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Abstract We consider the Bogolubov–Hartree–Fock functional for a fermionic
many-body system with two-body interactions. For suitable interaction potentials
that have a strong enough attractive tail in order to allow for two-body bound states,
but are otherwise sufficiently repulsive to guarantee stability of the system, we show
that in the low-density limit the ground state of this model consists of a Bose–
Einstein condensate of fermion pairs. The latter can be described by means of the
Gross–Pitaevskii energy functional.
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1 Introduction

We consider a gas of fermions confined in an external trap at zero temperature. The
particles interact through a two-body potential V which admits a negative energy
bound state. At zero temperature and low particle densities, this leads to the formation
of diatomic molecules forming a Bose-Einstein condensate. It was realized in the
’80s [14, 17] that BCS theory can be adequately applied to such types of tightly
bound fermions. It was pointed out in [4, 18–20] that in the low density limit the
macroscopic variations in the pair density should be well captured by the Gross-
Pitaevskii (GP) equation. From a mathematical point of view, the emergence of the
GP functional in the low density limit was recently proven in [12] for the static case,
and the dynamical case was subsequently treated in [10]. The assumption that the
two-body interaction potential allows for a bound state plays a crucial role. In the
case of weak coupling where the potential is not strong enough to form a bound
state, the pairing mechanism may still play an important role for the macroscopic
behavior of the system, but the separation of paired particles can be much larger,
in this case, than the average particle spacing. In fact this is the case in the usual
BCS description of superconducting materials. Close to the critical temperature the
macroscopic variation of the pairs is captured by the Ginzburg-Landau equation in
this case, as pointed out by Gorkov [7] soon after the introduction of BCS theory.
The first mathematical proof of the emergence of Ginzburg-Landau theory from BCS
theory was recently given in [6], which itself relied on earlier work on the BCS
functional [5, 8, 11] .

In the current paper our starting point is the full BCS Hartree-Fock functional.
That is, we include the direct and exchange terms in the interaction energy. One also
finds this functional under the name Bogolubov-Hartree-Fock (BHF) functional in
the literature. The inclusion of the density-density interaction adds additional diffi-
culties concerning stability of the system. It forces us to restrict to systems with a
two-body potential V that, on the one hand, has an attractive tail deep enough to
allow for a bound state and, on the other hand, is sufficiently repulsive at short dis-
tances to guarantee stability. This is consistent with typically considered interaction
potentials [14].

Fig. 1 Fermions form diatomic
molecules with their repulsive
interaction represented by an
effective scattering length g



Math Phys Anal Geom (2016) 19: 13 Page 3 of 27 13

We shall investigate the ground state energy of the BHF functional in the low
density limit. We introduce a small parameter h playing the role of the inverse particle
number, i.e., N = h−1. We consider external potentials that confine the particles on
a length scale of order h−1, while the range of the interaction among the particles is
of order one. This implies that the density of particles is of the order h2. Hence the
small parameter h represents the square root of the density as well the ratio between
the microscopic and macroscopic length scale. We are going to show that in the
low density limit the fermions group together in pairs, such that the leading order in
the energy is given by the number of pairs, 1/(2h), times the binding energy of a
pair, −Eb. The next to leading order is given by the energy of a repulsive Bose gas,
consisting of fermion pairs, in a trap, and can be described in terms of the Gross-
Pitaevskii energy functional. More precisely, if EBHF(h) denotes the BHF energy of
1/h fermions we shall obtain

EBHF(h) = −Eb

1

2h
+ h

2
EGP(g) + O(h3/2),

for small h, where EGP(g) denotes the Gross-Pitaevskii energy with appropriate
interaction parameter g, which can be computed in terms of the microscopic quan-
tities. The prefactor h/2 should be interpreted as Nbos/L

2, where Nbos = N/2 =
1/(2h) is the number of fermion pairs and L = 1/h is the macroscopic length scale
(Fig. 1).

We will also give a detailed description of the corresponding ground state of the
BHF functional. Its minimizer turns out to be given, to leading order in h, in the form
of the two particle wavefunction

α(x, y) = h α0 (x − y)ψ

(
h

x + y

2

)
,

where α0 is the ground state of a bound fermion pair with energy −Eb, and ψ solves
the GP equation and describes the density fluctuations of the pairs.

Our work is an extension of [12] in two directions. First, we include exchange
and direct terms in the energy functional. Second, we avoid working with infinite,
periodic systems, which allows us to significantly simplify the proof and also to
improve the error bounds, utilizing ideas in [10]. In particular, we do not need to use
here the rather involved semiclassical estimates of [6].

Our work presents the first proof of the occurrence of pairing in the ground state of
a non-translation invariant Bogolubov-Hartree-Fock system. (For a translation invari-
ant system this was previously shown in [3].) The ground state properties of the BHF
functional, in the context of Newtonian interaction, were studied in [15], see also
[1]. Still it could not be shown that the fermions in the ground state exhibit pairing.
Its occurrence was only shown numerically in [16]. In the low density limit, which
we are studying here, the ground state actually predominately consists of pairs, in a
sense to be made precise below. In particular, it is essential for our results that the
pairing term is included in the energy functional; the Hartree-Fock functional for
particle-number conserving states would lead to markedly different results, and is
inappropriate for the description of low density gases.
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2 Main Results

As in BCS theory, the state of a fermionic system is described by a self-adjoint oper-
ator � ∈ L

(
L2(R3) ⊕ L2(R3)

)
, satisfying 0 � � � 1. It is determined by two

operators γ, α ∈ L
(
L2(R3)

)
and has the form

� =
(

γ α

α 1 − γ

)
,

where 0 � γ � 1 is trace class and α is Hilbert-Schmidt and symmetric, i.e.
α(x, y) = α(y, x), which implies that α∗ = ᾱ. We denote by γ , α the operators
with kernels γ (x, y) and α(x, y), respectively. We note that we do not include spin
variables here, but rather assume SU(2)-invariance of the states [13]. The full, spin-
dependent Cooper-pair wave function is the product of α with an anti-symmetric spin
singlet. Since α is symmetric, the latter is thus anti-symmetric, as appropriate for
fermions.

Given an external potential W and a two-particle interaction potential V , the
corresponding Bogolubov-Hartree-Fock functional (BHF) is given by

EBHF(�) = Tr
(− � + W

)
γ + 1

2

∫
R6

V (x − y)|α(x, y)|2 d3x d3y

−1

2

∫
R6

|γ (x, y)|2V (x − y) d3x d3y

+
∫
R6

γ (x, x)γ (y, y)V (x − y) d3x d3y. (2.1)

We note that the terms in the first line represent the BCS functional, while the
second and third line contain the additional exchange and direct terms in the inter-
action energy. A formal derivation of this functional from quantum mechanics can
be obtained via restriction to quasi-free states, see [2], [8, Appendix] or [13]. Let us
mention that our methods also allow to include a magnetic external vector potential,
but for simplicity we shall not do so here.

We study a system of h−1 fermions interacting by means of a two-body interaction
V = V (x −y), confined in an external potential of the form W(hx). I.e., the external
potential varies on a scale of order 1/h whereas V varies on a scale of order one.
Since the trap W confines the particles within a volume of order 1/h3, the particle
density is of the order h2. Hence the limit of small h corresponds to a dilute or low
density limit.

