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We address the problem of autocorrelation-based single-tone frequency estimation. It has been shown that the frequency can be
estimated from the phase of the available signal’s autocorrelation with fixed lag. A large lag results in better performance but at
the same time limits the estimation range. New methods have been proposed to extend the estimation range. In this paper, a new
estimator which is a robust hybrid of periodogram-based and autocorrelation-based frequency estimators is presented. We propose
to calculate the autocorrelation function with spectral lines inside the available signal’s main lobe spectrum. We show that the new
estimator obtains full estimation range of [−π,π). The theoretical performance bound is also deduced. Performance analysis and
simulations demonstrate that the proposed estimator approaches the CRLB.
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1. Introduction

The problem of estimating the frequency of a complex
exponential from a finite number of samples in additive
white noise arises in many fields including radar, sonar,
measurement, wireless communications, and speech pro-
cessing [1–16]. For instance, frequency estimation of single-
tone sinusoidal signals is an important technique for carrier
recovery in wireless communication systems [6, 10].

Many techniques have been proposed for frequency
estimation over the years. Rife [1] proposed the optimal
Maximum Likelihood (ML) estimator, which is to locate the
peak of a periodogram. The estimator achieves asymptotic
unbiased estimation and its mean square error (MSE)
approaches the CRLB when the signal-to-noise ratio (SNR) is
larger than a certain value. However, the ML estimator is not
computationally simple [14]. Suboptimal algorithms with
lower computation have been proposed, such as the linear
prediction-based estimators [2, 3], the autocorrelation-based
estimators [4–11], and the periodogram-based estimators
[12–14]. The linear prediction algorithms are to estimate
the frequency from the coefficients of the predictor. The
autocorrelation algorithms are to extract the frequency
from the phase of the available signal’s autocorrelation

with fixed lags. The periodogram-based estimators use the
Discrete Fourier Transform (DFT) for a coarse search and an
interpolation technique for a fine search.

We focus on the autocorrelation-based algorithms in this
paper. The autocorrelation of a noiseless single-tone complex
sinusoidal signal can be presented as R(τ) = A2 exp( jωτ),
where the phase contains the unknown frequency. Various
techniques have been proposed to estimate the frequency
from the phase component. But these techniques perform
quite differently in MSE, complexity, and estimation range.
The estimator solely based on R(1) [3] achieves full estima-
tion range of −π ≤ ω < π but its MSE performance is
not satisfactory [16]. The estimator based on τ > 1 [4] can
improve the MSE performance [16], but at the same time it
limits the estimation range to −π/τ ≤ ω < π/τ. Fitz [5] and
Luise and Reggiannini [6] proposed to average over multiple
lags, which significantly improve the MSE performance.
However, its estimation range is still limited by the applied
maximal lag. The estimator proposed in [7] has similar
MSE performance and estimation range as Fitz and Luise
and Reggiannini’s estimators but has lower computational
complexity. Estimators in [8–11] are proposed to achieve
wider acquisition range. In this paper, we approximate the
original signal with the spectral lines inside the main lobe
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of the zero-padded measurements’ DFT spectrum and then
calculate the autocorrelation function based on the approxi-
mated signal. Since the spectral lines around the actual tone
are used, only the noise inside the narrow band is important
for the estimator’s performance. A closed-form estimator
solely based on the DFT coefficients is then derived. The
proposed estimator is a robust hybrid of periodogram-based
and autocorrelation-based estimators. Theoretical analysis
shows that its MSE performance is independent of the
correlation lags. Therefore, we can choose τ = 1 to obtain
the full estimation range. Theoretical analysis also shows that
the upper bound of its MSE is 1.3 times of the CRLB.

