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Abstract

Background: Left ventricular (LV) mid-wall fibrosis (MWF), which occurs in about a quarter of patients with non-ischemic
cardiomyopathy (NICM), is associated with high risk of pump failure. The mid LV wall is the site of circumferential
myocardial fibers. We sought to determine the effect of MWF on LV myocardial mechanics.

Methods: Patients with NICM (n = 116; age: 62.8 ± 13.2 years; 67 % male) underwent late gadolinium enhancement
cardiovascular magnetic resonance (CMR) and were categorized according to the presence (+) or absence (−) of MWF.
Feature tracking (FT) CMR was used to assess myocardial deformation.

Results: Despite a similar LVEF (24.3 vs 27.5 %, p = 0.20), patients with MWF (32 [24 %]) had lower global circumferential
strain (Ɛcc: −6.6 % vs −9.4 %, P = 0.004), but similar longitudinal (Ɛll: −7.6 % vs. −9.4 %, p = 0.053) and radial (Ɛrr: 14.6 % vs.
17.8 % p = 0.18) strain. Compared with−MWF, + MWF was associated with reduced LV systolic, circumferential strain rate
(−0.38 ± 0.1 vs −0.56 ± 0.3 s−1, p= 0.005) and peak LV twist (4.65 vs. 6.31°, p = 0.004), as well as rigid LV body rotation
(64 % vs 28 %, P <0.001). In addition, +MWF was associated with reduced LV diastolic strain rates (DSRcc: 0.34 vs. 0.46 s

−1;
DSRll: 0.38 vs. 0.50s

−1; DSRrr: −0.55 vs. −0.75 s
−1; all p <0.05).

Conclusions: MWF is associated with reduced LV global circumferential strain, strain rate and torsion. In addition, MWF is
associated with rigid LV body rotation and reduced diastolic strain rates. These systolic and diastolic disturbances may be
related to the increased risk of pump failure observed in patients with NICM and MWF.

Keywords: Heart failure, Non ischemic dilated cardiomyopathy, Mid-wall fibrosis, Feature-tracking, Cardiovascular
magnetic resonance, Torsion, Myocardial deformation

Background
Non-ischemic cardiomyopathy (NICM) is a common
cause of heart failure [1]. The NICM phenotype ranges
from patients who remain largely asymptomatic to those
who succumb to multiple hospitalizations and prema-
ture death. In a study of 603 patients with idiopathic
dilated cardiomyopathy followed up over 9 years,
Castelli et al. found that 45 % died or underwent cardiac
transplantation [2].

Left ventricular mid-wall fibrosis (MWF) was first
described as an autopsy finding in 1991 [3]. Clinical
studies using late-gadolinium cardiovascular magnetic
resonance (LGE-CMR) have subsequently shown that in
patients with NIDCM, MWF is associated with an in-
creased risk of heart failure hospitalizations, ventricular
arrhythmias and cardiac death [4–8]. Patients with
NICM and MWF are also less responsive to pharmaco-
logic therapy [9] and cardiac resynchronization therapy
[10]. Whilst the evidence linking MWF and poor patient
outcomes is compelling [4–11], the mechanism remains
unexplored.
The left ventricle (LV) twists in systole and untwists,

or recoils, in diastole. In systole, the LV base rotates
clockwise and the apex rotates counter-clockwise. This
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wringing motion is effected by the helical arrangement
of myocardial fibers, which run in a left-handed
direction in the subepicardium and in a right-handed
direction in the subendocardium . Contraction of sube-
picardial myocardial fibers cause the base to rotate
clockwise and the apex to rotate in counterclockwise
[12]. Because the radius of rotation of the subepicardium
is greater than that of the subendocardium, the former
provides a greater torque. Consequently, the LV gets
smaller in systole and LV ejection occurs [12]. Circum-
ferential fibers, which run in the mid-myocardium, are
crucial to this process. During ejection, they shorten
simultaneously with oblique fibers in the right- and left-
handed helices. In effect, circumferential fibers provide a
horizontal counterforce throughout ejection [13].
We hypothesized that injury to mid-myocardial, circum-

ferential myocardial fibers [14], as might be expected from
MWF, leads to impairment of LV circumferential contrac-
tion and relaxation and therefore, to disturbances in LV
twist and torsion. In this study, we have used feature-
tracking CMR (FT-CMR) [15] to explore the mechanical
effects of MWF in patients with NICM.