Since we expect the interaction energy per particle pair to be of the order
of the density, we shall also consider suitably weak external potentials, i.e., we
replace W by h2W . It is convenient to use macroscopic variables instead of micro-
scopic ones, i.e., we define xh = hx, yh = hy, αh(x, y) = h−3α(x

h
,

y
h
), and
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Fig. 2 Separation of scales:
The range of the interaction
between the fermions is of order
h, while the external potential
varies on a scale of order 1

γh(x, y) = h−3γ (x
h
,

y
h
). The resulting BHF functional is then given by (now

dropping the subscripts h)

EBHF(�) = Tr(−h2� + h2W)γ + 1

2

∫
R6

V
(x − y

h

)
|α(x, y)|2 d3x d3y

−1

2

∫
R6

|γ (x, y)|2V
(x − y

h

)
d3x d3y

+
∫
R6

γ (x, x)γ (y, y)V
(x − y

h

)
d3x d3y, (2.2)

where W = W(x) is independent of h. The corresponding ground state energy is
denoted as

EBHF(h) = inf{EBHF(�) | 0 � � � 1, Tr γ = 1/h} . (2.3)

(Fig. 2)
For ψ ∈ H 1(R3) the GP functional is defined as

EGP(ψ) =
∫
R3

(
1

2
|∇ψ(x)|2 + 2W(x)|ψ(x)|2 + g|ψ(x)|4

)
d3x . (2.4)

The factors 1/2 and 2, respectively, in the first two terms result from the fact that
(2.4) describes fermion pairs. The interaction parameter g > 0 will be determined
by the BHF functional and represents the interaction strength among different pairs.
We denote the ground state energy of the GP functional as

EGP(g) = inf{EGP(ψ) | ψ ∈ H 1(R3), ‖ψ‖22 = 1}. (2.5)

We shall consider the minimization problem (2.3) and show that its value in the
limit h → 0 is to leading order given by the binding energy of the fermion pairs, i.e.
−Eb

1
2h . This assumes, of course, that the two-body interaction potential V allows for

a negative energy bound state, which is part of the following assumption.
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Assumption 1 Let V ∈ L∞(R3) be real-valued, with V (x) = V (−x), such that
| · |V ( · ) ∈ L1(R3) and −2� + V has a normalized ground state α0 with
corresponding ground state energy −Eb < 0.

Including direct and exchange term into the BCS functional gives rise to a new
problem. A priori it is not clear whether the functional guarantees stability of the
second kind. To ensure it we impose the following further assumption on V .

Assumption 2 There isU ∈ L1(R3)∩L∞(R3), with non-negative Fourier transform
Û � 0, such that V − 1

2V+ � U . Here V+ = 1
2 (|V | + V ) denotes the positive part

of V .

In other words, we consider potentials which, after cutting its positive part in half,
can be bounded from below by functions with a non-negative Fourier transform. In
particular, this means that the potentials have to have a strong enough repulsive core
and a relatively small attractive tail, which still has to be large enough to allow for
bound states.

Remark 1 The following construction shows that it is easy to find potentials V with
the desired properties of Assumptions 1 and 2: Choose a potential U which is strictly
negative on an open set � ⊂ R

3, such that Û � 0. The latter property can be ensured,
e.g., by taking U to be the convolution of some function u with its reflection u(− · ).
Now set V = 2U+ − U−. Obviously this V fulfills Assumption 2. Finally, scale V

according to V �→ λV until the negative part is deep enough for a bound state to
appear.

With these assumptions we are ready to formulate our main theorem.

Theorem 1 Let W ∈ L∞(R3) be real-valued. Under Assumptions 1 and 2, we have
for small h,

EBHF(h) = −Eb

1

2h
+ h

2
EGP(g) + O(h3/2), (2.6)

where g > 0 is given by

g=(2π)3
∫
R3

|̂α0(p)|4(2p2+Eb) d
3p−
∫
R3

|(α0∗α0)(x)|2 V (x) d3x+2
∫
R3

V (x) d3x.

Moreover, if � is an approximate minimizer of EBHF, in the sense that

EBHF(�) � −Eb

1

2h
+ h

2

(
EGP(g) + ε

)
(2.7)

for some ε > 0, then the corresponding α can be decomposed as

α = αψ + ξ, ‖ξ‖22 � O(h), ‖α‖22 = O(h−1), (2.8)

where

αψ(x, y) = h−2ψ
(x + y

2

)
α0

(x − y

h

)
, (2.9)
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and ψ is an approximate minimizer of EGP in the sense that

EGP(ψ) � EGP(g) + ε + O(h1/2). (2.10)

Remark 2 In contrast to the case of the usual BCS functional [10, 12], where the
coupling constant g only consists of the BCS term

gbcs = (2π)3
∫
R3

|̂α0(p)|4(2p2 + Eb) d
3p , (2.11)

it receives here two additional contributions from the direct and exchange energies,

gdir = 2
∫
R3

V (x) d3x and gex = −
∫
R3

|(α0 ∗ α0)(x)|2 V (x) d3x ,

respectively. It is easy to see that our Assumption 2 implies that gdir+gex � 0, hence
g > 0.

Remark 3 The proof of Thm. 1 partly relies on ideas in [10], where the corresponding
time-dependent problem was studied for the BCS functional, i.e., in the absence of
direct and exchange term. A similar result can also be shown to hold in the case of
the time-dependent BHF equation, which in a different context was studied in [9]. By
following the strategy of [10] and handling the exchange and direct terms in a similar
way as done here, one can derive the time-dependent GP equation with interaction
parameter g.

Notation: In the following we often write a � b to denote a � Cb for some generic
constant C > 0.

3 Stability

Before giving a sketch of the proof of Theorem 1 we show how Assumption 2 gives
rise to stability of the second kind. In fact we simply show that the assumption guar-
antees that the sum of the direct and exchange terms is non-negative. To this aim we
first consider the exchange term and estimate

−
∫
R6

|γ (x, y)|2V ((x−y)/h
)
d3x d3y �−

∫
R6

|γ (x, y)|2V+
(
(x−y)/h

)
d3x d3y

�−
∫
R6

γ (x, x)γ (y, y)V+
(
(x−y)/h

)
d3xd3y,

using |γ (x, y)|2 � γ (x, x)γ (y, y). Hence we have for the sum of direct and
exchange term

2
∫
R6

γ (x, x)γ (y, y)V
(
(x−y)/h

)
d3x d3y−

∫
R6

|γ (x, y)|2V ((x−y)/h
)
d3x d3y

� 2
∫
R6

γ (x, x)γ (y, y) (V − V+/2)
(
(x − y)/h

)
d3x d3y

� 2
∫
R6

γ (x, x)γ (y, y)U
(
(x − y)/h

)
d3x d3y,
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where we used the assumption
(
V − 1

2V+
)
� U . Since Û � 0 the last term is non-

negative. Hence the question of stability is reduced to the corresponding problem for
the BCS functional, and is easily seen to hold under our assumptions on V .

4 Sketch of the Proof of Theorem 1

The proof of (2.6) consists of deriving appropriate upper and lower bounds on
EBHF(h).

4.1 Upper Bound

For the upper bound one has to construct a suitable trial state. We shall proceed
similarly to [10] and define the trial state �ψ via the pair wavefunction

αψ(x, y) = h−2ψ
(x + y

2

)
α0

(x − y

h

)
. (4.1)

Since we expect that the system in its ground state consists predominantly of pairs
we define the one particle density γψ such that to leading order it equals αψαψ . More
precisely, we choose the trial state

�ψ =
(

γψ αψ

αψ 1 − γψ

)
(4.2)

such that

γψ = αψαψ + (1 + h1/2)αψαψαψαψ . (4.3)

The function ψ here is only approximately normalized, i.e., ‖ψ‖2 = 1 + O(h2), to
ensure that Tr γψ = 1/h. We will see below that for small enough h the definition
(4.3) guarantees that 0 � �ψ � 1.

In the limit of small h the GP energy functional emerges from the BHF functional
EBHF(�ψ) as follows. If we consider the kinetic energy term plus the pairing term
and subtract the total binding energy, −Eb

2
1
h

= −Eb

2 Tr γψ , the contribution to

Tr
(
−h2� + Eb/2

)
γψ + 1

2

∫
R6

V
(x − y

h

)
|αψ(x, y)|2 d3x d3y (4.4)

coming from the αψαψ term in (4.3) can be written as

∫
R3

〈
αψ(·, y),

[
−h2�x + 1

2
V
( · − y

h

)
+ Eb

2

]
αψ(·, y)

〉
d3y.

