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Introduction
The page rank (PR) algorithm was first used by Google to rank web pages. Because 
today’s complex social networks need a fast and scalable algorithm for their searching 
needs, a great many new PR algorithms utilize improved versions of the initial PR mech-
anism. PR has found usage in a variety of applications, including such social networks as 
Twitter recommendation systems, and scientific data bases that search for the relative 
importance of publications, for example [1–4]. This algorithm relies on the findings of 
the very first repository of web pages, called WebBase, which was an experimental pro-
totype used as a proof of concept for PR [5]. Other studies included research on URL’s 
and web search engines by Chakrabati et al. [6]; as well as work on popularity-oriented 
PR and the prototype search engine by Bharat and Mihaila [7].

Later, an algorithm called personalized page rank (PPR) was introduced that was dif-
ferent in terms of attributes used to weigh the node [8, 9]. In PR, pages are considered 
as nodes, and a linear formula calculates the relation between a page and every other 
related page in the network. However, PPR computes base connection values and the 
weight of nodes based on such attributes as the inter-node relationship, the related title 
of search that connects them, and the current connection types between them. This fea-
ture makes PPR more accurate than PR, and returns a result according to neighboring 
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nodes rather than every existing node of the network. Nevertheless, the problem it 
causes is that it works slower and causes bottlenecks, particularly as the network grows 
to include bigger nodes. Part of PPR is based on random walks and part is based on a 
local update in parallel. Random walks have been used before, specifically using a sam-
pling of data to calculate statistics from the Internet [10]. In addition, they have been 
used to find similarity values [11].

PR and PPR values are very similar but their difference lies in whether or not the pro-
posed probability vector over vertices is unified for all the vertices and/or each node. If 
there is such a unified number, then PR is used to compute the global probability; how-
ever, if they are dependent of the nodes, PPR is used to calculate a node rank from only a 
single vertex aspect [12, 13].

Importance of a given node is, in fact, the accumulative importance of the incoming 
node edges to it. For example, the importance of edge ‘e’ is dependent on the number on 
outgoing edges from node ‘v’. The number of nodes plays an important role on a bidirec-
tional algorithm as it is a ‘node base’, meaning that the bigger the number of nodes get, the 
more the time complexity increases. One method used in this study was to reduce number 
of nodes used by applying a similarity algorithm, which finds similar nodes and combines 
them together as a single node. There is a threshold choosing the nodes to be considered as 
similar nodes. If the number of nodes in the graph between node I and node E are reduced, 
then the number of iterations needed to reach the target E also will reduce. On the other 
hand, the number of random walks needed to reach to the front set will decrease as well.

PPR is a localized method of estimation in a graph, based on the notions defined in PR. 
However, PPR is used for calculating the distance between two nodes in a given graph. 
Based on the calculated value, how close two nodes are to one another can be determined. 
The PR value, which is an accumulated number of all common nodes between a pair of 
nodes, can be used in such applications as friend recommendations on Facebook or Twit-
ter. TwitterRank optimizes based on a follower-based graph [14]. Although PPR estimation 
has been performed by using various methods, it still is a challenge because it has an online 
query-based application and can be very demanding when it comes to resources [15].

The motivation for this study stemmed from determining that it is possible to decrease 
the estimation time of search in social media using a complexity estimation function by 
applying node-reduction models. According to Lofgren et al. [16], if a user is looking for 
some nodes in Twitter, and a node a node of particular interest has many followers, then 
it will take more time to estimate the chances of getting the right result than if the user 
is looking for a node having fewer followers. This is because a bidirectional algorithm 
works using two main methodologies: The first one, the random walk, picks random 
stats and travels through them to reach the given end node. In this method, the prob-
ability to hit the target is 1/n as there are n nodes in each step that can be hit. So, reduc-
ing nodes to k nodes will give a probability of 1/(k = n − m), where m is the number of 
nodes removed from the graph.

