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Abstract

Background: Some of the current software tools for comparative metagenomics provide ecologists with the ability
to investigate and explore bacterial communities using α– & β–diversity. Feature subset selection – a sub-field of
machine learning – can also provide a unique insight into the differences between metagenomic or 16S phenotypes.
In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional
features, that have a high-level of influence on the condition being studied. For example, in a previous study we have
used information-theoretic feature selection to understand the differences between protein family abundances that
best discriminate between age groups in the human gut microbiome.

Results: We have developed a new Python command line tool, which is compatible with the widely adopted BIOM
format, for microbial ecologists that implements information-theoretic subset selection methods for biological data
formats. We demonstrate the software tools capabilities on publicly available datasets.

Conclusions: We have made the software implementation of Fizzy available to the public under the GNU GPL
license. The standalone implementation can be found at http://github.com/EESI/Fizzy.

Keywords: Feature subset selection, Comparative metagenomics, Open-source software

Background
There is an immense amount of sequence data being col-
lected from the next generation sequencers. Sequences
from bacterial communities are collected from whole
genome shotgun (WGS), or amplicon sequencing runs,
and the analysis of such data allows researchers to study
the functional or taxonomic composition of a sample.
Microbial ecologists represent the composition in the
form of an abundance matrix, which usually holds counts
of operational taxonomic units (OTUs), but can also hold
counts of genes/metabolic pathway occurrences if the
data are collected fromWGS. Furthermore, collections of
metagenomic samples contains different factors, or phe-
notypes, such as environmental pH and salinity values, or
a health related status [1, 2].
In this work, we introduce software tools for micro-

bial ecologist researchers that implement feature subset
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selection routines for biological data formats. Prior to fea-
ture selection, we assume that the raw sequences from the
environmental samples have already been classified into
operational taxonomic units (OTUs), or functional fea-
tures. The raw OTU counts are stored in a matrix X ∈
NK×M+ , where N+ is the set of positive natural numbers,
K is the number of OTU clusters, and M is the number
of samples collected. The M samples contain a signifi-
cant amount of meta-data describing the sample, which
is where we obtain phenotypes describing the sample.
While there may be many different meta-data, we shall
only focus on one piece of meta-data at a time. For exam-
ple, a sample may contain the sex, age, and height of the
person from where a sample was collected, and the anal-
ysis would only use one of those fields. That is we could
use X to build a predictive model of sex. Both the data
matrix and meta-data can be found for hundreds of pub-
licly available datasets through pioneering projects such as
MG-RAST [3], KBase [4], the HumanMicrobiome Project
[5], and the Earth Microbiome Project [6].
A natural question to ask about studies with multiple

phenotypes is: “which OTUs or functions are important
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for differentiating the phenotypes?” Answering such a
question can be useful for understanding which condi-
tions are driving/being affected by differences in compo-
sition and function across samples. Subset selection is the
process of taking a high-dimensional dataset and reducing
the size of the feature set by allowing the reduced subset
to contain only relevant features [7]. Subset selection can
also produce a feature subset that not only removes irrel-
evant features (i.e., features that do not carry information
about the phenotype), but also does not contain features
that are redundant (i.e., features carry the same infor-
mation). This process of reducing the feature set offers
a rapid insight into uncovering the differences between
multiple populations in a metagenomic study and can
be performed as complementary analysis to β-diversity
methods, such as PCoA. Feature selection has been per-
formed previously, by tools such as Random Forests [8],
and Lefse [9], but is usually tied to a classification type or
effect size.

Methods
Information-theoretic subset selection
One of the fundamental quantities in information theory
that has been widely adopted for feature subset selection
with filters ismutual information, which is given by:

I(X;Y ) =
∑
y∈Y

∑
x∈X

pX,Y (x, y) log
pX,Y (x, y)
pX(x) pY (y)

(1)

where pX(x) is the marginal distribution over the random
variable X, and pX,Y (x, y) is the joint probability distribu-
tion over X and Y. The supports of the random variables
X and Y are defined by X and Y . The mutual informa-
tion can be used as scoring function for determining the
set of featuresF that carry the most information about an
outcome Y.
A simple algorithm for feature selection with a filter is

a greedy forward selection search that seeks to maximize
feature scoring function J , which is shown in Fig. 1. The
search initializes the relevant feature setF be empty, then

for k iterations, an objective function J is maximized. For
example, this objective function could be written as

