhadj-Aissa 2014). Therefore, GA 
provided excellent automatic detection of small oil spill as compared to pre-
vious studies. In fact, automatic segmentation of oil spill problem is ex-
pressed as an optimization problem and Genetic Algorithm proficiently 
detects the global in a search space of SAR images and resolve the problem 
of parameter selection in SAR image segmentation. Further, genetic algo-
rithm is implemented in SAR image segmentation to modify oil spill se-
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lected parameters in existing segmentation algorithms and pixel-level seg-
mentation. Finally, genetic algorithm has the ability to determine the optimal 
number of regions of even small oil spill segmentation or to choose some 
features such as the size of the analysis window or some heuristic thresholds. 
This agrees with the finding of Mohanta and Sethi (2011). 

In general, RADARSAT-2 SAR data deliver the extreme level of flexi-
bility compared to other SAR sensors. Indeed, the couple of days for revisit-
ing cycle of SCNB have provided both the wide area coverage and the high 
resolution imaging of oil slick detection and monitoring Macondo spill in the 
Gulf of Mexico. In this regard, for marine environmental monitoring, the 
ScanSAR modes with resolutions of 20-60 m and swath widths of 100-
300 km can provide an ideal trade-off between spatial resolution and areal 
coverage. This resolution is adequate for supporting oil spill automatic de-
tection. Further, SCNB shows the potential even to identify small oil spill 
pixels from the surrounding large oil spill pixels by using such optimization 
tool as the Genetic Algorithm. 

4. CONCLUSIONS  
This study demonstrated the design of a tool for small and large oil spill de-
tections in RADARSAT-2 SAR SCNB data using the genetic algorithms. 
SCNB data acquired in the Gulf of Mexico were investigated in this study. 
The study demonstrated that the crossover process and the fitness function 
used in the genetic algorithm was begun by generating small oil spill pixels 
and then allowed for the generation of an accurate oil slick pattern using the 
SCNB data which include small and large oil spill pixels. The excellent per-
formance of the algorithm is evidenced by the 30% area difference achieved 
in the receiver operating characteristics (ROC) curve for small oil spill de-
tection, compared to 60% for large oil spill, 3% for look-alikes, and 7% for 
sea roughness. The GA also exhibited excellent performance with respect to 
the SCNB data. In conclusion, the genetic algorithm can be used as a prom-
ising tool for the automatic detection of small and large oil spills in 
RADARSAT-2 SAR satellite data such as SCNB data. 
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