Since αψ(x, y) is symmetric we can replace �x by 1
2 (�x + �y). In terms of center

of mass X = (x + y)/2 and relative coordinates r = x − y the kinetic energy has the
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form �x + �y = 1
2�X + 2�r , such that in these coordinates the last term has the

form

h−4
∫
R6

α0(r/h)ψ(X)

[
−h2

4
�X − h2�r + 1

2
V (r/h) + Eb/2

]
α0(r/h)ψ(X) d3X d3r

= h

4

∫
R3

|∇ψ(x)|2 d3x, (4.5)

where we used the fact that α0 is the normalized ground state of −� + 1
2V .

The term αψαψαψαψ of γψ inserted into

Tr[−h2� + Eb/2]γψ,

contributes the quartic term h
2gbcs
∫
R3 |ψ(x)|4 d3x term in the GP functional. The

remaining part of the h
2g
∫
R3 |ψ(x)|4 d3x term is due to the contribution of αψαψ

in the direct and exchange interaction terms. The estimation of these terms is
straightforward but tedious and occupies the main part of the proof.

Furthermore, it will be easy to show that

h2 TrWαψαψ = h−2
∫
R3

W(X + r/2)|ψ(X)|2|α0(r/h)|2 d3r

= h

∫
R3

W(X)|ψ(X)|2 d3X + O(h2).

Consequently we shall obtain

EBHF(�ψ) + Eb

1

2h
= h

2
EGP(ψ) + O(h3/2). (4.6)

Finally, we remark that the constraint Tr γψ = 1/h implies for ψ that ‖ψ‖22 =
(1 − O(h2)). Since ∣∣EGP(ψ) − EGP([1 + O(h2)]ψ)∣∣ � O(h2)

we obtain the bound

inf
0���1

Tr(γ )=1/h

EBHF(�) + Eb

1

2h
� h

2
inf

ψ∈H 1(R3)

‖ψ‖22=1

EGP(ψ) + O(h3/2) . (4.7)

The precise derivation of this bound will be given in Section 6.

Remark 4

• Since the infimum of EBHF is attained by a projection [2], it would be natural
to chose the trial state �ψ as a projection. The operator γψ would then satisfy
γψ = γ 2

ψ + αψαψ . The expansion of γψ in terms of αψαψ would be more
complicated, however, and we find the choice (4.3) more convenient.
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• Our trial state satisfies 0 � �ψ � 1 for small enough h. To see this note that the
condition is equivalent to 0 � �ψ(1 − �ψ). If γψ is of the special form (4.3),
which is a function of αψαψ , the off-diagonals of

�ψ(1 − �ψ) =
(

γψ − γ 2
ψ − αψαψ αψγψ − γψαψ

γψαψ − αψγψ γψ − γψ
2 − αψαψ

)

=
(

γψ − γ 2
ψ − αψαψ 0

0 γψ − γψ
2 − αψαψ

)
,

vanish and thus the statement is equivalent to

γψ − γ 2
ψ − αψαψ � 0. (4.8)

Plugging in the expression (4.3) for γψ (4.8) is equivalent to

αψαψ

(
h1/2 − 2(1 + h1/2)αψαψ − (1 + h1/2)2(αψαψ)2

)
αψαψ � 0. (4.9)

In Corollary 1 below we shall show that the operator norm of αψ satisfies
‖αψ‖∞ � h1/2, which guarantees that (4.9) is satisfied for h small enough. In
fact, h1/2 in (4.3) could be replaced by any factor large compared to h, but a
different choice would not improve our error bounds.

4.2 Lower Bound

From the upper bound we learn that for an approximate ground state � we can assume

EBHF(�) � −Eb

1

2h
+ O(h).

We will show in Lemma 3 that the corresponding α necessarily has to be of the form

α(x, y) = αψ(x, y) + ξ(x, y) = h−2ψ
(x + y

2

)
α0

(x − y

h

)
+ ξ(x, y), (4.10)

for an appropriate ψ ∈ H 1(R3), with ξ being small compared to αψ , i.e.,

‖ξ‖22 � h2‖αψ‖22 = O(h).

The function ψ is obtained by projecting α in the direction of α0 with respect to the
relative coordinates,

ψ(X) = 1

h

∫
R3

α0(r/h)α(X + r/2, X − r/2) d3r.

We shall show that ‖ψ‖2 = 1 + O(h2).
With this ψ at hand one can then define �ψ as in (4.2)–(4.3). With the help of

the decomposition (4.10) one then argues that the difference between EBHF(�) and
EBHF(�ψ) is bounded from below by a term of higher order than the contribution
from the GP functional. More precisely,

EBHF(�) � EBHF(�ψ) − O(h3/2). (4.11)
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This estimate is uniform in ψ , since it is possible to obtain a priori bounds on the
H 1-norm of ψ that are independent of h. Using now our calculation (4.6) from the
upper bound immediately implies

inf
0���1

Tr(γ )=1/h

EBHF(�) + Eb

1

2h
� h

2
inf

ψ∈H 1(R3)

‖ψ‖22=1

EGP(ψ) − O(h3/2) . (4.12)

Together with (4.7) this combines to (2.6).

5 Useful Properties of the Pair-wavefunction

In the following we shall derive some useful properties of the pair wavefunction (4.3),
which will be used throughout the proof. Recall that α0 was defined in Assumption
1 to be the normalized ground state of −2� + V . It is a rapidly decaying function,
and both |α0| and |∇α0| have smooth Fourier transforms which are in Lp(R3) for
any p � 2.

Lemma 1 Let αψ be defined as in (4.3), with ψ ∈ H 1(R3).

(i) For n ∈ {2, 4, 6},
‖αψ‖n

n � hn−3‖ψ‖n
n ‖|̂α0|‖n

n, (5.1a)

‖∇(x−y)αψ‖n
n � h−3‖ψ‖n

n ‖|̂∇α0|‖n
n, (5.1b)

where

(∇(x−y)αψ)(x, y) = h−3ψ
(
(x + y)/2

)
(∇α0)
(
(x − y)/h

)
.

(ii) With gbcs defined in (2.11),

Tr
(
(−h2� + Eb/2)αψαψαψαψ

) = h

2
gbcs‖ψ‖44 + O(h2)‖∇ψ‖42 . (5.2)

(iii) ‖αψαψ(·, ·)‖∞ = sup
x

|αψαψ(x, x)| � h−2‖α0‖23 ‖∇ψ‖22. (5.3)

(iv) Let σ be a Hilbert-Schmidt operator. Then

|σαψ(x, x)| � h−1‖σ(·, x)‖2‖∇ψ‖2 ‖α0‖3 ∀x ∈ R
3 . (5.4)

Let us mention that we use the symbol ‖ · ‖p for the Lp-norm of functions as well
as for the operator norm in the corresponding Schatten class. E.g., the left side of
(5.1a) concerns Schatten norms, while on the right side the norms are in Ln(R3).

Proof of Lemma 1, Part I We postpone the proof of (5.1a), (5.1b) and (5.2) to the
appendix. In order to see (5.3) we use the Hölder and Sobolev inequalities as

(αψαψ)(x, x) =
∫
R3

|αψ(x, y)|2 d3y = h−4
∫
R3

∣∣α0
(
(x − y)/h

)∣∣2 ∣∣ψ((x + y)/2)
)∣∣2 d3y

� h−4‖α0(·/h)2‖3/2‖|ψ |2‖3 � h−2‖α0‖23‖∇ψ‖22 .
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Similarly,

|(σαψ)(x, x)| = h−2
∣∣∣∣
∫
R6

σ(x, y)α0
(
(x − y)/h

)
ψ
(
(x + y)/2

)
d3y

∣∣∣∣
� h−2‖σ(·, x)‖2‖α0(·/h)‖3‖ψ‖6 � h−1‖σ(·, x)‖2‖∇ψ‖2‖α0‖3 ,

which implies (5.4).