J (X,Y ,F) = I(X;Y ) − α
∑
X′∈F

I(X;X′) + β
∑
X′∈F

I(X;X′|Y )

(2)

where α,β ≥ 0. The first term in the expression cap-
tures the relevancy of the variable X. The next two terms
measure the redundancy and conditional redundancy ofX
with the relevant feature set F , respectively. Note that the
sign of the conditional redundancy is positive to reward
features being jointly informative about the class variable
Y. The feature that maximizes this expression is added
to the relevant feature set, F , and removed from the
feature set, X . Simply using mutual information as the
objective function is a fast way for microbial ecologists
to examine the relative importance of taxa in a study
collected from environmental samples. However, simply
using mutual information will not capture inter-feature
dependencies. Using other objective functions, such as
joint mutual information [10]

(
α = β = 1

|F |
)
, or mRMR

[11]
(
α = 1

|F | , β = 0
)
, captures some of the inter-feature

dependencies.
Our recent work developed theNeyman-Pearson Feature

Selection (NPFS), which automatically detects the rele-
vant features in a dataset using a generic scoring function
J [12, 13]. NPFS is highly parallelizable, which allows it to
be quite effective for very large datasets. NPFS works by
mapping out random samples of the original dataset to a
scoring function which makes a prediction on which fea-
tures are relevant. All of the sub-datasets have the same
number of features selected then in a reduction phase
NPFS applied the Neyman-Pearson test to detect feature
importance. In this setting, NPFS can detect the num-
ber of important OTUs simply by guessing k in Fig. 1 for
the scoring function and letting the hypothesis detect fea-
tures that appear to be more important. NPFS was found
to improve traditional methods of feature selection, while
remaining highly parallelizable.

Fig. 1 Pseudo code for search selecting features using a greedy algorithm that attempts to maximize J
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Subset selection via regularization
Section ‘Information-theoretic subset selection’ intro-
duced a greedy algorithm and tools from information
theory that can be used to select features that are deemed
important by the scoring function. Now we present fea-
ture selection from an embedded perspective. Let y be a
vector in {±1}M containing a binary outcome (e.g., control
or stimulus) and X be abundance matrix. Predictions are
made on y with XTθ , where θ ∈ RK . If many of the entries
of θ were zero then we could view the inner product of θ

with X as a form of feature selection. To encourage spar-
sity in θ ’s solution, Tibshirani presented lasso, which adds
a penalty to the l1-norm of θ [14]. Formally, lasso is given
by:

θ∗ = argmin
θ∈�

1
2M

‖y − XTθ‖22 + λ‖θ‖1 (3)

where λ > 0, and ‖ · ‖1 and ‖ · ‖2 are the l1- and l2-norms,
respectively. For lasso to be effective at feature selection,
it is assumed that K � M, which is typically an accept-
able assumption with 16S and metagenomic data because
there are typically only a few samples and a large number
of features.

Software implementations
Fizzy is a suite of subset selection tools that takes the
Biom standard format [15] as input due to its acceptance
into the standards by the Genomic Standards Consortium
(http://gensc.org). Commonly used software for analyzing
data from microbial ecology, such as Qiime [16], requires
a Biom file containing the 16S data and a map file contain
the meta-data of the samples within the Biom file. How-
ever, Fizzy allows users to store the meta-data in the Biom
file directly, thus avoiding requirements for both a Biom
and map file.
The Fizzy software suite implements information-

theoretic subset selection, NPFS, and lasso. The core of
Fizzy is based on the FEAST C feature selection library
[17], which is used to implement all of the informa-
tion theoretic methods. FEAST was selected for two pri-
mary reasons: (i) the library contains a large selection
of information-theoretic feature selection objective func-
tions, and (ii) the run-time of FEAST is typically faster
than other feature selection libraries because it is written
in a compiled language. We implemented a Python inter-
face for FEAST to use within Fizzy, which is available to
the public1. The Fizzy tool requires a Biom format OTU
table (sparse or dense), a mapping file in tab-delimited
(TSV) format, a metagenomic phenotype column in the
map file, and an output file path be specified. Further-
more, Fizzy allows the user to specify the number of
taxonomic units to select as well as the feature selec-
tion objective function. The current implementation of
Fizzy has nine subset selection objective functions, which

are all based on information theory (see Brown et al. for
the mathematical details about the objective functions
[17]). We also provide an implementation of the NPFS
module, which can infer on the number of relevant fea-
tures given any subset selection methods in FEAST [12].
Since NPFS works on top of a generic scoring function,
we indicate the scoring function with NPFS as NPFS-SF,
where SF is a scoring function such as MIM, mRMR or
JMI. NPFS has a parallel implementation where the user
can control the number of cores used by the program.
The lasso implementation within Fizzy uses Scikit-Learn
[18]. The regularization parameter for lasso is found using
cross-validation and a grid search, where the values swept
over the grid are determined from the data. The λ that
minimizes the cost function is chosen as the final model.