Methods
Patients
Patients with NICM were recruited through CMR units in
two centers (Good Hope Hospital and Queen Elizabeth
Hospital, Birmingham, United Kingdom). The initial diag-
nosis of cardiomyopathy was made on the basis of clinical
history, echocardiographic evidence of LV systolic impair-
ment and absence of coronary artery disease on invasive
coronary angiography. The diagnosis of NICM was also
made on the basis of LGE-CMR [4]. Mid-wall LGE was
assessed visually and only deemed to be present if a cres-
centic or circumferential area of mid-wall signal enhance-
ment (2 SD above the mean intensity of remote
myocardium in the same slice [16]), surrounded by non-
enhanced epicardial and endocardial myocardium was
evident. Patients with scars in a sub-endocardial or trans-
mural distribution following coronary artery territories
were regarded as ischemic in etiology [4] and excluded.
Those with epicardial, transmural or patchy fibrosis sug-
gestive of other etiologies were also excluded. It is routine
clinical practice at the two recruiting dedicated heart
failure units to perform CMR as part of the diagnostic
work-up. Accordingly, all patients underwent CMR at the
time of the diagnosis. All Participants gave written in-
formed consent, and the study protocol conformed to the
Declaration of Helsinki and was approved by the National
Research Ethics Service.

CMR
This was undertaken using 1.5 Tesla Magnetom Avanto
(Siemens, Erlangen, Germany) or Signa (GE Healthcare

Worldwide, Slough, England) scanners and a phased-array
cardiac coil. A horizontal long-axis image and a short-axis
LV stack from the atrioventricular ring to the LV apex
were acquired using a steady state in free precession
(SSFP) sequence (repetition time of 3.2 ms; echo time of
1.7 ms; flip angle of 60°; sequential 7 mm slices with a
3 mm interslice gap). There were 25 phases per cardiac
cycle resulting in a mean temporal resolution of 40 ms.
For scar imaging, horizontal and vertical long-axis

as well as short-axis slices identical to the LV stack
were acquired using a segmented inversion-recovery
technique 10 min after the intravenous administration
of gadolinium-diethylenetriamine pentaacetic acid
(0.1 mmol/kg). Inversion times were adjusted to null
normal myocardium (260 to 400 ms). To exclude arte-
fact, we required the typical scar pattern to be visible
in the short-axis and long-axis acquisitions, in two
different phase encoded directions. Patients were
dichotomized according to the presence or absence of
MWF, assessed visually by an experienced observer
(F.L.), who was blinded to other study data.
Feature tracking CMR (Tomtec Imaging Systems,

Munich, Germany) was undertaken as previously de-
scribed. It has been validated against myocardial tagging
for the assessment of myocardial mechanics [15, 17]. We
have previously shown that both circumferential- and
longitudinal-based variables have an excellent intra- and
inter-observer variability [18]. Global peak systolic cir-
cumferential (Ɛcc) and radial (Ɛrr) strain, strain rates
(SSRcc and SSRrr) and diastolic strain rates (DSRcc and
DSRrr) were assessed using FT-CMR of the mid-cavity
LV short-axis cine. Longitudinal strains (Ɛll, SSRll and
DSRll) were assessed using the horizontal long axis cine.
Only the SSFP sequences were uploaded onto the FT-
CMR software, ensuring that the operator (R.T.) was
blinded to MWF status. In addition, MWF status was
decided by an investigator (F.L.) who was blinded to the
findings of FT-CMR.
Peak systolic rotation was measured using the basal