Corollary 1 Let the assumptions be as in Lemma 1 and assume further that
‖ψ‖H 1 � 1. Then

‖αψ‖44 � h‖ψ‖2‖∇ψ‖32 ‖α̂0‖44 � h, (5.5a)

‖αψ‖66 � h3‖∇ψ‖62 ‖α̂0‖66 � h3, (5.5b)

‖∇(x−y)αψ‖66 � h−3‖∇ψ‖66 ‖|̂∇α0|‖66 � h−3, (5.5c)

‖αψ‖∞ � h1/2‖∇ψ‖2 ‖α̂0‖6 � h1/2, (5.5d)

sup
x∈R3

(αψαψαψαψ)(x, x) � ‖αψ‖2∞ sup
x∈R3

(αψαψ)(x, x) � h−1. (5.5e)

Moreover, with γψ defined as in (4.3),

‖γψ‖∞ � ‖αψ‖2∞ + (1 + h1/2)‖αψ‖4∞ � h (5.6a)

sup
x∈R3

γψ(x, x) � h−2. (5.6b)

Proof The estimates (5.5a)–(5.5c) are a consequence of (5.1a) and (5.1b). In the case
of n = 6, we use the Sobolev’s inequality and in the case of n = 4, we use Hölder
combined with Sobolev to conclude

‖ψ‖4 � ‖ψ‖1/42 ‖ψ‖3/46 � ‖ψ‖1/42 ‖∇ψ‖3/42 .

Inequality (5.5d) follows immediately from ‖αψ‖∞ � ‖αψ‖6 together with (5.5b).
It is easy to see that

(αψαψαψαψ)(x, x) � ‖αψαψ‖∞(αψαψ)(x, x),

which implies (5.5e) with the use of (5.3). Equation (5.6a) follows from (5.5d)
and (5.6b) is a direct consequence of (5.3) and (5.5e).

Remark 5 Since γψ is to leading order equal to αψαψ , we obtain as a corollary that
the operator norm of γψ is at most O(h), meaning that the largest eigenvalue of
the one-particle density matrix is of order h. However, the two-body density matrix
corresponding to the state �ψ is to leading order of the form |αψ 〉〈αψ |, and hence
has one large eigenvalue of order h−1. This is a manifestation of the Bose–Einstein
condensation of the fermion pairs.
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6 Upper Bound

For ψ ∈ H 1(R3), we define the trial state �ψ as in (4.1)–(4.3). Since we require
the normalization condition Tr γψ = 1/h, we have to adjust the L2-norm of ψ

accordingly, i.e.,

1/h = Tr γψ = 1

h
‖ψ‖22 + (1 + h1/2)‖αψ‖44.

Together with (5.5a) this implies
∣∣‖ψ‖22 − 1

∣∣ � h2‖ψ‖2‖∇ψ‖32,
and thus ‖ψ‖22 = 1 + O(h2).

The desired upper bound (4.7) is then an immediate consequence of the following
estimates:

Tr(−h2� + Eb/2)γψ + 1

2

∫
R6

V
(
(x − y)/h)

)|αψ(x, y)|2 d3x d3y

= h

∫
R3

(
1

4
|∇ψ(x)|2 + 1

2
gbcs|ψ(x)|4

)
d3x + O(h3/2), (6.1a)

Trh2Wγψ = h

∫
R3

W(x)|ψ(x)|2 d3x + O(h2), (6.1b)

−1

2

∫
R6

|γψ(x, y)|2V
(x − y

h

)
d3x d3y = h

2
gex

∫
R3

|ψ(x)|4d3x+O(h2),(6.1c)
∫
R6

γψ(x,x)γψ(y,y)V
(x − y

h

)
d3x d3y = h

2
gdir

∫
R3

|ψ(x)|4d3x+O(h2), (6.1d)

where the constants gbcs, gex and gdir are defined in Remark 2. The remainder of this
section will be devoted to the proof of these estimates.

6.1 Kinetic and Potential Energy (Proof of (6.1a))

Equation (6.1a) is an immediate consequence of the calculation in (4.5) and the bound
(5.2), using the definition (4.3) of γψ .

6.2 External Potential (Proof of (6.1b))

By (5.5a) of Corollary 1, we obtain

Tr(h2Wαψαψαψαψ) � h2‖W‖∞ Tr(αψαψαψαψ) � h3.

The leading contribution is thus given by h2 Tr(Wαψαψ), which we can write as

h2 Tr(Wαψαψ) = h2
∫
R6

W(x)|αψ(x, y)|2 d3x d3y = h

∫
R6

W(X)|ψ(X−hr/2)|2|α0(r)|2 d3X d3r .

(6.2)
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From the fundamental theorem of calculus we obtain

h2 Tr(Wαψαψ) = h

∫
R6

W(X)|ψ(X)|2|α0(r)|2 d3X d3r

+h

∫
R6

∫ 1

0
W(X)

∂

∂τ
|ψ(X − τhr/2)|2|α0(r)|2 dτ |α0(r)|2 d3X d3r.

Using the Cauchy-Schwarz inequality for the integration over the X variable, the last
integral is bounded by
∣∣∣∣∣h
∫
R6

∫ 1

0
W(X)�(h r · ∇ψ(X − τhr/2)ψ(X − τhr/2)

)
dτ |α0(r)|2 d3X d3r

∣∣∣∣∣
� h2‖W‖∞‖∇ψ‖2‖ψ‖2‖

√| · |α0‖22.
Since α0 is the ground state of the Schrödinger operator −2� + V and hence rapidly
decaying, ‖√| · |α0‖2 is finite. This shows (6.1b).

6.3 Direct and Exchange Term (Proof of (6.1c) and (6.1d))

We first argue that the leading order contribution of the direct and exchange
terms originates from replacing γψ by αψαψ . To see this, we simply estimate the
differences

∫
R6

|γψ(x, y)|2V ((x − y)/h) d3x d3y −
∫
R6

|(αψαψ)(x, y)|2V ((x − y)/h) d3x d3y (6.3a)

and ∫
R6

γψ(x, x)γψ(y, y)V ((x − y)/h) d3x d3y

−
∫
R6

(αψαψ)(x, x)(αψαψ)(y, y)V ((x − y)/h) d3x d3y. (6.3b)

Both expressions can be bounded using the following lemma, whose proof is
elementary.

Lemma 2 Let σ(x, y) and δ(x, y) be integral kernels of two positive trace class
operators. Then
∣∣∫

R6 V (x − y) [(σ + δ)(x, x)(σ + δ)(y, y) − σ(x, x)σ (y, y)] d3x d3y
∣∣

� 2
∫
R6 |V (x − y)|(σ + δ)(x, x)δ(y, y) d3x d3y,

(6.4a)

and ∣∣∫
R6 V (x − y)

[|(σ + δ)(x, y)|2 − |σ(x, y)|2] d3x d3y
∣∣

� 2
∫
R6 |V (x − y)|(σ + δ)(x, x)δ(y, y) d3x d3y.

(6.4b)
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Proof To show (6.4a), we simply use

(σ + δ)(x, x)(σ + δ)(y, y) − σ(x, x)σ (y, y)

= (σ + δ)(x, x)δ(y, y) + δ(x, x)σ (y, y)

� (σ + δ)(x, x)δ(y, y) + δ(x, x)(σ + δ)(y, y).

Equation (6.4a) then follows by symmetry, V (x − y) = V (y − x).
For (6.4b) we follow a similar strategy and first split

V (x − y)
[
|(σ + δ)(x, y)|2 − |σ(x, y)|2

]

= V (x − y)
[
(σ + δ)(x, y)δ(x, y) + δ(x, y)σ (x, y)

]
� |V (x − y)| [|(σ + δ)(x, y)| |δ(x, y)| + |δ(x, y)| |σ(x, y)|] .