The second part of the program is based on an existing method called the local update 
algorithm [17]. In this method, traveling between nodes happens with order. From a 
starting node, the walker goes through every and all the nodes and their children. In 
each step of changing position from node to the next node, three parameters are calcu-
lated: probability, residual error, and moving massage. This iteration will happen until 
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the walker reaches some certain threshold. At that point, several calculations are made 
to estimate the PPR value. However, as the number of nodes in the graph gets bigger, the 
queries will demand more resources, such as the space needed to do the calculation for 
every node in the graph. An optimized search method saves the space needed for calcu-
lating m iterations for every following node of n.

The rest of this paper is organized as follows. “Terms and definitions” section sum-
marizes the preliminaries of the paper. Related works are explained in “Related work” 
section. The proposed algorithm and its characteristics and descriptions are outlined in 
“Approach” section. “Experimental results” section discusses the experimental results. 
Concluding remarks and future research are made in “Conclusion” section.

Terms and definitions
Terminology

In this section, all the basic functions and notations used in this paper are defined. The 
underlying directed graph G (V; E) is given, and each node and edge are designated by V 
and E, respectively. Matrix A is the adjacency matrix. The letter ‘u’ is used to designate 
the node, or web page, currently positioned upon, and a set of web pages is designated 
by ‘U’. The symbol ‘α’ denotes the probability of moving from a node to a neighboring 
node (transition), and (1 − α) is denotes the probability of moving to a non-neighboring 
node (teleportation), as shown in (1):

where ‘r’ is the probability vector distributed over U set of web pages and P is the PR 
vector solved by (1). The edge between each pair of nodes in a directed graph is shown 
with ‘din’ and ‘dout’ for incoming and outgoing edges, respectively. The algorithm dis-
cussed in this work are estimated over a pair of nodes which are i for initiating node and 
‘e’ for the end node. Here, ‘D’ is the diagonal matrix, and ‘C’ is the covariance matrix. The 
eigenvector is shown by ‘I’ and eigenvalues are denoted by ‘s’. The next step is to apply 
the local update and random walk.

In order to find PR using the iteration method, the eigenvector and eigenvalues for the 
graph matrix. And in order to find the eigenvector, three conditions must be met:

1. In order to have a stochastic matrix which means it is non-negative and the sum of 
each row is one, ‘q’ represents the proposed stochastic matrix.

2. In order to have an irreducible graph, that means it must be graphed to make it pos-
sible to get from any node to another one directly or through other nodes.

3. The graph needs to be aperiodic.

The oldest method used to solve the PR problem is called the Power Iteration algo-
rithm. This is a simple method, but it has slow convergence so is not a good solution for 
big matrices.

Local algorithm

The local update algorithm [17] calculates the estimation value of neighboring nodes 
to the specified node u. The effect of a neighbor(s) on the end node is computed using 

(1)P = (1− α) · PA+ αr
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these estimations. The PR is calculated and presented as a vector of values, and speci-
fies how important each neighbor is for the PR estimated for the given node. The main 
component to be computed in the local update algorithm is an estimation set, which is 
an accumulative estimation of neighboring nodes from all the local nodes to the node 
u with respect to a given threshold, which helps to count how far each node is from the 
target node u. A local update list of estimations is known as the contribution list.

The formula of contribution vector P′ is as follows:

The local update algorithm consists of several iterating steps, which are calculated as 
sequence of calculations. The set of operations taken is called pushback operations [17]. 
Time complexity of the algorithm depends on incoming nodes to node u rather than the 
entire iteration time, as the estimation is based on a single initiation node:

Based on work by Anderson et  al. [17], the algorithm for the pushback function is: 

(2)P′ = Ppr(α, v) if P ≥ 0

(3)p ≤
min(Prα(v),Pmax)

α ∈
+ 1

Reference [17] defines the PR estimation function as: 
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The original method defines two considerable time complexity calculations: (a) the 
first one is the upper bound; and (b) the second one is the lower bound, which happens 
when the calculation of the target node is not given for the value. Considering the fact 
that the PR value of a certain node is accumulative PR values from its most significant 
neighbors, we can calculate the lower bound of node u by adding the estimation of the 
top neighboring nodes k. So p should be less than prα(u) as shown in (4):

The notations throughout this paper are listed in Table 1.