2. Problem Statement

The set of given samples x(n) is modeled as

x(n) = s(n) + z(n) = Aej(ωn+ϕ) + z(n), (1)

where s(n) is an exponential signal, A, ω, and φ are,
respectively, amplitude, frequency, and original phase. z(n)
is zero-mean white Guassian noise with variance of σ2

n . With
the definition of autocorrelation function ̂R(τ) = 1/(N −
τ)
∑N−1

n=τ x(n)x∗(n−τ), we can obtain R(τ) in noiseless cases:

R(τ) = A2e jωτ . (2)

It can be observed that the phase of R(τ) contains the
unknown frequency. Thus, frequency can be resolved with
the τth correlation lag:

ω̂ = 1
τ

arg ̂R(τ). (3)

The estimators proposed by Fitz [5] and Luise and Reggian-
nini [6] are the weighted average of (3). For those estimators,
if a small τ is used, a great performance gap can be observed
when they are compared to the CRLB. An increased value
of τ leads to a reduced error variance, where the reduction
in error variance is especially pronounced for low SNR
scenarios [16]; but meanwhile limits their estimation range
[5, 6]. Applying the main lobe spectrum approximation
to the autocorrelation based algorithms, we deduce our
estimator which avoids the above problems.

3. Improved Autocorrelation-Based
Frequency Estimator

Rather than calculating autocorrelation function directly
with the signal samples, we estimate it in frequency domain.
Let N and M denote the number of available samples and the
number of zero-padded samples, respectively. Assume that
Xk stands for the DFT transform of x(n) and the spectral
line with the highest magnitude locates at k0. Since the
power of the sinusoidal signal is mainly inside the main lobe
[k0 − Δ, k0 + Δ] while the power of white noise distributes
uniformly in the whole spectrum, we adopt the idea of

the main lobe approximation [15] to obtain the estimated
autocorrelation function:

̂Rm k0 (τ) =
k0+Δ
∑

k=k0−Δ
|Xk|2e jkω0τ , (4)

where ω0 = 2π/M. Substituting (4) into (3), we have the
estimator

ω̂ = 1
τ

arg

⎛

⎝

k0+Δ
∑

k=k0−Δ
|Xk|2e jkω0τ

⎞

⎠, (5)

where ω̂ ∈ [(2πk0/M)−(ω0/2), (2πk0/M)+(ω0/2)) and |ω̂| <
π/τ. To reduce the effect of τ on the estimation range, we
divide the exponential part in (5) into two parts to achieve

ω̂ = 1
τ

arg

⎛

⎝

Δ
∑

k=−Δ

∣

∣Xk+k0

∣

∣
2
e j(k+k0)ω0τ

⎞

⎠. (6)

Define ωc = ω − (2π/M)k0. Hence, with (6), the estimator
based on Main Lobe Autocorrelation Function (MLAF) is
achieved in a two-step process:

ω̂ = 2π
M

k0 + ω̂c, (7)

ω̂c = 1
τ

arg

⎛

⎝

Δ
∑

k=−Δ

∣

∣Xk+k0

∣

∣
2
e jkω0τ

⎞

⎠ � 1
τ

arg
(

̂Rm 0(τ)
)

, (8)

where ̂Rm 0(τ) is actually the estimated autocorrelation lag
of the single tone whose frequency is ωc. The first step is
a coarse estimation to search k0 in the DFT spectrum and
the second step described by (8) is a fine estimator based on
the spectrum lines inside the main lobe. It can be observed
that the coarse estimation is independent of τ and solely
dependent on the location of the maximal spectral line. The
effect of τ on fine estimation will be discussed in the next
section.

The idea of narrow band autocorrelation estimation can
also be applied to the estimators proposed in [5, 6].

4. Performance Analysis and Discussion

Given the assumption that the right k0 is chosen, the error
mainly results from the fine estimation process, including
error caused by noise and main lobe autocorrelation esti-
mation. Below we evaluate the performance of the fine
estimation process with both the expectation and the mean
square error.