and apical short axis cines. In health, peak systolic rota-
tion, as viewed from the apex, is typically clockwise (+)
at the base, and anti-clockwise (−) at the apex. Peak sys-
tolic rotation was calculated in degrees and expressed as
both the maximum extent of rotation in the anticipated
direction (i.e., if systolic rotation at the apex was solely in a
clockwise direction this would equate to 0°) and the total
magnitude of rotation (regardless of direction). Torsional
parameters are derived from the peak instantaneous net
difference in apical and basal rotation. LV twist was defined
as (Φ apex - Φ base), twist per unit length (Φ apex - Φ base/D),
and LV torsion (circumferential-longitudinal shear angle) as
(Φ apex - Φ base)(ρ apex - ρ base) / 2D (where Φ = the rotation
angle; ρ = epicardial radius, and; D = base-to-apex distance)
in accordance with agreed methodologies [19]. Systolic
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torsion was classified as either: a) normal torsion, in which
there is predominantly anticlockwise rotation of the apex
and clockwise rotation of the base;b) rigid body rotation:
both the apex and base rotating in the same direction; and
c) reverse torsion: predominantly clockwise rotation of the
apex and anti-clockwise rotation of the base (Fig. 1).

Statistical analysis
Categorical variables were expressed as a percentage and
continuous variables as mean ± standard deviation (SD).
Normality was tested using the Shapiro-Wilk test. Com-
parisons between variables were made with Fisher’s exact
test for categorical variables and independent samples t-
tests for continuous variables, after adjustment by the
Welch-Satterthwaite method where Levene’s test showed
unequal variance between groups. A p value of <0.05
was considered statistically significant for all tests.
Statistical analyses were performed using SPSS v21.0.
(SPSS Inc. Chicago, Illinois).

Results
The characteristics of the study group are shown in
Table 1. Amongst the entire cohort, 32/116 patients
(28 %) had MWF. Patients were of similar age (63.8 vs.
62.3 years, p = 0.29), but more patients with MWF were

men (84 % vs. 61 %, p = 0.02). There were no differences
in NHYA class, atrial rhythm, QRS duration, LVEF, co-
morbidities, pharmacological therapy for heart failure.

Systolic deformation
As shown in Table 2, patients with MWF had a
lower, global circumferential strain (Ɛcc: −6.6 % vs
−9.4 %, P = 0.004), but similar longitudinal (Ɛll: −7.6 %
vs. −9.4 %, p −0.053) and radial (Ɛrr: 14.6 % vs.
17.8 % p = 0.18) strain. Systolic strain rate was
reduced in the circumferential direction (SSRcc:
−0.38 s−1 vs. −0.56 s-1, p = 0.005), but not in radial or
longitudinal directions. Figure 2 shows typical exam-
ples. As shown in Fig. 3, Ɛcc (r = 0.70), Ɛrr (0.57, p
<0.001 and Ɛll (r = 0.62, p <0.001) correlated positively
with LVEF. In the case of Ɛcc, the slope of the
regression line was 0.17 in the +MWF group and 0.31
in the -MWF group, indicating that Ɛcc is lower in
the +MWF group than in the -MWF at a given LVEF.