Benchmark data sets
We benchmarked Fizzy using data collected from the
American Gut (AG) Project [19], and Qin et al.’s study
of IBD patients [1] (both datasets are publicly available).
The gut samples from the AG Project study are filtered
into a separate Biom file for Fizzy and the diet type of
the individual is the metagenomic phenotype. Diet was
discriminated based on whether peoples’ diets included
terrestrial animals, with Omnivores including those who
ate chicken and/or red meat. Vegetarians included those
who ate seafood, but no terrestrial animals. Qin et al.’s
data are sampled from the gut and we use IBD and con-
trol as the metagenomic phenotype. The data used in our
experiments have been made publicly available2.

Results and discussion
We compared five algorithms on the American Gut
Project data set: JMI (Table 1), NPFS-JMI (Table 2), Ran-
dom Forest Classifiers (RFC) (Table 3), Lefse (Table 4),
and lasso (no table due to only one feature selected –
see below). The regularization parameter for lasso, λ in
(3), was chosen to be 1.188 × 10−3 after performing
cross validation. JMI was implemented in Fizzy, Lasso is
available through our implementation, NPFS-JMI is our
novel method, and these are compared to current popular
methods such as RFC (used in [16, 20]) and Lefse.
The algorithms were run on 2.9k+ samples collected

from the AG Project and feature were selected using the
diet type as the predictor variable. The diets are are broken
down into omnivore and vegetarians, where subcategories
of omnivore and vegetarians (e.g., omnivore but does not
eat red meat) is simply categorized as omnivore. Table 1
shows the top ranking OTUs as selected for differenti-
ate omnivores versus vegetarians in the AG Project data.
Both Bacteroides and Prevotella were detected in the vari-
able selected by Fizzy (note that Prevotella is not shown
in the table because it was not ranked within the top 15
OTUs), which have been hypothesized as being important

http://gensc.org
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Table 1 List of the top ranking features for omnivores and vegetarians in the 16S data collected from the American Gut Project
detected using JMI within Fizzy

(Feature rank) Operation taxonomic unit classification (OTU ID)

(F1) Firmicutes, Clostridia, Clostridiales, Lachnospiraceae (GGID4329132)

(F2) Firmicutes, Clostridia, Clostridiales, Ruminococcaceae (GGID185584)

(F3) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID177150)

(F4) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID197367)

(F5) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID199716)

(F6) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID188887)

(F7) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID312140)

(F8) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID4401110)

(F9) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID198449)

(F10) Firmicutes, Bacilli, Bacillales, Paenibacillaceae, Paenibacillus (GGID4470837)

(F11) Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Faecalibacterium prausnitzii (GGID359314)

(F12) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID2859978)

(F13) Firmicutes, Clostridia, Clostridiales (GGID197832)

(F14) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID205904)

(F15) Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Faecalibacterium prausnitzii (GGID520413)

The number followed by “F” indicates the order Fizzy selected the OTU and the “GGID” contains the Greengenes OTU ID from the taxonomic classification

differentiators of diet [21]. This effect was also observed
when we evaluated only vegans and omnivores. NPFS
detected 27 OTUs of the Prevotella genus and the rel-
ative abundances were larger for the vegetarians when
examining the largest differences, which coincides with
results in the literature [22]. Differences between the JMI
&NPFS-JMIOTU rankings, could be due to a large cluster

of features that carry similar relevance, which when with
the bootstrapping in NPFS could rank them in a different
order.
We also compare Fizzy to Qiime’s random forests [8]

because random forest within Qiime has become a com-
monly used benchmark in microbial ecology, as well as
LefSe [9]. The top ranked features for random forests are

Table 2 List of the top ranking features for omnivores and vegetarians in the 16S data collected from the American Gut Project
detected using NPFS-JMI

