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The number of on-demand video streams that can be supported concurrently is highly constrained by the stringent requirements
of real-time playback and high transfer rates. To address this problem, stream merging techniques utilize the multicast facility to
increase resource sharing. The achieved resource sharing depends greatly on how the waiting requests are scheduled for service.
We investigate the effectiveness of the recently proposed cost-based scheduling in detail and analyze opportunities for further
tunings and enhancements. In particular, we analyze alternative ways to compute the delivery cost. In addition, we propose a new
scheduling policy, called Predictive Cost-Based Scheduling (PCS), which applies a prediction algorithm to predict future scheduling
decisions and then uses the prediction results to potentially alter its current scheduling decisions. Moreover, we propose an
enhancement technique, called Adaptive Regular Stream Triggering (ART), which significantly enhances stream merging behavior
by selectively delaying the initiation of full-length video streams. We analyze the effectiveness of the proposed strategies in terms
of their performance effectiveness and impacts on waiting-time predictability through extensive simulation. The results show that
significant performance benefits as well as better waiting-time predictability can be attained.

1. Introduction

The interest in video streaming has grown dramatically
across the Internet and wireless networks and continues to
evolve rapidly. Unfortunately, the number of on-demand
video streams that can be supported concurrently is highly
constrained by the stringent requirements of multimedia
data, which require high transfer rates and must be presented
continuously in time. Stream merging techniques [1–7]
address this challenge by aggregating clients into successively
larger groups that share the same multicast streams. These
techniques include Patching [1, 3], Transition Patching [8, 9],
and Earliest Reachable Merge Target (ERMT) [2, 10]. Periodic
broadcasting techniques [11–15] also address this challenge
but can be used for only popular videos and require the
requests to wait until the next broadcast times of the first
corresponding segments. This paper considers the stream
merging approach.

The achieved resource sharing by stream merging
depends greatly on how the waiting requests are scheduled
for service. Despite the many proposed stream merging

techniques and the numerous possible variations, there
has been only a little work on the issue of scheduling in
the context of these scalable techniques. The choice of a
scheduling policy can be as important as or even more
important than the choice of a stream merging technique,
especially when the server is loaded. Minimum Cost First
(MCF) [16] is a cost-based scheduling policy that has
recently been proposed for use with stream merging. MCF
captures the significant variation in stream lengths caused by
stream merging through selecting the requests requiring the
least cost (measured in bytes of the delivered video data).

Motivated by the development of cost-based scheduling,
we investigate its effectiveness in detail and discuss opportu-
nities for further tunings and enhancements. In particular,
we initially seek to answer the following two important
questions. First, is it better to consider the stream cost only
at the current scheduling time or consider the expected
overall cost over a future period of time? Second, should
the cost computation consider future stream extensions done
by advanced stream merging techniques (such as ERMT)
to satisfy the needs of new requests? These questions are
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Figure 1: Patching.

important because the current scheduling decision can affect
future scheduling decisions, especially when stream merging
and cost-based scheduling are used.

Additionally, we analyze the effectiveness of incorporat-
ing video prediction results into the scheduling decisions.
The prediction of videos to be serviced and the prediction
of waiting times for service have recently been proposed
in [17]. These prediction results, however, were not used
to alter the scheduling decisions. We propose a scheduling
policy, called Predictive Cost-Based Scheduling (PCS). Like
MCF, PCS is cost-based, but it predicts future system
state and uses the prediction results to potentially alter
the scheduling decisions. It delays servicing requests at the
current scheduling time (even when resource are available) if
it is expected that shorter streams will be required at the next
scheduling time. We present two alternative implementations
of PCS.

We also propose an enhancement technique, calledAdap-
tive Regular Stream Triggering (ART), which can be applied
with any scheduling policy to enhance stream merging. The
basic idea of ART is to selectively delay the initiation of full-
length video streams.

We study the effectiveness of various strategies and
design options through extensive simulation in terms of
performance effectiveness as well as waiting-time predictabil-
ity. The ability to inform users about how long they
need to wait for service has become of great importance
[17], especially considering the growing interest in human-
centered multimedia systems. Today, even for short videos
with medium quality, users of online video websites may
experience significant delays. Providing users with waiting-
time feedback enhances their perceived quality-of-service
and encourages them to wait, thereby increasing throughput.
The analyzed metrics include customer defection (i.e., turn-
away) probability, average waiting time, unfairness against
unpopular videos, average cost per request, waiting-time
prediction accuracy, and percentage of clients receiving

expected waiting times. The waiting-time prediction accu-
racy is determined by the average deviation between the
expected and actual waiting times. We consider the impacts
of customer waiting tolerance, server capacity, request arrival
rate, number of videos, video length, and skew in video
access. We also study the impacts of different request arrival
processes and video workloads. Furthermore, in contrast
with prior studies, we analyze the impact of flash crowds,
whereby the arrival rate experiences sudden spikes.

The results demonstrate that the proposed PCS and
ART strategies significantly enhance system throughput and
reduce the average waiting time for service, while providing
accurate predicted waiting times.