Related work
PR methods used for page rank calculations come in a different variety of forms. The fol-
lowing are the bases for the proposed algorithm in this paper. The first work ever done 
on PR was by using the Naive Method, which is also well-known as the PR method [18]. 
This method is able to personalize any page with the power iteration in query time; how-
ever, it comes with the price of being infeasible to serve online personalization.

The Topic-Sensitive PR [19] method is restricted to linear combination of n topics, and 
is limited in scalability. However, a good point about this method is that it does distrib-
uted computing. The Jeh and Widom method [20], also known as Hub Decomposition, 
was a magnificent change but it is restricted to personalization on the top U-ranked 
pages to a total number less than a hundred thousand nodes. The problem with this 
method is the space needed to store processing data. In fact, space needed for the under 
process data is twice the original data size.

The block rank method [21] does personalization on hosts, and it is limited in scalabil-
ity as it power-iterates in query time. On the positive side, it reduces the number of itera-
tions and has distributed computing. The fingerprint method [22] personalizes any pages 

(4)Pk(1+ δ)−2 ≤ P ≤ prα(v)

Table 1 Notations and descriptions

Notation Description

N Number of nodes in the graph

K Number of nodes after reduction

M Number of iteration for a certain node

V, E Presentation of nodes and edge

{w, u}, U Designated node, Set of u’s

α, (1 − α) Transition, Teleportation probability

r, P′ Probability, contribution vector

q Stochastic matrix

din, dout Incoming and outgoing edges

A, D, C Adjacency, diagonal, and covariance matrices, respectively

δ Given threshold

є Error parameter

t Iteration number

x Estimated number for random walk

R Reduced space matrix

C Data matrix
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and has no limits on scalability as it works with a linear-size storage and has distributed 
computation; however, it is not precise enough, and gives only an approximation.

The local update method [17] is proven and exact on approximation, but becomes too 
slow when it comes to big graphs and nodes with many followers. The condition with a 
random surfer [23], also known as the Monte Carlo model, has been out there for a long 
time but it is not sufficient in time when it comes to big graphs. Method of personalized 
edge weight [24] is fast; however, there is the cost of pre-calculation and it works only 
on edge-weighted graphs. This method is based on the weighted PR algorithm discussed 
by Xing and Ghorbani [25]. Several other acceleration methods for PR exist, such as the 
uniform approach proposed by McShertty [12] which is based on the base computation 
efficiency used by Haveliwalian [26].

Zhu et  al. [27] introduced a more computationally-efficient and scalable hub-based 
model of PPR based on scheduled approximation. This model achieved near-constant time 
irrespective of graph size. However, their scheme assumes pre-determined values which 
can prove challenging for dynamic graphs and re-computation takes much resource. The 
DRAGON algorithm, introduced by Tong et al. [28] in 2011, uses an optimization concept 
to find diversified top-k ranking list for large graphs. DRAGON achieves a linear model 
with respect to graph size. An older moderl, HubRank, is a search system in entity-relation 
graphs developed by Chakrabarti [29] in 2007. The main difference between this work and 
the previous works is on the type of data used. This work lacked the theoretical guaran-
tee of the result score. Peter Lofgren et al. [30] introduced a modification of their original 
algorithm [16] using a bidirectional perspective. In their most recent work, they have used 
a parallel approach in order to increase the speed of the estimation and social search, with 
results of up to 8 times over existing estimators. It should be noted that the findings of our 
propose algorithm can be applied to such novel approaches, achieving even faster results.