Diastolic deformation
In patients with MWF, diastolic strains rates were
lower in all three directions in patients with MWF
(DSRcc: 0.34 vs 0.46 s−1, p = 0.01; DSRrr: −0.55 vs
−0.75 s−1, p = 0.04; DSRll: 0.38 vs 0.50 s−1, p = 0.006).
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A. Normal torsion B. Reverse torsion C. Rigid body rotation

Fig. 1 Rotational mechanics in NICM. Diagrammatic representation of torsional and rotational patterns identified using feature-tracking cardiovascular
magnetic resonance. In the bottom tiles, the time in the cardiac cycle, expressed as a percentage of the R-R interval on the ECG, is shown in the x axes.
Rotation at the base and apex of the LV as well as net torsion (the instantaneous difference between apical and basal rotation) is shown on the y axis
(in degrees) a shows a preserved torsional pattern from a patient with non-ischemic dilated cardiomyopathy without MWF with predominantly
anticlockwise rotation at the apex and clockwise rotation at the base. b shows reverse torsion, where the direction of both apical and basal
rotation is reversed. c shows rigid body rotation in a patient with NICM and MWF. The apex and base both twist in the same direction so that
the heart rotates as one solid body with minimal net torsion
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Torsional mechanics
Whilst basal rotation was unaffected by MWF (net
clockwise: 3.00° vs. 3.30, p = 0.51; total magnitude: 3.67°
vs. 4.63°, p = 0.08), the rate of basal rotation was reduced
(22.1° s−1 vs 31.3° s−1, p = 0.002). In patients with MWF,
apical rotation was also reduced in terms of both the
total magnitude (3.52° vs 5.18°, p = 0.013) and the net
anti-clockwise rotation (−1.99° vs. −3.50°, p = 0.024). The
rate of apical rotation was lower in patients with MWF
(−26.1° s−1 vs −38.9° s−1, p = 0.005). This reduction in
the magnitude of apical rotation was associated with a
reduction in LV twist (peak LV twist : 4.65° vs. 6.31°,
p = 0.004; LV twist per unit length: 0.94°/cm vs.1.34°/cm,
p = 0.005; torsional shear angle: 0.52 vs. 0.83, p = 0.008).
The rate of LV twist (36.1° s−1 vs. 48.4° s−1, P = 0.001) and
untwist (30.5° s−1 vs. 44.5° s−1, P <0.001) was also reduced
in patients with MWF. A normal torsion pattern, in
which there is predominantly anti-clockwise rotation
of the apex and clockwise rotation of the base, was
observed more frequently in patients without MWF
(32 vs 46 %). Rigid LV body rotation was more
frequently observed in patients with MWF (64 vs
28 %, p <0.001).

Discussion
In this study, we have shown that in patients with
NICM, MWF is associated with a selective impairment
of circumferential LV myocardial strain. In addition,
MWF is associated with impaired apical rotation and a

Table 2 Mechanical variables in patients with or without MWF

No MWF MWF P

LV dimensions

LVEDV, mL 222 ± 80 277 ± 79 0.002

LVESV, mL 166 ± 79 214 ± 83 0.007

LV mass, g 137.6 ± 46.6 155.5 ± 71.1 0.052

Systolic deformation

LVEF, % 27.5 ± 10.8 24.3 ± 12.9 0.20

Ɛcc (%) −9.4 ± 4.76 −6.6 (2.57 0.004

SSRcc (s
−1) −0.56 ± 0.25 −0.38 (0.12 0.005

Ɛrr (%) 17.8 ± 11.0 14.6 ± 10.1 0.18

SSRrr (s
−1) 0.84 ± 0.37 0.74 ± 0.40 0.31

Ɛll (%) −9.4 ± 4.35 −7.6 ± 3.34 0.053

SSRll (s
−1) 0.56 ± 0.20 −0.49 ± 0.18 0.13

Diastolic deformation

DSRcc (s
−1) 0.46 ± 0.19 0.34 ± 0.11 0.010

DSRrr (s
−1) −0.75 ± 0.35 −0.55 ± 0.44 0.038

DSRll (s
−1) 0.50 ± 0.20 0.38 ± 0.14 0.006

Systolic torsion

Basal systolic rotation (°)

Net Clockwise 3.40 ± 3.00 3.00 ± 2.23 0.513

Magnitude 4.63 ± 2.64 3.67 ± 1.97 0.082

Basal rotation rate (° s−1) 31.3 ± 14.5 22.1 ± 8.2 0.002

Apical systolic rotation (°)