The τth correlation lag without narrow band approxima-
tion can be given by

Rm 0(τ) =
∑

k∈[0,M−1]

(

a2
k + b2

k

)

e j(k−k0)ω0τ , (9)

where ak and bk are the real and imaginary parts of the DFT
coefficients of s(n), respectively. According to (2), we have

e jωcτRm 0(0) = Rm 0(τ). (10)
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Let δak and δbk stand for the real and imaginary parts of
the DFT coefficients of the noise, respectively. The estimated
autocorrelation function is

̂Rm 0(τ) =
Δ
∑

k=−Δ

(

(

ak+k0 + δak+k0

)2
+
(

bk+k0 + δbk+k0

)2
)

e jkω0τ .

(11)

Unwrapping (11) and substituting (9) and (10) into it, we
have

̂Rm 0(τ) = Rm 0(0)e j(ωc+β)τ , (12)

β = 1
τ

arg(1 + Pτ + Qτ), (13)

where

Pτ =
∑Δ

k=−Δ(A)e j(kω0−ωc)τ

∑M−1
k=0

(

a2
k + b2

k

) , (14)

Qτ =
−∑M−1

k=0,k /∈ [k0−Δ,k0+Δ]

(

a2
k + b2

k

)

e j((k−k0)ω0−ωc)τ

∑M−1
k=0

(

a2
k + b2

k

) , (15)

where A denotes 2ak+k0δak+k0
+ 2bk+k0δbk+k0

+ δ2
ak+k0

+ δ2
bk+k0

.
Substituting (12) into (8), we can achieve that the estimation
error equals to β. Next, we make some approximations to
simplify the argument operation in (13). Since the power of
sinusoidal signal mainly distributes inside the main lobe, for
rectangular window we have Δ = M/N . Furthermore, the
power of the white noise inside the narrow band is quite
small compared with the power of the signal inside the main
lobe. Hence, we have (Pτ + Qτ) � 1. Replacing (Pτ + Qτ)
by its Taylor series truncated to linear term, we have β ∼=
(1/τ)(Pτ,i + Qτ,i) according to the appendix of [9], where Pτ,i

and Qτ,i are, respectively, the imaginary parts of Pτ and Qτ .
The expectation of the estimation error is given by

E[ω̂c − ωc] ∼= 1
τ
E
(

Pτ,i + Qτ,i
)

. (16)

It can be observed from (14), (15), and (16) that the
estimation error contains two parts. One is Pτ,i, which is
generated by noise and the other is Qτ,i, which is caused
by main lobe autocorrelation estimation. Only under the
condition that there is no noise and ω is a multiple of ω0, the
estimation is unbiased. Otherwise, estimation error always
exists. Thus the mean square error is given by

E
[

(ω̂c − ωc)
2
] ∼= 1

τ2
E
[

P2
τ,i

]

+
1
τ2

Q2
τ,i. (17)

Define signal-to-noise ratio (SNR) as γ = A2/σ2
n . Given the

assumption of M = qN , and carrying out some necessary
manipulations (see Appendices A and B), we achieve

1
τ2

E
[

P2
τ,i

]

< 2

(

8q + 4
γN3q2

+
8
γ

(((

q − 1/2
)

a
)

/πλ

N3q

))

(18)

1
τ2

Q2
τ,i ≈

4
q2N2

⎛

⎝

q
∑

k=−q

qsin2(π(k − α)/q
)

(k − α)

⎞

⎠

2

, (19)
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Figure 1: MSE of the MLAF-based estimator with different q, N =
256, τ = 1. Signal frequency randomly distributes between [0,π).

where a denotes
∑2q

λ=1 sin(2πλ/q) cos(πλ/q) and α is defined
in Appedix B.