(Feature rank) Operation taxonomic unit classification (OTU ID)

(F1) Firmicutes, Clostridia, Clostridiales, Lachnospiraceae, Shuttleworthia (GGID4424924)

(F2) Cyanobacteria, Oscillatoriophycideae, Chroococcales, Xenococcaceae, Chroococcidiopsis (GGID649518)

(F3) Proteobacteria, Betaproteobacteria, Gallionellales, Gallionellaceae, Gallionella (GGID3239358)

(F4) Firmicutes, Clostridia, Clostridiales (GGID176062)

(F5) Firmicutes, Bacilli, Gemellales, Gemellaceae (GGID967433)

(F6) Firmicutes, Erysipelotrichi, Erysipelotrichales, Erysipelotrichaceae, Erysipelothrix (GGID4478325)

(F7) Firmicutes, Clostridia, Clostridiales, Lachnospiraceae (GGID183576)

(F8) Firmicutes, Clostridia, Clostridiales, Clostridiaceae, Clostridium (GGID174688)

(F9) Firmicutes, Clostridia, Clostridiales, Clostridiaceae (GGID1137375)

(F10) Firmicutes, Clostridia, Clostridiales, Lachnospiraceae, Blautia (GGID305997)

(F11) Firmicutes, Clostridia, Clostridiales, Lachnospiraceae (GGID288682)

(F12) Proteobacteria, Gammaproteobacteria, Pasteurellales, Pasteurellaceae, Haemophilus (GGID995893)

(F13) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID4450198)

(F14) Firmicutes, Clostridia, Clostridiales (GGID267502)

(F15) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID531722)

The number followed by “F” indicates the order NPFS selected the OTU and the “GGID” contains the Greengenes OTU ID from the taxonomic classification
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Table 3 List of the top ranking features for omnivores and vegetarians in the 16S data collected from the American Gut Project
detected using Random Forests

(Feature rank) Operation taxonomic unit classification (OTU ID)

(F1) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides ovatus (GGID180606)

(F2) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides fragilis (GGID4386507)

(F3) Firmicutes, Clostridia, Clostridiales, Lachnospiraceae, Roseburia (GGID4335815)

(F4) Actinobacteria, Actinobacteria, Actinomycetales, Corynebacteriaceae, Corynebacterium simulans (GGID912997)

(F5) Bacteroidetes, Bacteroidia, Bacteroidales, Rikenellaceae (GGID175375)

(F6) Firmicutes, Clostridia, Clostridiales, Lachnospiraceae (GGID194112)

(F7) Firmicutes, Clostridia, Clostridiales, Ruminococcaceae (GGID189924)

(F8) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID1105984)

(F9) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID197367)

(F10) Firmicutes, Clostridia, Clostridiales, Ruminococcaceae (GGID174818)

(F11) Firmicutes, Clostridia, Clostridiales, Ruminococcaceae (GGID4324040)

(F12) Firmicutes, Clostridia, Clostridiales, Ruminococcaceae (GGID197204)

(F13) Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides (GGID1944498)

(F14) Firmicutes, Clostridia, Clostridiales, Ruminococcaceae (GGID196307)

(F15) Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Ruminococcus flavefaciens (GGID1122673)

The number followed by “F” indicates the order the Random Forest selected the OTU and the “GGID” contains the Greengenes OTU ID from the taxonomic classification

found in Table 3. Similar to of feature selection approaches
such asmRMR and JMI, a threshold for the number of fea-
tures to select must be chosen in advance. We find some
overlap between the results of Fizzy (using JMI) and the
random forests. The Bacteroides genus was detected as

relevant several times for both Fizzy and random forests.
We find the Bacteroides has been found to be an indicator
of diet [23–25]. However, Lefse returns different subsets of
feature than the proposed methods or the random forests
(see Table 4).