The rest of the paper is organized as follows. Section 2
provides background information on main performance
metrics, stream merging, and request scheduling techniques.
Section 3 analyzes cost-based scheduling and explores alter-
native ways to compute the cost. Sections 4 and 5 present
the proposed PCS and ART strategies, respectively. Section 6
discusses the performance evaluation methodology and
Section 7 presents and analyzes the main results.

2. Background Information

In this section, we discuss the main performance metrics
used to evaluate scheduling policies in streaming servers. We
then discuss stream merging and request scheduling.

2.1. Main Performance Metrics of Video Streaming Servers.
The main performance metrics of video streaming servers
are user defection probability, average waiting time, and
unfairness. The defection probability is the probability that
a new user leaves the server without being serviced because
of a waiting time exceeding the user’s tolerance. It is the
most important metric, followed by the average waiting
time, because it translates directly to the number of users
that can be serviced concurrently and to server throughput.
Unfairness measures the bias of a scheduling policy against
unpopular videos and can be computed as the standard
deviation of the defection probability among the videos:

Unfairness =

√
√
√
√
√

n
∑

i=1

(

di − d
)2

n− 1
, (1)

where di is the defection probability for video i, d is the
mean defection probability across all videos, and n is the
number of videos. In this paper, we also consider waiting-
time predictability metrics as will be discussed in Section 7.

2.2. Scalable Delivery of Video Streams with Stream Merging.
Stream merging techniques aggregate users into larger
groups that share the same multicast streams. In this sub-
section, we discuss three main stream merging techniques:
Patching [1, 3, 18], Transition Patching [8, 9], and ERMT
[2, 10].

In Patching, a new request joins immediately the latest
full-length multicast stream for the video and receives the



EURASIP Journal on Image and Video Processing 3

0

50

100

150

200

250

300

350

400

450

500

V
id

eo
pl

ay
ba

ck
p

oi
n

t
(s

ec
on

ds
)

0 32 64 108 178 219 260 304 353 384 415 444

Time (seconds)

Regular stream
Patch stream
Transition patch stream

Video length = 600 seconds
Wr = 212 seconds
Wt = 44 seconds

Figure 2: Transition Patching.

missing portion as a patch using a unicast stream. A full-
length multicast stream is called regular stream. Both the
regular and patch streams are delivered at the video playback
rate. The length of a patch stream and thus its delivery cost
are proportional to the temporal skew from the latest regular
stream. The playback starts using the data received from the
patch stream, whereas the data received from the regular
stream are buffered locally for use upon the completion of
the patch stream. Because patch streams are not sharable
with later requests and their cost increases with the temporal
skew from the latest regular stream, it is cost-effective to start
a new regular stream when the patch stream length exceeds
a certain value, called regular window (Wr). Figure 1 further
explains the concept. Initially, one regular stream (first solid
line) is delivered, followed by two patch streams (next two
dashed lines) to service new requests. Note that the length of
the patch stream is the temporal skew to the regular stream.
Subsequently, another regular stream (second solid line) is
initiated followed by two other patch streams.

Transition Patching allows some patch streams to be
sharable by extending their lengths. Specifically, it introduces
another multicast stream, called transition stream. The
threshold to start a regular stream is Wr as in Patching, and
the threshold to start a transition stream is called transition
window (Wt). Figure 2 further illustrates the concept. For
example, the client at time 219 seconds starts listening to
its own patch stream (second dotted line) and the closest
preceding transition patch stream (second dashed line), and
when its patch is completed, it starts listening to the closest
preceding regular stream (first solid line).

ERMT is a near optimal hierarchical stream merging
technique. Whereas a stream can merge at most once in
Patching and at most twice in Transition Patching, ERMT
allows streams to merge multiple times, thereby leading to
a dynamic merge tree. In particular, a new user or a newly

0

100

200

300

400

500

600

V
id

eo
pl

ay
ba

ck
p

oi
n

t
(s

ec
on

ds
)

0 51 102 151 202 253 302 339 404 439 539 600

Time (seconds)

Regular stream
Stream extension
Patch stream

Figure 3: ERMT.

merged group of users snoops on the closest stream that
it can merge with if no later arrivals preemptively catch
them [2]. To satisfy the needs of the new user, the target
stream may be extended, and thus its own merging target
may change. Figure 3 illustrates the operation through a
simple example. We can see that the third stream length
got extended after the fourth stream had merged with it.
Extensions are shown as dotted lines. ERMT performs better
than other hierarchical stream merging alternatives and close
to the optimal solution, which assumes that all request arrival
times are known in advance [2, 19, 20].

Patching, Transition Patching, and ERMT differ in
complexity and performance. Both the implementation
complexity and performance increase from Patching to
Transition Patching to ERMT. Selecting the most appropriate
stream merging technique depends on a tradeoff between
the required implementation complexity and the achieved
performance.