Observing (17), (18), and (19), 1/τ2E[P2
τ,i] is a function

of SNR while 1/τ2Q2
τ,i is independent of SNR. It can be

calculated from (18) that when q ≥ 4, the upper bound of
1/τ2E[P2

τ,i] keeps constant at about 1.3 times of the CRLB.
Meanwhile, a large q is helpful to reduce 1/τ2Q2

τ,i. If N is in
the order of 102 (e.g., 128) and q ≥ 4, 1/τ2Q2

τ,i is in the order
of 10−8, which can be further reduced by increasing q. For
low to medium SNR, such error can be ignored compared
with 1/τ2E[P2

τ,i]. So we suggest choosing the parameters as
q ≥ 4 and N in the order of 102.

According to (7), (8), (18), and (19), the performance
of the MLAF-based estimator is independent of τ. Thus we
suggest using τ = 1 to obtain the full estimation range of
ω̂ ∈ [−π,π).

5. Simulations

5.1. Effect of q and τ. We first evaluate the effect of q for
the proposed estimator. Both the theoretical results and
computer simulations are given in Figure 1. It can be seen
that when q ≥ 4 (e.g., q = 4, 6) the performance approaches
the CRLB. When q = 2, the performance gap increases with
the increase of SNR. If a large q is used, the error caused
by noise is more significant than the error by main lobe
estimation. So in practice, we suggest choosing q ≥ 4. For
rather low SNRs, the performance deviates significantly from
the CRLB because of the wrong choice of k0.

Next, we discuss the effect of τ. As shown in Figure 2,
we compare the MLAF-based estimator with Lank’s esti-
mator [4]. Although the performance of Lank’s estimator
is improved with the increase of τ, the performance of
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Table 1: Number of complex-valued multiplications/additions and phase calculations for estimators.

Estimator DFT Complex-valued Multiplications Complex-valued Additions Phase Calculations Estimation Range

MLAF-based M point 2q + 1 2q 1 [−π,π)

[9] — (N − 1)log2N − 3 2N − 2log2N − 2 log2N − 1 [−π,π)

WNALP[11] — (2N −N/2 + 9)N/4 (2N −N/2 + 3)N/4 1 [−π,π)

Y. C. Xiao [7] — 6 4m + 6 3 [−π/m,π/m)

WAE-subopt [8] — NK(3K + 1)/2(2K + 1) NK(3K + 1)/2(2K + 1) K [−π,π)

[12] N point 2 — — [−π,π)

[13] N point 2(Q + 1)N (Q + 1)(N − 1) — [−π,π)

[14] N point Q(4N + 1) 2QN — [−π,π)
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Figure 2: MSE of the MLAF-based estimator and Lank’s estimator
with different τ, N = 256, q = 4. Signal frequency randomly
distributes between [0,π/12].

our MLAF-based estimator keeps good and is independent
of τ. It also can be observed that the performance of
Lank’s estimator is improved when the SNR increases, while
for the proposed estimator, the performance of it keeps
constant for high SNRs. It is because that for high SNRs, the
estimation error of the proposed estimator is mainly caused
by the narrowband approximation. Such estimation error is
independent of the SNR. But it can be reduced if a larger q is
chosen.

5.2. Comparison with Other Autocorrelation-Based Estima-
tors. We compare the MLAF-based estimator with the
iterative estimator proposed by Brown and Wang [9], the
WNALP [11], and the WAE-subopt in [8] in two cases. The
sample size N is set to N = 24 and N = 256, respectively. The
results are shown in Figures 3 and 4. For each case, 10000
independent runs are averaged. The estimator proposed in
[7] is also simulated in Figure 4. Parameters for WAE-subopt
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Figure 3: Comparison with other autocorrelation-based estima-
tors. N = 24, ω = 0.8π. For the MLAF-based estimator, q = 4
and τ = 1.

are set as K = 2, L = {5, 9} in the first case and L = {51, 103}
in the second case (where K is the number of correlation lags
and L is the set of correlation lags [8]).

Comparing Figures 3 and 4, we can see that although the
iterative estimator, the WNALP, and the WAE-subopt have
full estimation range as the MLAF-based estimator, they have
higher SNR thresholds in both the cases. We also verified that
for the Y.C.X. estimator in [7], once the frequency is out of
its acquisition frequency range, it can no longer operate. The
phenomenon also exists for estimators proposed in [5, 6].