Table 4 List of the largest differences in abundance between omnivores and vegetarians in the 16S data collected from the American
Gut Project using LefSe. Note that LefSe does not return the Greengenes IDs

Operation taxonomic unit classification

Bacteria, Actinobacteria, Actinobacteria, Actinomycetales, Actinomycetaceae, Actinobaculum

Bacteria, Actinobacteria, Actinobacteria, Actinomycetales, Micrococcaceae, Kocuria, rhizophila

Bacteria, Proteobacteria, Gammaproteobacteria, Xanthomonadales, Xanthomonadaceae, Dyella

Archaea, Euryarchaeota, Methanomicrobia, Methanosarcinales

Bacteria, Proteobacteria, Alphaproteobacteria, Rhizobiales, Bradyrhizobiaceae, Bradyrhizobium

Bacteria, Actinobacteria, Actinobacteria, Actinomycetales, Mycobacteriaceae, Mycobacterium, celatum

Bacteria, Actinobacteria, Actinobacteria, Bifidobacteriales, Bifidobacteriaceae, Alloscardovia

Bacteria, Actinobacteria, Actinobacteria, Actinomycetales, Mycobacteriaceae

Bacteria, Actinobacteria, Actinobacteria, Actinomycetales, Actinomycetaceae, Actinomyces, europaeus

Bacteria, Actinobacteria, Actinobacteria, Actinomycetales, Micromonosporaceae

Bacteria, Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae, Paucibacter

Bacteria, Firmicutes, Bacilli, Bacillales, Bacillaceae, Bacillus, coagulans

Bacteria, Firmicutes, Bacilli, Bacillales, Bacillaceae, Bacillus, humi

Archaea, Euryarchaeota, Methanomicrobia, Methanosarcinales, Methanosarcinaceae, Methanosarcina, mazei

Archaea, Euryarchaeota, Methanomicrobia

Archaea, Euryarchaeota, Methanomicrobia, Methanosarcinales, Methanosarcinaceae

Bacteria, Bacteroidetes, Flavobacteriia, Flavobacteriales, Flavobacteriaceae, Capnocytophaga

Bacteria, Proteobacteria, Alphaproteobacteria, Rhodospirillales, Acetobacteraceae, Acetobacter

Bacteria, Actinobacteria, Actinobacteria, Actinomycetales, Nocardioidaceae, Nocardioides
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Figure 2 shows the largest differences between the
omnivores and vegetarians in the top 500 OTUs feature
selected by JMI. The numerical values on the x-axis that
correspond to the OTU given by:

1. (F148) Bacteroidetes, Bacteroidia, Bacteroidales,
Bacteroidaceae, Bacteroides uniformis
(GGID1733364): –6.20923

2. (F4) Bacteroidetes, Bacteroidia, Bacteroidales,
Bacteroidaceae, Bacteroides (GGID197367): 5.14587

3. (F127) Firmicutes, Clostridia, Clostridiales,
Lachnospiraceae (GGID340761): 4.18384

4. (F223) Firmicutes, Clostridia, Clostridiales,
Ruminococcaceae (GGID180285): –4.11038

5. (F291) Bacteroidetes, Bacteroidia, Bacteroidales,
Bacteroidaceae, Bacteroides ovatus (GGID180606):
–3.96605

6. (F206) Firmicutes, Clostridia, Clostridiales,
Ruminococcaceae (GGID352347): –3.65923

7. (F195) Bacteroidetes, Bacteroidia, Bacteroidales,
Bacteroidaceae, Bacteroides (GGID3465233):
3.34877

8. (F60) Firmicutes, Clostridia, Clostridiales
(GGID173876): –2.49844

9. (F458) Firmicutes, Clostridia, Clostridiales,
Lachnospiraceae (GGID193477): –2.28077

10. (F113) Bacteroidetes, Bacteroidia, Bacteroidales,
Rikenellaceae (GGID4453609): 1.94571

11. (F463) Firmicutes, Clostridia, Clostridiales,
Lachnospiraceae, Ruminococcus gnavus
(GGID191755): 1.32321

Fig. 2 Joint Mutual Information (JMI) was configured to select 500
features from the 25k+ OTUs in the American Gut Project’s fecal
samples. The diet of the sample is the dependent variables. The
selected Greengenes (GG) OTUs are sorted by the absolute difference
between the omnivores and vegetarians. The numerical values on the
x-axis that correspond to an OTU can be found the the text

12. (F310) Bacteroidetes, Bacteroidia, Bacteroidales,
Porphyromonadaceae, Parabacteroides
(GGID847228): 1.30030

13. (F276) Firmicutes, Clostridia, Clostridiales,
Lachnospiraceae, Coprococcus (GGID2740950):
–1.12856

14. (F257) Bacteroidetes, Bacteroidia, Bacteroidales,
Bacteroidaceae, Bacteroides (GGID190913): 0.89408