Applying to σ, δ, and σ + δ the fact that for positive trace class operators a its kernel
satisfies

|a(x, y)| � √|a(x, x)|√|a(y, y)| ,
together with the Cauchy-Schwarz inequality, we obtain the stated inequality.

By applying Lemma 2 to σ + δ = γψ and σ = αψαψ the differences (6.3a) and
(6.3b) can be bounded by

4(1 + h1/2)
∫
R6 |V ((x − y)/h)| γψ(x, x)(αψαψαψαψ)(y, y) d3x d3y

� ‖γψ(·, ·)‖∞
∫
R6(αψαψαψαψ)(x, x) |V ((x − y)/h)| d3x d3y

� h3‖V ‖1‖γψ(·, ·)‖∞ Tr(αψαψαψαψ) � h2,

(6.5)

where we used (5.6b) and (5.5a) in the last step.
In order to recover the ‖ψ‖44 contribution we inspect the remaining parts of the

direct and the exchange terms separately. We begin with the exchange term and write
explicitly

− 1

2

∫
R6

|(αψαψ)(x, y)|2V ((x − y)/h) d3x d3y

= −1

2

∫
R12

αψ(x, z)αψ(z, y)αψ(x, w)αψ(w, y)V
(
(x − y)/h

)
d3x d3y d3z d3w.

Introducing new variables

X = x + y

2
, r = x − y, s = x − z, t = x − w,

and rescaling r/h → r, s/h → s, t/h → t , the last expression becomes

−h

2

∫
R12

V (r)α0(s)α0(r − s)α0(t)α0(r − t)

×ψ(X + h(r − s)/2)ψ(X − hs/2)ψ(X − ht/2)ψ(X + h(r − t)/2) d3X d3r d3s d3t .

The latter equals
h

2
gex

∫
R3

|ψ(x)|4 d3x + Aex,
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where

Aex = −h

2

∫
R12

d3X d3r d3s d3t V (r)α0(s)α0(r − s)α0(t)α0(r − t) ×

×
∫ 1

0

d

dτ

(
ψ(X + τh(r − s)/2)ψ(X − τhs/2)ψ(X − τht/2)ψ(X + τh(r − t)/2)

)
dτ .

This can be bounded by

|Aex| � h2‖∇ψ‖2‖ψ‖36‖V (α0∗α0)((|·|α0)∗α0)‖1 � h2‖∇ψ‖42‖V ‖1‖α0‖32
∥∥|·|α0
∥∥
2,

using the Hölder, Sobolev and Cauchy-Schwarz inequalities. This shows (6.1c).
We continue with the direct term. Its remaining part is given by

∫
R6

(αψαψ)(x, x)(αψαψ)(y, y)V ((x − y)/h) d3x d3y

=
∫
R6

|αψ(x, z)|2|αψ(y,w)|2V ((x − y)/h) d3x d3y d3w d3z

= h

∫
R12

V (r)|α0(s)|2|α0(t)|2|ψ(X + h(r − s)/2)|2|ψ(X − h(r + t)/2)|2 d3X d3r d3s d3t,

where we changed to the variables

X = x + y

2
, r = x − y, s = x − z, t = y − w,

and rescaled r, s, t . By proceeding as above, we see that this expression equals

h

2
gdir

∫
R3

|ψ(x)|4 d3x + Adir, (6.6)

where

Adir = h

∫
R12

V (r)|α0(s)|2|α0(t)|2 ×

×
∫ 1

0

d

dτ

(
|ψ(X + τh(r − s)/2)|2|ψ(X − τh(r + t)/2)|2

)
dτ d3X d3r d3s d3t ,

is bounded by

|Adir| � h2‖∇ψ‖2‖ψ‖36 ‖α0‖2
(‖| · |V ‖1‖α0‖2 + ‖V ‖1‖√| · |α0‖2

)
.

This shows (6.1d), and thus concludes the proof of the upper bound.

7 Lower Bound

Our proof of the lower bound on EBHF(h) in Theorem 1 consists of two parts. As a
first step we obtain a priori bounds on approximate ground states.

Lemma 3 (A priori bounds) Let � be a state satisfying Tr γ = 1/h and

EBHF(�) � −Eb

1

2h
+ Ch ,



Math Phys Anal Geom (2016) 19: 13 Page 17 of 27 13

for some C > 0. Define the function � as

ψ(X) = 1

h

∫
R3

α0(r/h)α(X + r/2, X − r/2) d3r , (7.1)

and define ξ̃ (X, r) = ξ(X + r/2, X − r/2) through the decomposition

α̃(X, r) := α(X + r/2, X − r/2) = h−2ψ(X)α0(r/h) + ξ̃ (X, r) .

Then these functions satisfy the bounds

Tr
[
(−h2� + 1

2Eb)(γ − αα)
]
� h, (7.2a)

Tr(γ 2) � Tr(γ − αα) � h, (7.2b)

‖ψ‖2 � 1, (7.2c)

‖∇ψ‖2 � 1, (7.2d)

‖̃ξ‖2 � h1/2, (7.2e)

‖∇Xξ̃‖2 � h−1/2, (7.2f)

‖∇r ξ̃‖2 � h−1/2, (7.2g)

Tr(αααα) � h. (7.2h)

Note that our definition implies that ξ̃ (X, · ) is orthogonal to α0( · /h) for almost
all X. The norms in (7.2e)–(7.2g) are in L2(R6).

Proof We have seen in Section 3 that the sum of the direct and exchange terms is
non-negative. Consequently,

h � EBHF(�) + Eb

1

2h

� Tr(−h2� + Eb/2)γ + 1

2

∫
R6

V
(
(x − y)/h

)|α(x, y)|2 d3x d3y − h2‖W‖∞ Tr(γ ).

We bring the term h2‖W‖∞ Tr(γ ) � h to the left side. Adding and subtracting the
expression Tr(−h2� + Eb/2)αα we obtain

h � Tr(−h2�+Eb/2)(γ −αα)+Tr(−h2�+Eb/2)αα+ 1

2

∫
R6

V
(
(x−y)/h

)|α(x, y)|2 d3x d3y.

(7.3)
The last two terms on the right side can be expressed via center-of-mass and relative
coordinates as∫

R3

〈
α(·, y),

[
−h2�x + 1

2V
( ·−y

h

)
+ Eb

2

]
α(·, y)
〉
L2(R3)

d3y

=
〈
α,
[
−h2

4 �X − h2�r + 1
2V (r/h) + Eb

2

]
α
〉
L2(R6)

= h
4

∫
R3 |∇ψ(X)|2 d3X + h2

4 ‖∇Xξ̃‖22
+ ∫

R3

〈̃
ξ(X, ·),

[
−h2�r + 1

2V (·/h) + Eb/2
]
ξ̃ (X, ·)
〉
L2(R3)

d3X,

(7.4)

where we used that α0 is the normalized zero energy eigenvector of the operator
−�+V/2+Eb/2, as well as the fact that ξ̃ (X, ·) is orthogonal to α0(·/h) for almost
every X ∈ R

3. Hence (7.3) implies

h � Tr(−h2� + Eb/2)(γ − αα) + h

4
‖∇ψ‖22 + h2

4
‖∇Xξ̃‖22

+
∫
R3

〈̃ξ(X, ·), (−h2� + 1

2
V (·/h) + Eb/2)̃ξ (X, ·)〉 d3X. (7.5)
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Since all terms on the right side are non-negative, and γ −γ 2 � αᾱ, we immediately
obtain the estimates (7.2a), (7.2b), (7.2d) and (7.2f).