5.3. Comparison with Periodogram-Based Estimators. The
proposed estimator is compared with the estimator pro-
posed by Quinn in [12] and two estimators proposed by
Aboutanios [13, 14]. All these estimators use DFT as a coarse
frequency estimation. The numerical computations for these
estimators are summarized in Table 1. We can see in Figures
5 and 6 that the MLAF-based estimator has a lower SNR
threshold than estimators in [12, 14]. The estimator in [13]
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Figure 4: Comparison with other autocorrelation-based estima-
tors. Signal frequency randomly distributes between [0, 0.8π]. N =
256. For the MLAF-based estimator, q = 4 and τ = 1.
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Figure 5: Comparison with periodogram-based estimators. Signal
frequency randomly distributes between [0, 0.5π]. N = 80. For the
MLAF-based estimator, q = 4 and τ = 1.

performs better if more iterations are applied (e.g., Q =
10, where Q stands for iterations), but more iterations will
induce more computations. If an M-point DFT is used in the
coarse estimation for the estimator in [13], its SNR threshold
will be the same as the proposed one. But in this case its
overall complexity could be much larger because of its large
complexity in the fine estimation (see Table 1).

Although the proposed estimator has to perform M-
ponit (M ≥ 4N) Fourier Transform to achieve the desired
performance while the others may perform N-point Fourier
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Figure 6: Comparison with periodogram based estimators. Signal
frequency randomly distributes between [0, 0.5π]. N = 80. For the
MLAF-based estimator, q = 4 and τ = 1.

Transform. If M is a power of 2, the DFT can be implemented
using FFT, which requires (M/2)log2M complex operations.
And in practice FFT can be implemented with fast hardware.
The computations of the fine estimation stage for the
proposed estimator are carried out inside the narrowband
and its computational load is small. Furthermore, it is a
closed-formed estimator.

6. Conclusions

In this paper, we present a new estimator based on main
lobe autocorrelation functions. Performance analysis showed
that the upper bound of the mean square error of the
proposed estimator is 1.3 times of the CRLB for low to
medium SNR. Furthermore, the proposed estimator has a
full frequency range of [−π,π). Simulations and analysis
showed that the proposed estimator outperforms other
existing autocorrelation based estimators.

Appendix

A. Error Caused by Noise

Since M is large, we have sin((kω0 − ωc)τ) ∼= (kω0 − ωc)τ.
Hence, with (14) we have the error caused by noise:

1
τ2

E
[

P2
τ,i

] ∼= E

⎡

⎢

⎣

⎛

⎝

c
∑M−1

k=0

(

a2
k + b2

k

)

⎞

⎠

2
⎤

⎥

⎦, (A.1)

τ2E
[

P2
τ,i

]

< 2E

⎡

⎢

⎣

⎛

⎝

d
∑M−1

k=0

(

a2
k + b2

k

)

⎞

⎠

2
⎤

⎥

⎦, (A.2)
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where c denotes
∑Δ

k=−Δ(2ak+k0δak+k0
+ 2bk+k0δbk+k0

+ δ2
ak+k0

+

δ2
bk+k0

)(kω0 − ωc) and d denotes
∑Δ

k=−Δ(2ak+k0δak+k0
+

2bk+k0δbk+k0
)(kω0 − ωc). Obviously, (A.2) can be unwrapped

as

τ2E
[

P2
τ,i

]

< 2E(δ1 + δ2), (A.3)

where

δ1 = 8

⎛

⎜

⎝

∑Δ
i=−Δ s

(

∑M−1
k=0

(

a2
k + b2

k

))2

⎞

⎟

⎠, (A.4)