15. (F106) Firmicutes, Clostridia, Clostridiales,
Lachnospiraceae (GGID176306): –0.58509

where the difference is ×10−3, (F#) is the order that JMI
ranked the feature, GGID is the Greengenes ID, and a neg-
ative value means that the average relative abundance was
higher in the vegetarians. Lasso selected only one OTU
(Ruminococcaceae) after cross-validation, and a sweep of
the regularization parameter, which increasing the reg-
ularization parameter could lead to more OTUs being
selected at the cost of a larger error rate. It is interest-
ing to observe that features 3 (F127) and 9 (F458) have
opposing signs, yet the are the same family. We hypothe-
size that this result can be explained by different species
will have different responses to environmental conditions.
The top Pfams that maximize the mutual information for
the MetaHit data set are shown in Table 5. It is known in
IBD patients, the expression of ABC transporter protein
(PF00005, the first feature MIM selected for classifying
IBD vs. no IBD samples) is decreased which limits the
protection against various luminal threats [26]. The fea-
ture selection for IBD also identified glycosyl transferase
(PF00535), whose alternation is hypothesized to result in
recruitment of bacteria to the gut mucosa and increased
inflammation [27, 28], and the genotype of acetyltrans-
ferase (PF00583) plays an important role in the patho-
genesis of IBD, which is useful in the diagnostics and

Table 5 List of the top five ranked Pfams as selected by the
Fizzy’s Mutual Information Maximization (MIM) applied to MetaHit

Rank IBD features

Feature 1 ABC transporter (PF00005)

Feature 2 Phage integrase family (PF00589)

Feature 3 Glycosyl transferase family 2 (PF00535)

Feature 4 Acetyltransferase (GNAT) family (PF00583)

Feature 5 Helix-turn-helix (PF01381)

Rank Obese features

Feature 1 ABC transporter (PF00005)

Feature 2 MatE (PF01554)

Feature 3 TonB dependent receptor (PF00593)

Feature 4 Histidine kinase-, DNA gyrase B-, and HSP90-like
ATPase (PF02518)

Feature 5 Response regulator receiver domain (PF00072)
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treatment of IBD [29]. It is not surprising that ABC trans-
porter (PF00005) is also selected for obesity, which is
known to mediate fatty acid transport that is associated
with obesity and insulin resistant states [30], and ATPases
(PF02518) that catalyze dephosphorylation reactions to
release energy.
Figure 3 shows the evaluation time of six feature selec-

tion algorithms and the number of features they select
evaluated on data collected from Caporaso et al. [31].
Both lasso and NPFS-MIM can select size of the relevant
set, which is why they are represented as a single point.
An interesting observation to make is that lasso selects
very few features (nearly triple compared to NPFS-MIM).
Though it should be noted lasso is capable of capturing
more feature interdependencies than the current informa-
tion theoretic approach presented in fizzy. Furthermore,
Qiime’s RFC implementation is quite a bit slower than
NPFS-MIM, but as with lasso, the RFC can capture large
groups of feature interdependencies than the information-
theoretic implementations. MIM, as expected, has the fast
evaluation time because there is no calculation for redun-
dancy, and the approaches that use redundancy (JMI
and mRMR) take significantly longer to run. In fairness
of comparison, the evaluation of NPFS can increase by
choosing other base subset selection objective functions
that incorporate a redundancy term.

Conclusions
Feature subset selection provides an avenue for rapid
insight to the taxonomic or functional differences that can
be found between different metagenomic or 16S pheno-
types in an environmental study. We have presented an
information-theoretic feature subset selection, and lasso
for biological data formats in Python that are compat-
ible with those used with the software Qiime package.

Fig. 3 Number of feature being selected by JMI, mRMR, MIM Lasso,
NPFS, and Random Forests as a function of the evaluation time

Furthermore, we have compared the results of our subset
selection implementations on real-world 16S and metage-
nomic data, and we have compared our results to recent
literature to ensure biological importance.

Availability and requirements
Project name: Fizzy
Project home page: https://github.com/EESI/Fizzy
Operating system(s): Linux and Mac OS X
Programming language: Python and C
Other requirements: Numpy3, PyFeast4 and Scikit Learn5
License: GNU GPL
Any restrictions to use by non-academics: None

Endnotes
1http://github.com/EESI/PyFeast.
2https://github.com/gditzler/DataCollections.
3http://www.numpy.org/.
4https://github.com/EESI/PyFeast.
5 http://scikit-learn.org/.
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