According to Assumption 1 the operator −�+V/2 has a spectral gap between the
ground state energy −Eb/2 and the next eigenvalue. This implies that we can find a
κ > 0 and an ε > 0 such that

−(1 − ε)� + V/2 + Eb/2 � κ ,

on the orthogonal complement of α0. Hence∫
R3

〈̃ξ(X, ·), (−h2�r + 1

2
V (·/h) + Eb/2)̃ξ (X, ·)〉 d3X � κ ‖̃ξ‖22 + εh2‖∇r ξ̃‖22 .

In combination with (7.5) this yields the estimates (7.2e) and (7.2g).
Since ‖α‖22 � Tr γ = 1/h we obtain for the L2-norm of ψ , that, by definition

(7.1) and the Cauchy-Schwarz inequality,

‖ψ‖22 = h−2
∫
R3 α0(r1/h)̃α(X, r2)α0(r2/h)̃α(X, r1) d3r1 d3r2 d3X

� h−2
∫
R3 |α0(r1/h)|2 |̃α(X, r2)|2 d3r1 d3r2 d3X = h‖α‖22 � 1,

(7.6)

implying (7.2c). Finally, to see (7.2h)7.2h) note that since γ � αα

Tr(αααα) = Tr
(
γ 2 − γ (γ − αα) − (γ − αα)γ + (γ − αα)2

)
� Tr(γ 2) + Tr(γ − αα)2 � h.

Observe that we do not necessarily have ‖ψ‖22 = 1. The norm deviates from 1 by
a correction of order h2,

1 − ‖ψ‖22 = h
(
Tr γ − Trαψαψ

)
� hTr(γ − αα) + h

∣∣Tr(αψαψ − αα)
∣∣ . (7.7)

By (7.2b) and (7.2e) (and the orthogonality of ξ̃ and α0), the right side is O(h2).
With the aid of the function ψ we can define a corresponding state �ψ as

in (4.1)–(4.3). By multiplying ψ with a factor λ = 1 + O(h2) we can assume
that Tr γλψ = 1/h. The second step now consists of proving that for a lower
bound we can replace EBHF(�) by EBHF(�λψ) up to higher order terms. Together
with the calculations from the upper bound this implies the lower bound stated in
Theorem 1.

Lemma 4 With � and �λψ defined as above, one has

EBHF(�) � EBHF(�λψ) − O(h3/2). (7.8)

Lemma 4 not only completes the proof of the lower bound (4.12), it also allows
to establish the claim about approximate minimizers in Eqs. (2.7)–(2.10) in Theo-
rem 1. Given an approximate minimizer satisfying (2.7), Lemma 3 yields (2.8), while
a combination of (7.8) and (4.6) implies (2.10).

It remains to prove the bound (7.8), which is an immediate consequence of the
following estimates:
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Tr(−h2� + Eb/2)γ + 1
2

∫
R6

V
(
(x − y)/h

)|α(x, y)|2 d3x d3y

�(−h2�+Eb/2)γλψ+ 1
2

∫
R6

V
(
(x−y)/h

)|αλψ(x,y)|2d3xd3y −O(h3/2)
(7.9a)

h2 TrWγ � h2 TrWγλψ − O(h2) (7.9b)

−
∫
R6

|γ (x, y)|2V ((x − y)/h
)
d3x d3y

� −
∫
R6

|γλψ(x, y)|2V ((x − y)/h
)
d3x d3y − O(h3/2) (7.9c)

∫
R6

γ (x, x)γ (y, y)V
(
(x − y)/h

)
d3x d3y

�
∫
R6

γλψ(x, x)γλψ(y, y)V
(
(x − y)/h

)
d3x d3y − O(h3/2). (7.9d)

The remainder of this section will be dedicated to proving these estimates.

7.1 Kinetic and Potential Energy (Proof of (7.9a))

Let us decompose γ according to

γ = αα + αααα + (γ − αα − γ 2) + (γ − αα)2 + αα(γ − αα) + (γ − αα)αα,

where (γ − αα − γ 2) and (γ − αα)2 are positive self-adjoint operators and thus

Tr(−h2� + Eb/2)
(
(γ − αα − γ 2) + (γ − αα)2

)
� 0.

Adding and subtracting the term

Tr(−h2� + Eb/2)γλψ + 1

2

∫
R6

V
(
(x − y)/h

)|αλψ(x, y)|2 d3x d3y,

we obtain

Tr(−h2� + Eb/2)γ + 1

2

∫
R6

V
(
(x − y)/h

)|α(x, y)|2 d3x d3y

� Tr(−h2� + Eb/2)γλψ + 1

2

∫
R6

V
(
(x − y)/h

)|αλψ(x, y)|2 d3x d3y

+Tr
(
(−h2� + Eb/2)αα

)+ 1

2

∫
R6

V
(
(x − y)/h

)|α(x, y)|2 d3x d3y

−Tr
(
(−h2� + Eb/2)αλψαλψ

)− 1

2

∫
R6

V
(
(x − y)/h

)|αλψ(x, y)|2 d3x d3y

+Tr
[
(−h2� + Eb/2)αααα

]− Tr
[
(−h2� + Eb/2)αλψαλψαλψαλψ

]
+Tr
[
(−h2� + Eb/2)αα(γ − αα) + (γ − αα)αα

]
−h1/2 Tr

[
(−h2� + Eb/2)αλψαλψαλψαλψ

]
. (7.10)
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The identity (7.4) immediately implies that

Tr
(
(−h2� + Eb/2)αα

)+ 1

2

∫
R6

V
(
(x − y)/h

)|α(x, y)|2 d3x d3y

� Tr
(
(−h2� + Eb/2)αψαψ

)+ 1

2

∫
R6

V
(
(x − y)/h

)|αψ(x, y)|2 d3x d3y = h

4
‖∇ψ‖22 , (7.11)

and hence the sum of the second and third lines on the right side of (7.10) is bounded
from below by h

4 (1 − λ2)‖∇ψ‖22 = O(h3). Hence the proof of (7.9a) reduces to
establishing the estimates∣∣∣Tr(−h2� + Eb/2)

[
αααα − αλψαλψαλψαλψ

]∣∣∣ � h2, (7.12)

|Tr ((−h2� + Eb/2)
[
αα(γ − αα) + (γ − αα)αα

])| � h3/2, (7.13)

h1/2 Tr
(
(−h2� + Eb/2)αλψαλψαλψαλψ

)
� h3/2, (7.14)

which we are going to show in the following.
Inequality (7.14) is an immediate consequence of (5.2). It also implies that it is

enough to show (7.12) for λ = 1. To do this, we rewrite

αααα − αψαψαψαψ = αψααξ + ξαααψ + ξααξ + αψ(αα − αψαψ)αψ . (7.15)

With H := −h2� + Eb

2 we obtain with the aid of Hölder’s inequality for traces

|Tr (H [αααα − αψαψαψαψ

])| = ∣∣Tr (H 1/2
[
αψααξ + ξαααψ + ξααξ + αψ(αα − αψαψ)αψ

]
H 1/2
)∣∣

� 2‖H 1/2αψ‖6‖α‖26‖H 1/2ξ‖2 + ‖α‖2∞‖H 1/2ξ‖22+‖H 1/2αψ‖26‖αα − αψαψ‖3/2.
(7.16)

Note that for any operator T , we have

‖H 1/2T ‖2n = ‖T ∗HT ‖1/2n �
√

‖T ∗(−h2�)T ‖n + 1
2Eb‖T ∗T ‖n � h‖∇T ‖2n +

√
Eb

2
‖T ‖2n

� h

(
1

2
‖∇XT ‖2n + ‖∇rT ‖2n

)
+
√

Eb

2
‖T ‖2n ,

where in the last line the operators ∇XT and ∇rT are defined via the kernels
(∇XT )(x, y) and (∇rT )(x, y), respectively. By applying this to the terms in (7.16)
we obtain

‖H 1/2αψ‖6 � h

2
‖∇Xαψ‖6 + h‖∇rαψ‖6 +

√
Eb

2
‖αψ‖6 � h1/2, (7.17)

‖H 1/2ξ‖2 � h

2
‖∇Xξ‖2 + h‖∇r ξ‖2 +

√
Eb

2
‖ξ‖2 � h1/2, (7.18)

where we used ‖∇Xαψ‖6 = ‖α∇ψ‖6 � ‖α∇ψ‖2 = ‖∇ψ‖2h−1/2, together with
(5.5b), (5.5c), (7.2e), (7.2f) and (7.2g). The term ‖αα − αψαψ‖3/2 in (7.16) can be
bounded by

‖αα−αψαψ‖3/2 = ‖αψξ+ξαψ +ξξ‖3/2 � 2‖αψ‖6‖ξ‖2+‖ξ‖6‖ξ‖2 � 2‖αψ‖6‖ξ‖2+‖ξ‖22 � h,
(7.19)
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where we used (5.5b) and (7.2e). By combining (7.16) with (7.17)–(7.19) we obtain
(7.12).