2.3. Request Scheduling of Waiting Video Requests. A schedul-
ing policy selecting an appropriate video for service when-
ever it has an available channel. A channel is a set of resources
(network bandwidth, disk I/O bandwidth, etc.) needed to
deliver a multimedia stream. All waiting requests for the
selected video can be serviced using only one channel. The
number of channels is referred to as server capacity.

The main scheduling policies include First Come First
Serve (FCFS) [21], Maximum Queue Length (MQL) [21],
Maximum Factored Queue Length (MFQL) [22], and Mini-
mum Cost First (MCF) [16]. FCFS selects the video with the
oldest waiting request, whereas MQL maximizes the number
of request that can be serviced at any time by selects the video
with the largest number of waiting requests. MFQL attempts
to minimize the mean request waiting time by selecting the
queue with the largest factored length. The factored length of
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a queue is defined as its length divided by the square root of
the relative access frequency of its corresponding video. MCF
policy has been recently proposed to exploit the variations
in stream lengths caused by stream merging techniques. It
gives preference to the videos whose requests require the
least cost in terms of the amount of video data (measured in
bytes) to be delivered. The length of the stream (in time) is
directly proportional to the cost of servicing that stream since
the server allocates a channel for the entire time the stream
is active. Please note the distinction between video lengths
and required stream lengths. Due to stream merging, even
the requests for the same video may require different stream
lengths. MCF-P (P for “Per”), the preferred implementation
of MCF, selects the video with the least cost per request. The
objective function here is

F(i) = Li × Ri

Ni
, (2)

where Li is the required stream length for the requests in
queue i, Ri is the (average) data rate for the requested video,
and Ni is the number of waiting requests for video i. To
reduce the bias against videos with higher data rates, Ri can
be removed from the objective function (as done in this
paper). MCF-P has two variants: Regular as Full (RAF) and
Regular as Patch (RAP). RAP treats regular and transition
streams as if they where patches, whereas RAF uses their
normal costs. MCF-P performs significantly better than all
other scheduling policies when stream merging techniques
are used. In this paper, we simply refer to MCF-P (RAP) as
MCF-P unless the situation calls for specificity.

3. Analysis of Cost-Based Scheduling

We seek to understand the behavior of cost-based scheduling
and its interaction with stream merging. Understanding this
behavior helps in developing solutions that optimize the
overall performance. One of the issues that we explore in this
study is determining the duration over which the cost should
be computed. In particular, we seek to determine whether the
cost should be computed only at the current scheduling time
(TNow) or over a future duration of time, called prediction
window (Wp). In other words, should the system select the
video with the least cost per request at time TNow or the least
cost per request during Wp. The latter requires prediction of
the future system state. We devise and explore two ways to
analyze the effectiveness of computing the cost over a period
of time: Lookahead and Combinational scheduling.

3.1. Lookahead Scheduling. In Lookahead Scheduling, the
service rate (which is the rate at which a video gets serviced)
is computed dynamically for each video that has waiting
requests. The total cost for servicing each one of these
videos is computed during the time interval Wp. Lookahead
Scheduling selects the video j that minimizes the expected
cost per request. Thus, the objective function to minimize is

F
(

j
) =

∑n
i=1 Ci

∑n
i=1 Ni

, (3)

where n is the number of expected service times for video j
during Wp, Ci is the cost required to service the requests for
video j at service time i, and Ni is the number of requests
expected to be serviced at service time i. The number of
requests at future service times is predicted by dynamically
computing the arrival rate for each video. Figure 4 further
illustrates the idea. As discussed earlier, ERMT may extend
streams to satisfy the needs of new requests. MCF-P, however,
does not consider later extensions in computing the cost. In
analyzing cost-based scheduling, we also need to consider
whether it is worthwhile to predict and consider these later
extensions. Hence, we consider a variant of Lookahead
Scheduling that considers these extensions. (In Figure 4, the
term “virtual time” means the future time imagined or
simulated by Lookahead Scheduling, as opposed to the actual
system time.)

3.2. Combinational Scheduling. In contrast with Lookahead
Scheduling, Combinational Scheduling predicts the best
sequence in which various videos should be serviced and per-
forms scheduling based on this sequence. Thus, it considers
any correlations on the cost among successive video selec-
tions. Figure 5 illustrates the operation of Combinational
Scheduling. The best sequence is found by generating all
possible sequences for the next n stream completion times
during Wp, for only the n-best videos according to the MCF-
P objective function. Note that stream completion times
indicate when server channels become available for servicing
new requests. The objective function of each sequence is then
calculated. Consider the sequence Sj = {X1,X2,X3, . . . ,Xn},
where Xi is the video selected to be serviced at the next
ith stream completion time. The objective function for this
sequence is

F
(

Sj
)

=
∑n

i=1 CXi
∑n

i=1 NXi

, (4)

where CXi is the cost required to service video Xi, and NXi is
the number of waiting requests for that video. CXi is deter-
mined based on the used MCF-P variant. Combinational
Scheduling chooses the sequence that is expected to lead
to the least overall cost. Although many optimizations are
possible to reduce the implementation complexity, we focus
primarily on whether exploiting the correlations between
successive video selections is indeed important in practical
situations.