Monte Carlo

Monte Carlo is an estimation method used to estimate different properties of sample 
populations. During PPR calculations, various nodes and values are used as samples. An 
estimator is calculated for every one of them, and then a range of different calculated 
estimations for every sample group is used, called the distribution group over the sample 
set. In every round of experimentation, there are slightly different values from estimat-
ing each sample, known as the sampling error. An expectation value usually is used clos-
est to the highest frequency estimator accruing in the estimation. In the Monte Carlo 
method, a predefined population is used with defined parameters α, β, and є as the error 
parameters. Estimation results from several experiments help in the process of finding 
out if the estimation is biased or unbiased [31–33].

In this estimation, Monte Carlo is used with random walk to simulate the act of differ-
ent user surfing around the web or social media to other pages or other people profile. 
The way random walks work is like there are always two points in which the user want to 
exchange place. To calculate the probability that the walker will go from initiating point 
to the next point considering the factor of α is equal to.

(5)x(t+1) =
t=n
∑

t=1

xt + x
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FAST‑PPR

FAST_PPR analysis is a bidirectional algorithm that estimates the probability that a sin-
gle walk from an initiation node i can end up on the end node e, with the time complex-
ity of 1√

δ
 as δ a given threshold.

δ is the threshold for recommendable nodes. As a result, PPR always will be greater 
than δ. As already stated, the estimated value can be used as a reference for a friend’s 
recommendation in social media or as advertisement in the web. In the real world, this 
estimation is calculated from a single node to thousands of target nodes. However, in 
FAST_PPR, the case was investigated only from node i to the end node e in order to 
simplify the processes. Processing time depends on graph size. Estimation may take time 
in the range of δ to n, whereas as δ is the threshold and n is the number of nodes in the 
graph. So, if the estimated value of the probability from node i to node e is less than δ, 
then it means there is not a single walk from the initiation node, to the end node and the 
recommendation should not happen.

The second part of this algorithm works based on push, or the local update algorithm. 
The walker will travel from the end node e to every entering node to e, and calculate an 
estimation of probability of reaching e from the new node u with a single walk. These 
processes will take a time complexity of an upper bound equal to a

δ
 where a is the average 

number of edges over the nodes in a given graph.
In the local update algorithm, which is a part of the proposed method, the target set 

consists of the nodes with a probability higher than δ to hit the end node. The set fron-
tier consists of the nodes that do not have probability greater than δ in order to hit the 
end node in a single walk. However, one of their direct neighboring nodes is in the target 
set list.

The FAST_PPR algorithm is defined in four distinct steps. The first step involves find-
ing all the nodes close to e with a measure of the probability counted greater than 

√
δ 

and putting them in the target set (6).

The second step involves finding the frontier set that is all the nodes satisfying the con-
dition of being neighbor to one of the members of target set:

The third step involves finding the inverse PPR estimate from node w back to node e, 
with the following conditions:

Finally, in the last step, the probability calculated from random walk is multiplied by 
the probability found in local update algorithm with the condition that a random walk 
already hit one of the nodes in frontier:

(6)T =
{

u ∈ U : P(u, e) >
√
δ

}

(7)F =
{

w ∈ U\T : (w,u) ∈ E for some u ∈ T
}

(8)Xi =
{

P(w, e), Wi hit w ∈ F
0, Wi !hit w ∈ F

(9)P(i, e) =
∑

w∈F
P′[Walks from i, first hit w ∈ F ]P′′(w, e)
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As result of applying these four steps, the time complexity of the algorithm is d√
δ
 as the 

upper band [17].

Approach
In this study, node reduction methods were used to reduce the size of the matrix of the 
graph. Then, the Monte Carlo method and local update algorithm were applied to esti-
mate the distance and relativity from node ‘i’ to node ‘e’. There could be two possible 
outcomes when using this methods; if the end node ‘e’ could not be reached from node 
i, either; the node does not exist or the node was removed in the process of reduction. 
If the second conclusion is correct the map needs to be reproduced in order to spot the 
missing node; however, this did not occur in this study as a result of some preprocessing 
done prior to graphing.