To show (7.13), we can bound

|Tr (H [(γ − αα)αα + αα(γ − αα)])| = 2
∣∣∣�Tr
(
H 1/2(γ − αα)H 1/2 1

H 1/2 ααH 1/2
)∣∣∣

� 2TrH(γ − αα)

∥∥∥ 1
H 1/2 ααH 1/2

∥∥∥∞ .

The first factor on the right side is bounded by O(h) according to (7.2a).
Moreover,

∥∥∥∥ 1

H 1/2
ααH 1/2

∥∥∥∥∞ �
√

2

Eb

‖ααHαα‖1/2∞ �
√

2

Eb

(TrHαααα)1/2 ,

which is bounded by O(h1/2) using (7.12) together with (5.2). This proves (7.13).

7.2 External Potential (Proof of (7.9b))

Since W is bounded, Tr γψ = O(h−1) and λ = 1 + O(h2), it clearly suffices to
consider the case λ = 1. Using the form (4.3) of γψ we evaluate

h2 TrW(γ − γψ) = h2 TrW(γ − αα) + h2 TrW(αα − αψαψ) − (1 + h1/2)h2 TrW(αψαψαψαψ)

� −h2‖W‖∞
[
Tr(γ − αα) + ‖ξ‖22 + 2‖αψξ‖1 + (1 + h1/2)Trαψαψαψαψ)

]

� −O(h2), (7.20)

where we used (7.2b), the decomposition α = αψ + ξ , and ‖αψξ‖1 � ‖αψ‖2‖ξ‖2
� 1.

7.3 Direct and Exchange Term (Proof of (7.9c) and (7.9d))

Our strategy is as follows. As a first step we reduce the direct term and exchange
term to corresponding expressions involving α only, and show that

∣∣∣∣
∫
R6

|γ (x, y)|2V ((x − y)/h
)
d3x d3y

−
∫
R6

|(αα)(x, y)|2V ((x − y)/h
)
d3x d3y

∣∣∣∣ � h2, (7.21)

∣∣∣∣
∫
R6

γ (x, x)γ (y, y)V
(
(x − y)/h

)
d3x d3y

−
∫
R6

(αα)(x, x)(αα)(y, y)V
(
(x − y)/h

)
d3x d3y

∣∣∣∣ � h2. (7.22)
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As a second step, we show that up to an error O(h3/2) we are able to replace α by
αψ in the corresponding expressions, i.e.,∣∣∣∣

∫
R6

|(αα)(x, y)|2V ((x − y)/h
)
d3x d3y

−
∫
R6

|(αψαψ)(x, y)|2V ((x − y)/h
)
d3x d3y

∣∣∣∣ � h3/2 , (7.23)

and ∣∣∣∣
∫
R6

(αα)(x, x)(αα)(y, y)V
(
(x − y)/h

)
d3x d3y

−
∫
R6

(αψαψ)(x, x)(αψαψ)(y, y)V
(
(x − y)/h

)
d3x d3y

∣∣∣∣ � h3/2. (7.24)

These two steps together, in combination with λ = 1 + O(h2), lead to (7.9c) and
(7.9d), respectively.

The estimates (7.21) and (7.22) can be obtained by applying Lemma 2 with σ =
αα and δ = γ −αα. As a result we obtain that the left sides of both (7.21) and (7.22)
are bounded by

2
∫
R6

∣∣V ((x − y)/h
)∣∣ (γ − αα)(x, x)γ (y, y) d3x d3y

= 2
∫
R6

∣∣V ((x − y)/h
)∣∣ (γ − αα)(x, x)(γ − αα)(y, y) d3x d3y, (7.25a)

+ 2
∫
R6

∣∣V ((x − y)/h
)∣∣ (γ − αα)(x, x)(αα)(y, y) d3x d3y. (7.25b)

By (7.2b), the term (7.25a) is bounded by∫
R6

(γ − αα)(x, x)(γ − αα)(y, y)
∣∣V ((x − y)/h

)∣∣ d3x d3y � [Tr(γ − αα)]2‖V ‖∞ � h2.

For (7.25b), we are going to use the decomposition α = αψ + ξ in the form

αᾱ = αψαψ + ξαψ + αψξ + ξξ ,

and we thus have to bound four terms. First, observe that∫
R6

(γ − αα)(x, x)(ξξ)(y, y)
∣∣V ((x − y)/h

)∣∣ d3x d3y � ‖V ‖∞ Tr(γ − αα)Tr(ξξ) � h2.

Second, using (5.3),∫
R6

(γ − αα)(x, x)(αψαψ)(y, y)
∣∣V ((x − y)/h

)∣∣ d3x d3y

� h3 Tr(γ − αα)‖(αψαψ)(·, ·)‖∞‖V ‖1 � h2 . (7.26)

For the remaining terms we use (5.4) with σ = ξ and the Cauchy-Schwarz inequality
to obtain ∫

R6
(γ − αα)(x, x)

∣∣(αψξ)(y, y)V
(
(x − y)/h

)∣∣ d3x d3y

� h−1
∫
R9

(γ − αα)(x, x)‖ξ(·, y)‖2
∣∣V ((x − y)/h

)∣∣ d3x d3y

� h−1‖ξ‖2‖V (·/h)‖2 Tr(γ − αα) � h2.



Math Phys Anal Geom (2016) 19: 13 Page 23 of 27 13

We now turn to the estimates (7.23) and (7.24). The difference of the exchange
terms in (7.23) is bounded by

‖V ‖∞‖αα − αψαψ‖2‖αα + αψαψ‖2 .

The 2-norm of αα−αψαψ can be bounded by the 3/2-norm, which in turn is bounded
by O(h) according to (7.19). Moreover, ‖αψαψ‖2 = ‖αψ‖24 � h1/2 by (5.1a),
proving (7.23).

For the direct term we insert the decomposition α = αψ + ξ into the difference
in (7.24), yielding 15 terms. However, due to symmetry, it suffices to estimate the
following 5 terms∫

R6(ξξ)(x, x)(ξξ)(y, y)
∣∣V ((x − y)/h

)∣∣ d3x d3y, (7.27a)∫
R6(ξξ)(x, x)(αψαψ)(y, y)

∣∣V ((x − y)/h
)∣∣ d3x d3y, (7.27b)∫

R6(ξαψ)(x, x)(αψαψ)(y, y) |V ((x − y)/h)| d3x d3y, (7.27c)∫
R6(ξξ)(x, x)(ξαψ)(y, y) |V ((x − y)/h)| d3x d3y, (7.27d)∫
R6(ξαψ)(x, x)(ξαψ)(y, y) |V ((x − y)/h)| d3x d3y. (7.27e)

We begin with (7.27a). Obviously∫
R6

(ξξ)(x, x)(ξξ)(y, y)
∣∣V ((x − y)/h

)∣∣ d3x d3y � ‖V ‖∞
[
Tr(ξξ)
]2 � h2.