4. Proposed Predictive Cost-Based Scheduling

The prediction of videos to be serviced and the prediction
of waiting times for service have recently been proposed
in [17]. These prediction results, however, were not used
to alter the scheduling decisions. In this paper, we analyze
the effectiveness of incorporating video prediction results
into the scheduling decisions. We propose a scheduling
policy, called Predictive Cost-Based Scheduling (PCS). PCS
is based on MCF, but it predicts future system state
and uses this prediction to possibly alter the scheduling
decisions. The basic idea can be explained as follows. When a
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Figure 4: An Illustration of Lookahead Scheduling.
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Figure 5: Illustration of Combinational Scheduling.

channel becomes available, PCS determines using the MCF-
P objective function the video VNow which is to be serviced
tentatively at the current scheduling time (TNow) and its
associated delivery cost. To avoid unfairness against videos
with high data rates, we use the required stream length for the
cost [16]. Before actually servicing that video, PCS predicts
the system state at the next scheduling time (TNext) and

estimates the delivery cost at that time assuming that video
VNow is not serviced at time TNow. PCS does not service any
request at time TNow and thus postpones the service of video
VNow if the delivery cost at time TNext is lower than that at
time TNow. Otherwise, video VNow is serviced immediately.

To reduce possible server underutilization, PCS delays
the service of streams only if the number of available server
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currDefectionRate =defectedCustomers /servedCustomers;
if (currDefectionRate <lasDefectionRate) {

if (last action was decrement andfreeChannelThresh > 2)
freeChannelThresh –;

else if (last action was increment)
freeChannelThresh ++;

} else if (currDefectionRate >lastDefectionRate) {
if (last action was increment andfreeChannelThresh > 2)

freeChannelThresh –;
else if (last action was decrement)

f reeChannelThresh + +;
}
lastDe f ectionRate = currDe f ectionRate;

Algorithm 1: Simplified algorithm for dynamically computing
freeChannelThresh.

channels (freeChannels) is smaller than a certain thresh-
old (freeChannelThresh). Algorithm 1 shows a proposed
algorithm to dynamically find the best value of freeChan-
nelThresh. The algorithm changes the value of the threshold
and observes its impact on customer defection probability
over a certain time interval. The value of the threshold is
then updated based on the trend in defection probability
(increase or decrease) and the last action (increase or
decrease) performed on the threshold. The algorithm is to
be executed periodically but not frequently to ensure stable
system behavior.

We present two alternative implementations of PCS:
PCS-V and PCS-L. These two implementations differ in
how to compute the delivery cost or required stream length
at the next scheduling time. PCS-V predicts the video to
be serviced at the next scheduling time and simply uses
its required stream length. The video prediction is done
by utilizing detailed information about the current state of
the server in a manner similar to that of the waiting-time
prediction approach in [17]. This information includes the
number of waiting requests for each video, the completion
times of running streams, and statistics such as the average
request arrival rate for each video (which is to be updated
periodically). Algorithm 2 shows a simplified algorithm for
PCS-V.

In contrast with PCS-V, PCS-L computes the expected
required stream length at the next scheduling time based
on the lengths of all possible video streams that may be
required and their probabilities. A simplified algorithm for
PCS-L is shown in Algorithm 3. The probability that a video
is selected is equal to the probability that it has at least one
waiting request at time TNext times the probability that all
video streams with lower cost (i.e., shorter required streams)
are not selected. The probability that video v has at least one
arrival during duration TNext − TNow can be found as one
minus the probability of exactly zero arrivals:

1− e−λv×(TNext−TNow), (5)

where λi is the request arrival rate for video v and assuming
a Poisson arrival process. If the video has already one

waiting request, then this probability is 1. Sorting the videos
according to the scheduling objective function is required to
determine the probability that all videos with lower cost (or
higher objective) are not selected.

As can be clearly seen from the algorithms, both PCS-V
and PCS-L require a time overhead of O(Nv), where Nv is the
number of videos, assuming that a priority queue structure is
used to rank the videos according to the objective function.

5. Proposed Adaptive Regular Stream
Triggering (ART)

As will be shown later, our analysis reveals a significant
interaction between stream merging and scheduling deci-
sions. One of the pertaining issues is how to best handle
regular (i.e., full) streams. MCF-P (RAP) considers the cost
of a regular stream as a patch and thus treats it in a
differentiated manner. The question arises as to whether it
is worthwhile, however, to delay regular streams in certain
situations. Guided by analysis, we propose a technique,
called Adaptive Regular Stream Triggering (ART). A possible
implementation is shown in Algorithm 4. The basic idea
here is to delay regular streams as long as the number
of free channels is below a certain threshold, which is to
be computed dynamically based on the current workload
and system state. ART uses the same algorithm (shown
in Algorithm 1) to dynamically find the best value of free
Channel Thresh as that of PCS.