Net anti-clockwise −3.50 ± 3.28 −1.99 ± 1.97 0.024

Magnitude 5.18 ± 3.15 3.52 ± 2.45 0.013

Apical rotation rate (° s−1) −38.9 ± 21.8 −26.1 ± 15.8 0.005

Average basal/apical rotation (°) 9.81 ± 4.48 7.20 ± 3.44 0.002

LV twist (°) 6.31 ± 3.30 4.65 ± 2.18 0.004

LV twist per unit length (°/cm) 1.34 ± 0.76 0.94 ± 0.55 0.005

Torsional shear angle 0.83 ± 0.06 0.52 ± 0.07 0.008

LV twist rate (° s−1) 48.4 ± 23.1 36.1 ± 17.1 0.01

Torsional pattern <0.001

Normal torsion, n (%) 39 ± 46 10 ± 32

Rigid body rotation, n (%) 23 ± 28 21 ± 64

Reverse torsion, n (%) 22 ± 26 1 ± 4

Diastolic torsion

Basal rotation rate (° s−1) −34.1 ± 14.8 −28.0 ± 11.8 0.053

Apical rotation rate (° s−1) 38.3 ± 20.1 24.9 ± 13.1 0.001

LV untwist rate (° s−1) 44.5 ± 21.0 30.5 ± 14.9 <0.001

Variables are expressed as mean ± SD
MWF mid-wall fibrosis, SSR systolic strain rate, DSR diastolic strain rate, Ɛ strain

Table 1 Baseline characteristics

No MWF MWF P

N 84 32

Age, yrs 62.3 ± 13.7 63.8 ± 11.9 0.29

Male, n (%) 51 (61) 27 (84) 0.02

Height, m 1.68 ± 0.09 1.74 ± 0.09 0.02

Weight, Kg 83.4 ± 18.6 83.3 ± 12.6 0.97

NYHA class 0.20

I 4 (5) 3 (9)

II 15 (18) 8 (25)

III 47 (56) 11 (34)

IV 9 (11) 5 (16)

Unknown 9 (11) 5 (16)

Diabetes mellitus, n (%) 13 (16) 7 (24) 0.42

Hypertension, n (%) 18 (22) 5 (17) 0.61

Atrial fibrillation, n (%) 15 (18) 8 (24) 0.44

Medication, n (%)

Loop diuretics 62 (81) 26 (89) 0.47

ACE-I or ARB 77 (97) 27 (90) 0.31

Beta-blockers 51 (65) 20 (66) 1.00

Aldosterone antagonists 36 (46) 10 (35) 0.29

Systolic blood pressure, mmHg 124.3 ± 20.5 119.6 ± 23.1 0.38

Diastolic blood pressure, mmHg 71.5 ± 11.9 71.7 ± 13.8 0.96

QRS duration (ms) 144 (28) 149 (32) 0.48

ACE-I angiotensin-converting enzyme inhibitors, ARB angiotensin
receptor blockers
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reduction in rotation rate, from base to apex. MWF is
also associated with impaired diastolic function, reflected
in reductions in untwist in all directions, from base to
apex. Together, these findings are consistent with the
notion that, by affecting predominantly circumferential
myocardial fibers, MWF leads to disturbances in myo-
cardial contraction and diastolic function. The result is a
'stiff' LV, which is less able to twist to an applied torque
(rotation) and more likely to move as a solid body.
These disturbances may be related to the known associa-
tions of MWF with reduced pump function, heart failure
hospitalizations and a poor response to medical and
device therapy [4–11].