For (7.27b) we obtain with the help of (5.3)

∫
R6

(ξξ)(x, x)(αψαψ)(y, y)
∣∣V ((x − y)/h

)∣∣ d3x d3y � Tr(ξξ)‖(αψαψ)(·, ·)‖∞h3‖V ‖1 � h2.

For the last three terms we invoke Eq. (5.4) from Lemma 1 with σ = ξ and the
Cauchy-Schwarz inequality. For (7.27c) this gives∫

R6
(ξαψ)(x, x)(αψαψ)(y, y) |V ((x − y)/h)| d3x d3y

� h−1
∫
R6

‖ξ(x, ·)‖2(αψαψ)(y, y) |V ((x − y)/h)| d3x d3y

� h−1‖V (·/h)‖1‖ξ‖2‖αψαψ(·, ·)‖2 .

The desired bound O(h3/2) then follows from the fact that the last factor
‖αψαψ(·, ·)‖2 on the right side is of order O(h−1). To see this, we write

‖αψαψ(·, ·)‖22 =
∫
R9

|αψ(x, y)|2|αψ(x, z)|2 d3x d3y d3z

= h−8
∫
R9

|α0
(
(x − y)/h

)|2|α0
(
(x − z)/h

)|2|ψ((x + y)/2
)|2|ψ((x + z)/2

)|2 d3x d3y d3z.

Changing to the variables r = x − y, s = x − z and x and using Cauchy-Schwarz in
x, we indeed obtain

‖αψαψ(·, ·)‖22 = h−8
∫
R9

|α0
(
r/h
)|2|α0
(
s/h
)|2|ψ(x − r/2)|2|ψ(x − s/2)|2 d3x d3r d3s � h−2‖α0‖22‖ψ‖44.
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For (7.27d) we get∫
R6

(ξξ)(x, x)(ξαψ)(y, y)
∣∣V ((x − y)/h

)∣∣ d3x d3y

� h−1
∫
R6

(ξξ)(x, x)‖ξ(y, ·)‖2 |V ((x − y)/h)| d3x d3y

� h−1‖V (·/h)‖2‖ξ‖32 � h2 ,

and for (7.27e)∫
R6

(ξαψ)(x, x)(ξαψ)(y, y)
∣∣V ((x − y)/h

)∣∣ d3x d3y

� h−2
∫
R6

‖ξ(x, ·)‖2‖ξ(y, ·)‖2 |V ((x − y)/h)| d3x d3y

� h−2‖ξ‖22‖V (·/h)‖1 � h2.

This concludes the proof of (7.9c) and (7.9d).
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Appendix: A Proof of Lemma 1

Proof of Lemma 1, Part II We first prove (5.1a) and (5.1b). For n ∈ 2N, we can write

Tr
(
(αψαψ)n/2) =

∫
R3n

αψ(x1, x2)αψ(x2, x3) · · ·αψ(xn−1, xn)αψ(xn, x1) d
3x1 · · · d3xn. (A.1)

We switch to the following coordinates

X = 1
n

∑n
k=1 xk

rk = xk+1 − xk, k = 1, . . . , n − 1.
(A.2)

It is easy to see that the corresponding Jacobi determinant is equal to 1. Moreover,
we can recover the original coordinates via

x1 = X − 1

n

n−1∑
i=1

(n − i)ri ,

xk+1 = xk + rk,

i.e.

xk = X + sk(r1, . . . , rn−1) ,

for some linear functions sk . We therefore obtain for the integral in (A.1)

‖αψ‖n
n = h−2n

∫
R3n

ψ
(
X + 1

2 (s1 + s2)
) · · ·ψ(X + 1

2 (sn + s1)
)

×α0(r1/h) · · · α0(rn/h) d3X d3r1 · · · d3rn−1,

http://creativecommons.org/licenses/by/4.0/
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where we introduced rn := −∑n−1
k=1 rk . Hölder’s inequality in the X variable then

yields

‖αψ‖n
n � h−2n‖ψ‖n

n

∫
R3(n−1)

∣∣∣α0(r1/h) · · · α0(rn/h)

∣∣∣ d3r1 · · · d3rn−1

= (2π)3(n−2)/2hn−3‖ψ‖n
n ‖|̂α0|‖n

n ,

which is (5.1a). The same calculation with α0 replaced by ∇α0 yields (5.1b).
Due to the symmetry αψ(x, y) = αψ(y, x), we have

Tr
(
�αψαψαψαψ

) = 〈αψαψαψ, �xαψ 〉L2(R6) = 〈αψαψαψ, 1
2 (�x + �y)αψ 〉L2(R6)

= 〈αψαψαψ, ( 14�X + �r)αψ 〉L2(R6) .

Using the coordinates (A.2), for which we have in the case of n = 4

x1 + x2

2
= X − s

x3 + x4

2
= X + s s(r1, r2, r3) = r1 + 2r2 + r3

4
x2 + x3

2
= X − t

x1 + x4

2
= X + t t (r1, r2, r3) = r3 − r1

4
,

and rescaling rk → hrk , k = 1, 2, 3, we can therefore write

Tr(−h2� + Eb/2)αψαψαψαψ

= h

∫
R12

ψ(X − hs)ψ(X − ht)ψ(X + hs)ψ(X + ht)

×[(−� + Eb/2)α0(r1)
]
α0(r2)α0(r3)α0(−r1 − r2 − r3) d

3X d3r1 d
3r2 d

3r3

−h2

4
〈αψαψαψ, �Xαψ 〉L2(R6) .

This term has the form

h(2π)3‖ψ‖44
∫
R3

|α̂0(p)|4(p2 + Eb/2) d
3p + A1 h2 + A2 h2,

where

A1 = −1

4
〈αψαψαψ,�Xαψ 〉L2(R6) ,

A2 = h−1
∫
R12

∫ 1

0

d

dτ

(
ψ(X − τhs)ψ(X − τht)ψ(X + τhs)ψ(X + τht)

)
dτ

×[(−� + Eb/2)α0(r1)
]
α0(r2)α0(r3)α0(−r1 − r2 − r3) d

3X d3r1 d
3r2 d

3r3.

Using integration by parts, we can bound A1 as

|A1| = 1

4

∣∣〈∇X

(
αψαψαψ

)
, ∇Xαψ

〉∣∣
= 1

4

∣∣〈(∇Xαψ

)
αψαψ + αψ

(∇Xαψ

)
αψ + αψαψ

(∇Xαψ

)
, ∇Xαψ

〉∣∣
� 3

4
‖∇Xαψ‖22‖αψ‖2∞ � ‖∇ψ‖42 ,
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where the last inequality follows from ‖αψ‖∞ � ‖αψ‖6, which is � h1/2‖ψ‖6 as
shown above.

To estimate A2, we carry out the derivative in τ and subsequently use Hölder’s
inequality for the X integration to obtain

|A2| � ‖∇ψ‖2‖ψ‖36
∫
R9

(|s| + |t |)∣∣(V α0)(r1)α0(r2)α0(r3)α0(−r1 − r2 − r3)
∣∣ d3r1 d3r2 d3r3.

Here we have also used that (−�+Eb/2)α0 = − 1
2V α0. We now note that |s|+|t | �

1
2 |r1+r2+r3|+ 1

2 |r2|+ 1
2 |r3|. We plug in this bound in the integrand and use Cauchy-

Schwarz for the r2 integration in the case of the terms |r1 + r2 + r3| and |r2|, and for
the r3 integration in the case of |r3|. This yields

|A2| � 3

2
‖∇ψ‖2‖ψ‖36‖V α0‖1 ‖α0‖1 ‖α0‖2

∥∥| · |α0
∥∥
2 .

The desired result then follows from the Sobolev inequality ‖ψ‖6 � ‖∇ψ‖2. This
concludes the proof of Lemma 1.
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