To further demonstrate the main idea of ART, Figure 6
plots the ERMT merge tree without and with ART, respec-
tively. The solid lines show the initial stream lengths and
the dotted lines show later extensions. The circles identify
successive extensions. With ART, there is a gap before a
regular stream is initiated because of the postponement. We
also observe that ART enhances the stream merging decisions
of ERMT. The number of initial regular streams (called I
Streams in this paper) in the merge tree is relatively much
smaller with ART. For example, there is only one I Stream in
the merge tree with ART while there are many more I Streams
in the merge tree without ART.

As can be seen form the ART algorithm in Algorithm 4,
ART requires a time overhead of O(1) in addition to the time
overhead of the base scheduling policy used.

In principle, ART can be used with any scheduling policy,
including PCS, although some negative interference happens
when it is combined with PCS, as will be shown in Section 7.

6. EvaluationMethodology

We study the effectiveness of the proposed policies through
simulation. The simulation, written in C, stops after a steady-
state analysis with 95% confidence interval is reached.

6.1. Workload Characteristics. Table 1 summarizes the work-
load characteristics used. Like most prior studies, we gen-
erally assume that the arrival of the requests to the server
follows a Poisson Process with an average arrival rate λ.
We also experiment with the Weibull distribution with two
parameters: shape and scale [23]. We analyze the impact
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VNow = find the video that will tentatively be serviced at TNow;
if (freeChannels ≥freeChannelThresh)

Service the requests for VNow;
else {

currStreamLen = find required stream length to service VNow at TNow;
VNext = find the video that is expected to be serviced at TNext;
nextStreamLen = find required stream length to service VNext at TNext;
if (currSreamLen ≤nextStreamLen)

Service the requests for VNow;
}

Algorithm 2: Simplified algorithm for PCS-V.

VNow = find the video that will tentatively be serviced at TNow;
if (freeChannels ≥freeChannelThresh)

Service the requests for VNow;
else {

currStreamLen = find required stream length to service VNow at TNow;
Calculate objective function for each video at TNext;
Sort videos from best to worst according to objective function;
expectedStreamLen = 0; // initialization
// loop to find expected stream length at TNext

for (v = 0; v < Nv ; v + +){ // for each video
nextStreamLen = find required stream length to service v at TNext;
Prob(video v is selected) = Prob(no other video with better objective is selected)

∗Prob(video v has at least one arrival);
expectedStreamLen +=Prob(video v is selected) ∗nextStreamLen;

}
if (currSreamLen ≤ expectedStreamLen)

Service the requests for VNow;
}

Algorithm 3: Simplified algorithm for PCS-L.

of the shape (k), while adjusting the scale so that the
desired average request arrival rate is reached. Additionally,
we assume that the access to videos is highly localized and
follows a Zipf-like distribution. With this distribution, the
probability of choosing the nth most popular video is C/n1−θ

with a parameter θ and a normalized constant C. The
parameter θ controls the skew of video access. Note that
the skew reaches its peak when θ = 0, and that the access
becomes uniformly distributed when θ = 1. We analyze the
impact of this parameter, but we generally assume a value of
0.271 [24, 25].

We characterize the waiting tolerance of customers by
three models. In Model A, the waiting tolerance follows an
exponential distribution with mean μtol [24, 25]. In Model B,
users with expected waiting times less than μtol will wait and
the others will have the same waiting tolerance as Model A
[24, 25]. We use Model C to capture situations in which users
either wait or defect immediately depending on the expected
waiting times. The user waits if the expected waiting time
is less than μtol and defects immediately if the waiting time
is greater than 2μtol. Otherwise, the defection probability
increases linearly from 0 to 1 for the expected waiting times
between μtol and 2μtol [17].

As in most previous studies, we generally study a server
with 120 videos, each of which is 120 minutes long. We
examine the server at different loads by fixing the request
arrival rate at 40 requests per minute and varying the number
of channels (server capacity) generally from 200 to 750. In
addition to the fixed-length video workload (in which all
videos have the same length), we experiment with a variable-
length video workload. Moreover, we study the impacts of
arrival rate, user’s waiting tolerance, number of videos, and
video length (in the fixed-length workload).

Flash crowds workload characteristics were adopted
from [26].

6.2. Considered Performance Metrics. To evaluate the effec-
tiveness of the proposed schemes, we consider the main
performance metrics discussed in Section 2.1. In addition,
we analyze waiting-time predictability by two metrics:
waiting-time prediction accuracy and the percentage of
clients receiving expected waiting times. The waiting-time
prediction accuracy is determined by the average deviation
between the expected and actual waiting times. For waiting-
time prediction, we use the algorithm in [17]. Note that this
algorithm may not provide an expected waiting time to each
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VNow = find the video that will be serviced at TNow;
if ( f reeChannels ≥ f reeChannelThresh)

Service the requests for VNow;
else {

currStreamLen = find the required stream length to serve VNow at TNow;
if (currStreamLen < movieLen) // not a full stream

Service the requests for VNow;
else // full stream

Postpone the requests for VNow;
}

Algorithm 4: Simplified implementation of ART.