δ2 = 4
∑Δ

i=−Δ e
(

∑M−1
k=0

(

a2
k + b2

k

))2 , (A.5)

where s denotes
∑Δ

j=−Δ ai′(iω0 − ωc)bj′( jω0 − ωc)E[δai′ δbj′ ]

and e denotes
∑Δ

j=−Δ(iω0 − ωc)( jω0 − ωc)(ai′aj′ +
bi′bj′)E[δai′ δaj′ ] and i′ = k0 + i, j′ = k0 + j. E[δai′ δbj′ ].
E[δai′ δaj′ ] and E[δbi′ δbj′ ] are expectations of correlations
between spectral noises. They can be obtained with the
definition of Fourier transform:

E
[

δai′ δbj′

]

= E
[

z2
rn

]

Σs,λ, (A.6)

E
[

δai′ δaj′

]

= E
[

δbi′ δbj′

]

= E
[

z2
rn

]

Σc,λ, (A.7)

Σs,λ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

qN sin
(

πλ/q
)

sin
(

πλ(N − 1)/qN
)

πλ
, λ /= 0,

0, λ = 0,
(A.8)

Σc,λ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

qN sin
(

πλ/q
)

cos
(

πλ(N − 1)/qN
)

πλ
, λ /= 0,

N , λ = 0,
(A.9)

where λ = i − j. zrn is the imaginary component of white
noise z(n) and E[z2

rn] = σ2
n/2. To simplify computations, we

perform samples’ Fourier transform as follows:

Xk =
N/2−1
∑

n=−N/2
Aejωne− jkω0n

= A · sin((ω − kω0)N/2)
sin((ω − kω0)/2)

e j(kω0−ω)/2.

(A.10)

Substituting (A.6)–(A.10) into (A.2), and with some calcula-
tions we have

τ2E
[

P2
τ,i

]

< 2

(

8q + 4
γN3q2

+
8
γ

((

q − 1/2
)

Υq

N3q

))

, (A.11)

where

Υq =
∑2q

λ=1 sin
(

2πλ/q
)

cos
(

πλ/q
)

πλ
. (A.12)

B. Error Caused byMain Lobe
Autocorrelation Estimation

According to (10) we can obtain

∑

k∈[0,M−1]

(

a2
k + b2

k

)

sin(((k − k0)ω0 − ωc)τ)
∑

k∈[0,M−1]

(

a2
k + b2

k

) = 0. (B.1)

Thus with (B.1) and (15) we have

1
τ2

Q2
τ,i
∼= −

⎛

⎝

∑M−1
k=0,k /∈ [k0−Δ,k0+Δ]

(

a2
k + b2

k

)

f
∑M−1

k=0

(

a2
k + b2

k

)

⎞

⎠

2

,

∼= 1
τ2

⎡

⎢

⎣

⎛

⎝

∑

k∈[−Δ,Δ]

(

a2
k+k0

+ b2
k+k0

)

g
∑M−1

k=0

(

a2
k + b2

k

)

⎞

⎠

2⎤

⎥

⎦,

(B.2)

where f denotes sin(((k − k0)ω0 − ωc)τ) and g denotes
sin((kω0 − ωc)τ). Then with (A.10), (B.2), the mean square
error due to main lobe autocorrelation estimation yields

τ2Q2
τ,i ≈

⎛

⎝

4
NM

E

⎡

⎣

Δ
∑

k=−Δ

sin2((ωc − kω0)N/2)
(ωc − kω0)

⎤

⎦

⎞

⎠

2

. (B.3)

Comparing (7), (8) and (5), we note that ωc can be expressed
by ωc = αω0 where α = ωcM/2π uniformly distributes
between [−0.5, 0.5]. Thus, with (B.3) and M = Nq, we have

τ2Q2
τ,i ≈

4
q2N2

(

Rsin c
(

q,α
))2, (B.4)

where

Rsin c
(

q,α
) = E

⎡

⎣

q
∑

k=−q

qsin2(π(k − α)/q
)

(k − α)

⎤

⎦. (B.5)
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