Systole
During ejection, circumferential fibers shorten simultan-
eously with the oblique fibers in the right- and left-
handed helices to thicken the myocardium and empty
the heart. We have found that MWF was associated with
a selective reduction in circumferential strain, suggesting
that MWF preferentially affects mid-myocardial, circum-
ferential fibres. As noted by Buckberg [13], circumferen-
tial fibers provide a horizontal counterforce, or 'buttress'
to the simultaneously contracting oblique fibres. Im-
paired circumferential contraction would be expected to
lead to impaired rotation, as we have found in patients

with MHF. Our finding of more frequent rigid LV body
rotation supports the notion that MWF renders the LV
less capable of twisting and more liable to move as a
rigid body.
We have previously shown that patients with NICM

and MWF treated with CRT are more likely to suffer
pump failure than patients without MWF [10]. On the
other hand, Lamia et al. found that CRT improved tor-
sion, stroke volume and stroke work in an animal model
[20]. Using 3-dimensional speckle-tracking echocardiog-
raphy, others found that in patients with NICM, CRT
led to an improvement in LV torsion [21]. If torsion is
indeed influenced by CRT, we might expect that the
higher risk of pump failure observed in patients with
MHF undergoing CRT may be due to a permanent
inability of the LV to twist and untwist. This hypothesis
requires further exploration.

Diastole
In diastole, release of energy stored in systole (recoil)
causes rapid untwisting and a mitral-to-apical negative
gradient [22] that 'sucks' blood from the left atrium to
the LV [23]. Untwisting occurs mainly during the isovo-
lumic relaxation period and is followed by diastolic fill-
ing. Several studies [24–26] have shown that whilst
cavity volume is fixed during isovolumic relaxation,

Fig. 2 Feature-tracking CMR. Short-axis, late gadolinium enhancement views of patients with idiopathic dilated cardiomyopathy, without and with
mid-wall fibrosis (MWF, white arrows). The bottom tiles show plots of global circumferential strain (Ɛcc, purple), global radial strain (Ɛrr, red) and global
longitudinal strain (Ɛll, green) over a cardiac cycle. Note the marked reduction in Ɛcc in the patient with MWF
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there is a rapid recoil of about 40 % of the torsion
effected during systole. We have found that MWF leads
to both a multi-directional impairment in diastolic strain
rate, as well as to impairment of apical untwist rate. This
is likely to account for the higher LV filling pressures ob-
served using echocardiography in patients with NICM
and MWF [27]. Conceivably, impaired apical untwisting

leads to impaired LV suction and to increased LV filling
pressures.

Limitations
The LGE-CMR technique described herein only detects
replacement fibrosis. The more recent technique of T1
mapping, which detects interstitial fibrosis, was not

Fig. 3 Relationship between LVEF and myocardial strain. Scattergrams for each of the Lagrangian strains plotted against LVEF. Cases are classified
according to presence (blue circles) or absence (red circles) of mid-wall fibrosis (MWF). The lines correspond to the 95 % confidence intervals for
strain. The top scattergram demonstrates that above an LVEF of 25 % (dashed reference line) MWF alters the relationship between Ɛcc and LVEF:
patients with MWF have lower Ɛcc than those with similar LVEF but without MWF
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undertaken. We cannot therefore comment as to
whether our findings are also influenced by the latter. In
addition, we have not routinely undertaken myocardial
biopsy, nor have we quantified myocardial oedema.
Therefore, we cannot exclude the possibility that our
findings were influenced by active myocarditis, despite
the absence of evidence from clinical and laboratory
screening. We should also add that different manufac-
turers have varying methodologies for the calculation of
the mechanical variables described and therefore, our
findings are not generalizable to other FT-CMR method-
ologies. Publication of the FT-CMR algorithms used by
different manufacturers would be welcome.

Conclusions
We have shown that in patients with NICM, MWF is
associated with profound disturbances in LV global
circumferential strain, strain rate, LV twist and torsion,
in both systole and diastole. In addition, MWF is associ-
ated with rigid LV body rotation. These findings provide
a mechanistic link between MWF and a poor clinical
outcome in patients with NICM, despite pharmacologic
and device therapy.
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