Table 1: Summary of Workload Characteristics.

Parameter Model/Value(s)

Request Arrival
Poisson Process (default)

Weibull Distribution with shape k = 0.6 to 0.9

Request Arrival Rate Variable, Default is 40 Req./min

Server Capacity 200 to 750 channels

Video Access Zipf-Like

Video Skew (θ) 0.1 to 0.6, Default = 0.271

Number of Videos Variable, Default is 120

Video Length

Fixed-Length Video Workload (Default)

with length of 60 to 180 min (same for all videos),

Default = 120 min

Variable-Length Video Workload:

with lengths randomly in the range: 60 to 180 min

Waiting Tolerance Model A, B, C, Default is A

Waiting Tolerance Mean (μtol) Variable, Default is 30 sec

Flash Crowds
The peak arrival rate is 40 times the normal rate for a period of

two movie lengths and flash crowds arrival rate is variable.

Default: no flash crowds

client because the prediction may not always be performed
accurately.

7. Result Presentation and Analysis

7.1. Comparing the Effectiveness of Different Cost-Computa-
tion Alternatives. Let us start by studying the effectiveness
of Lookahead and Combinational Scheduling. Interestingly,
there is no clear benefit for computing the cost over a future
period of time. In some cases, as shown in Figure 7, the
performance in terms of customer defection and average
waiting time may be worse than those when computing
the cost at the current scheduling time with MCF-P. The
results of Lookahead Scheduling are shown for two different
prediction window values. Only the results with future
stream extensions are shown. The results without extensions
are almost the same.

Although computing the cost over a time interval seems
intuitively to be an excellent choice, it interferes negatively
with stream merging. Later in this paper, we discuss how the
interaction between stream merging and scheduling can be

utilized by using the proposed ART technique, which can
be used with any scheduling policy. Based on these results,
we only consider next computing the cost at the current
scheduling time.

7.2. Effectiveness of the Proposed PCS Policy. Figures 8, 9, and
10 demonstrate the effectiveness of the two implementations
of PCS when applied with ERMT, Transition Patching, and
Patching, respectively, in terms of the customer defection
probability, average waiting time, and unfairness. The figures
show that PCS outperforms MCF-P and MQL in terms of
both the two most important performance metrics (defec-
tion probability and average waiting time), whereas MCF-P
is fairer towards unpopular videos. The two implementations
of PCS perform nearly the same and thus PCS-V is preferred
because of its simplicity. From this point on, we consider only
the PCS-V implementation.

7.3. Effectiveness of the Proposed ART Enhancement.
Figure 11 shows the effectiveness of the proposed ART
technique when ERMT is used. With MCF-P, ART reduces
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Figure 6: Impact of ART on ERMT Stream Merge Tree (Video 11, MCF-P, Server Capacity = 450).
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Figure 7: Effectiveness of Lookahead and Combinational Scheduling (ERMT).
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Figure 8: Effectiveness of PCS (ERMT).

the customer defection probability and average waiting time
by up to 25% and 80%, respectively. It also yields significant
improvements when used with MQL. Unfairness, the least
important metric, is a little larger with ART because of its
nature in favoring videos with shorter streams, but it is still
acceptable compared with MQL.

Figure 12 depicts the impact of ART on regular streams
in ERMT. We observe that when ART postpones regular
streams, it forces ERMT to make more merges, which, in

turn, increases system utilization. We also observe that the
number of regular streams does not decrease significantly
despite of postponing these streams. In contrast, Figure 12(a)
indicates that the average time between two successive
regular streams for popular videos is even smaller with
ART than that without it. This is because ERMT keeps
extending streams, which eventually become regular streams.
Figures 12(b) and 12(c) compare the percentage of initial
regular streams (I Streams) and extended regular streams
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Figure 9: Effectiveness of PCS (Transition Patching).
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Figure 10: Effectiveness of PCS (Patching).
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Figure 11: Effectiveness of ART (ERMT).

(E Streams) without and with ART, respectively. We can see
that the percentage of extended regular streams with ART
is much higher. This supports the fact that the number of
regular streams is not reduced by postponing. In summary,

we can say that ART improves ERMT by replacing many I
Streams with E Streams.

Let us now discuss the impact of ART when Transition
Patching and Patching are used. Transition Patching results
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are presented in Figure 13 and Patching results are presented
in Figure 14. As with ERMT, ART reduces significantly the
customer defection probability and the average waiting time
when it is combined with MCF-P and MQL. Unfairness with
ART is a little larger but still acceptable compared with that
of MQL for medium and high server capacities.

Interestingly, ART improves Transition Patching and
Patching despite that their best scheduling policy, MCF-P
(RAP), depends on a conflicting principle. As discussed ear-
lier, MCF-P (RAP) gives preference to regular streams while
ART postpones them in certain situations. As illustrated in
Figure 15, the main impact of ART is dynamically optimizing
Wr, which is larger than that of MCF-P (RAP) and smaller
than that of MCF-P (RAF) for popular videos, and even
greater than that of MCF-P (RAF) for unpopular videos.
The horizontal line in the figure marks the equation-based
value of Wr [27]. (Note that the equation does not yield
optimum values because it is based on important simplifying
assumptions.)

7.4. Comparing the Effectiveness of PCS and ART. Although
ART can be applied with any scheduling policy, including
PCS, for the time being, we consider it as an alternative
to PCS because of negative interference between the two,
as will be shown in Section 7.8. In this subsection, we
compare the effectiveness of PCS-V and ART in terms
of customer defection probability, average waiting time,
unfairness against unpopular videos, and cost per request.
Figures 16, 17, and 18 show the results of ERMT, Transition
Patching, and Patching respectively.

With ERMT, MCF-P when combined with ART performs
better than PCS-V in terms of the customer defection
probability and average waiting time. The results when
Transition Patching and Patching are used exhibit different
behavior than those with ERMT. MCF-P combined with
ART gives almost the same results as PCS-V in terms of
customer defection probability, but it reduces the average
waiting time significantly. Unfairness of PCS-V is less than
that with ART in all stream merging techniques because ART
favors videos with shorter streams more than PCS-V. These
results indicate that MCF-P when combined with ART is the
best overall performer.

To further support the fact that more customers are
served with only one stream when using ART, Figure 19
demonstrates the impact of ART on the cost per request. We
can see that the cost per request with ART is the lowest for
different server capacities.

7.5. Impact of Workload Parameters on the Effectiveness of PCS
and ART. Figures 20, 21, 22, and 23 illustrate the impact of
the request arrival rate, customer waiting tolerance, number
of videos, and video length on the effectiveness of PCS-
V and ART. The results for both Patching and ERMT are
shown. The results demonstrate that ART always achieves
smaller customer defection probability and average waiting
time than PCS-V in the case of ERMT. In Patching, the same
trend is observed for the average waiting time, but PCS-V
and “MCF-P combined with ART” perform nearly the same

in terms of customer defection probability, especially when
the server is highly loaded.

Figure 24 shows that the skew in video access has signif-
icant impacts on the customer defection probability, average
waiting time, and unfairness. Recall that as θ increases, the
skew in video access decreases. Both the defection probability
and average waiting time are worsen by the reduction in the
skew. This is because cost-based scheduling policies favor
popular videos by nature. When θ increases, the deference
in video popularity decreases which in turns makes the
scheduling decision harder to make. Unfairness decreases by
increasing θ which is as expected. Again, “MCF-P combined
with ART” is the best policy in terms of all performance
metrics, except unfairness.

The results so far are for a video workload of a fixed video
length. Figure 25 shows the customer defection probability,
average waiting time and unfairness results for a variable-
length video workload. The workload is comprised of videos
with lengths in the range of 60 to 180 minutes. The length
of each video is generated randomly within the specified
range. The results for the workload are obtained by averaging
the values of four runs. The PCS-V and ART algorithms
also work well in this workload. “MCF-P combined with
ART” as in most cases performs better than all other policies.
Moreover, we can see that the fairness of ART and PCS-
V is better than that of MCF-P with variable-length video
workload.

The results so far assume a Poisson request arrival
process. Let us now examine the behavior under Weibull dis-
tribution with different shape (k) values. Figure 26 demon-
strates that the shape has a little impact, especially when
the server capacity is larger than 500 channels. Figure 27
compares MCF-P, PCS-V, and MCF-P with ART under
Weibull Arrival Distribution with the same shape. The results
with other shape parameters have the same trend and thus
are not shown. We can see clearly that PCS-V and “MCF-P
combined with ART” sill perform better than MCF-P. We can
see also that MCF-P with ART is the best policy.

7.6. Comparing Waiting-Time Predictability with PCS and
ART. Figure 28 compares the predictability of MCF-P, PCS-
V, and “MCF-P combined with ART” in terms of the average
deviation and percentage of clients receiving expected time
of service (PCRE) under waiting tolerance Model B. The
results with Model C are similar and thus are not shown.
The results demonstrate that ART significantly improves the
predictability of MCF-P. PCS-V is also more predictable than
MCF-P. In particular, ART reduces the average deviation by
up to 30% and 75% for models B and C, respectively. It also
increases the number of clients receiving expected times by
up to 35%. Moreover, “MCF-P combined with ART” gives
more customers expected times than PCS-V with a relatively
less significant increase in the average deviation.

7.7. Impact of Flash Crowds on the Effectiveness of PCS and
ART. Let us now discuss the impact of flash crowds on the
the effectiveness of PCS-V and ART. Figure 29 demonstrates
the impact of flash crowds interarrival time on MCF-P, PCS-
V, and “MCF-P combined with ART.” The results shows that
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Figure 12: Impact of ART on regular streams (ERMT, MCF-P, Server Capacity = 450).
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Figure 13: Effectiveness of ART (transition patching).
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Figure 14: Effectiveness of ART (patching).



EURASIP Journal on Image and Video Processing 13
A

ct
u

al
W

r
(m

in
u

te
s)

550 600 650 700 750 800 850

Server capacity

0

2

4

6

8

10

12

MCF-P (RAF)
MCF-P (RAP)
MCF-P (RAP) with ART

(a) Video 1

A
ct

u
al
W

r
(m

in
u

te
s)

550 600 650 700 750 800 850

Server capacity

0

5

10

15

20

25

30

35

MCF-P (RAF)
MCF-P (RAP)
MCF-P (RAP) with ART

(b) Video 10

A
ct

u
al
W

r
(m

in
u

te
s)

550 600 650 700 750 800 850

Server capacity

0

10

20

30

40

MCF-P (RAF)
MCF-P (RAP)
MCF-P (RAP) with ART

(c) Video 20

Figure 15: Comparing Actual Wr in MCF-P (RAF), MCF-P (RAP), and MCFP(RAP) with ART (patching).
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Figure 16: Comparing the effectiveness of PCS and ART (ERMT).
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Figure 17: Comparing the effectiveness of PCS and ART (Transition Patching).
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Figure 18: Comparing the Effectiveness of PCS and ART (Patching).
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Figure 19: Comparing the Impacts of PCS and ART on Cost per Request (ERMT, MCF-P).
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Figure 20: Impact of Request Arrival Rate (Server Capacity = 500).
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Figure 21: Impact of Customer Waiting Tolerance (Server Capacity = 500).
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Figure 22: Impact of Number of Videos (Server Capacity = 500).
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Figure 23: Impact of Video Length (Server Capacity = 500).
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Figure 24: Impact of Skew in Video Access (ERMT, Server Capacity = 450).
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Figure 25: Comparing the Effectiveness of MCF-P, PCS, and ART under a Variable-Length Video Workload (ERMT, 60 to 180 minutes Video
Length Range).
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Figure 26: Impact of the Shape Parameter of Weibull Arrival Distribution (ERMT, PCS-V).
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Figure 27: Comparing MCF-P, PCS-V, and MCF-P with ART under Weibull Arrival Distribution (ERMT, K = 0.6).
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Figure 28: Waiting-Time Predictability of MCF-P, MCF-P with ART, and PCS-V (ERMT,Wp = 0.5μtol, Model B).
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Figure 29: Impact of Flash Crowds on MCF-P, PCS-V, and ART as a Function of Flash Crowds Iner-arrival Time (ERMT, Server capacity =
300).
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Figure 30: Comparing MCF-P, PCS-V, and MCF-P with ART with Flash Crowds in Average Cost per Request (ERMT, Flash Crowds Arrival
Rate = 1/day).
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Figure 31: Effectiveness of Combining Art with PCS (ERMT).

MCF-P when combined with ART handles the flash crowds
more efficiently than the other policies. In particular, it
achieves the best customer defection probability and average
waiting time under all flash crowds interarrival times. PCS-V
achieves better results than MCF-P, but its improvement is
less than that of ART. Figure 30 confirms that ART enhances
the efficiency of stream handling even with flash crowds. It is
clearly evident that “MCF-P combined with ART” achieves
the lowest cost per request for all videos.

7.8. Effectiveness of Combining ART with PCS. Let us now
look at the results of combining PCS-V with ART. We show
the results under ERMT and Patching in Figures 31 and

32, respectively. Transition Patching has the same trend as
Patching and therefore its results are not shown. These results
indicate that “MCF-P combined with ART” performs the
best among all variations, and that PCS-V performs better
than “PCS-V with ART.” From these figures, we conclude
that negative interference occurs when ART is combined with
PCS-V. Removing this interference by modifying these two
strategies is a challenging task and left for a future study.

8. Conclusions

We have analyzed in detail cost-based scheduling for on-
demand video streaming and proposed new strategies:
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Figure 32: Effectiveness of Combining PCS-V and ART (Patching).

Predictive Cost-Based Scheduling (PCS) and Adaptive Regular
Stream Triggering (ART). The main results can be summa-
rized as follows.

(i) There is no clear advantage of computing the cost
over a future time window, compared with comput-
ing the cost only at the next scheduling time.

(ii) The proposed PCS scheduling policy outperforms the
best existing policy (MCF-P) in terms of customer
defection probability and average waiting time. The
waiting times can also be predicted more accurately
with PCS. The two variations of PCS (PCS-V and
PCS-L) perform nearly the same and thus the simpler
variant (PCS-V) is preferred because of its lower
implementation complexity.

(iii) By enhancing stream merging behavior, the proposed
ART technique substantially improves both the cus-
tomer defection probability and the average waiting
time.

(iv) Although ART in principle can be applied with
any scheduling policy, including PCS, negative inter-
ference exists between ART and PCS, and thus
their combination generally achieves worse than
any of them applied individually. Removing this
interference by modifying these two strategies is a
challenging task and left for a future study.

(v) The best overall performer is “MCF-P combined with
ART”, followed by PCS. With ART, significantly more
clients can receive expected waiting times for service
than PCS, but at a somewhat lower waiting time
accuracy.
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