As it is stated in “Terms and definitions” section, estimation over paths from i to e 
will involve a running time of 1/n where n is the minimum number of iteration and set 
m contains incoming nodes to node n. The space needed to store all the results calcu-
lated, is equal to every node n’s process and their incoming nodes. However, the point is 
that the amount of space and time decreases as n decreases. Before conducting queries, 
some preprocessing needs to be done. At first, node reduction is applied on the starting 
graph so that the amount of insignificant nodes are decreased an also smaller matrixes 
are provided to work with. The first phase, which involves going through the PR values 
of all nodes in the graph and filtering the outcome, is done as an offline pre-processing; 
the processing time of PPR which is query based and online will not be affected by the 
pre-processing time complexity. The proposed reduction calculation method reduces 
the map to decrease the number of loops and subsets during the searching phase which 
occurs online during the estimation process; it is applied online as well.

Optimized relativity search (ORS) uses a new bi-directional search technique [16] to 
estimate the approximate time over the personalized PR in directed graphs. By apply-
ing this method, which works using the concept of model reduction, we reduce all the 
insignificant nodes in the graph with a given threshold are reduced, and are flagged into 
a new graph structure. This changes the final graph size, and number of nodes, and also 
divides the number of edges by a factor of m if and only if m nodes are being reduced. 
As a result, the number of edges will change, following the number of related nodes 
removed from the graph. The overall map will have fewer nodes and edges, which makes 
the process of searching over the graph considerably faster; this will result in changing 
the estimation processing time and space that is needed. The time complexity for the 
estimation before applying the proposed algorithm is:

where a is average number of edges in the graph over the number of nodes. After apply-
ing new method the time complexity will decrease to

(10)O =
√

a

Treshold

(11)O =
√

a− z

Treshold − 1

m
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where z is the average number of edges over the number of nodes removed from graph. 
And this point should be considered that the threshold given is interactive base on the 
overall size of the graph.

Finally, the algorithm calculates PPR estimation from initiation node i to end node e 
which is query based and online. The novelty in this approach lies in the fact that num-
ber of iterations happening are decreased. By removing every node in fact a chain of 
calculations are removed. This is because the algorithm should be iterated over each and 
every node. On the other hand, to reach the end point random walks that need to occur 
is substantially lowered, both the number of random walks and the length of each walk 
taken. To the best knowledge of the authors, no similar effort has been done for graph 
reduction in the PR estimation problem that can reduce the map without removing 
graph features and reducing search time to the given time complexity function.

After applying the optimizing part of the ORS algorithm, the current matrix needs to 
be normalized in order to gain stochastic matrix. To obtain the stochastic matrix, we 
need to have sums elements of every row of the matrix to sums up to one, but as not all 
the nodes have out degree edges its inevitable to have rows of all zero which does not 
sum up to one. In order to fix this problem we need to normalize the proposed matrix. 
In order to normalize the matrix we take the transition matrix which is:

Transition matrix:

And add 1/n to all the rows whose sum is not equal to one.
Stochastic matrix:

And finally, the PR matrix will be like:

where IT is an all-one matrix.

Our algorithm

In Algorithm 3, the ORS algorithm there are three main sections. First, PPR values are 
calculated for all the nodes in the graph. Second, a condition is defined by a certain 
threshold, based on the number of nodes in the graph and PPR values found. All the 
nodes in which do not meet the condition will be flagged in the graph. And later all the 
flagged nodes will be ignored by algorithm and their value won’t be estimated.

Two sub-functions of Algorithm  3 are presented here. Algorithm  4 comes into play 
when function Set_l is called from Algorithm 3. It outputs a list of nodes close to the 
end node e, and estimates their closeness probability to the end node e. In Algorithm 4, 
the attempt is to find close neighbors to the end node. The algorithm will run over the 
manipulated data generated in last stage. Threshold used is square root of the given 
thresh hold for the whole graph, to explain the square root of threshold the PPR value 

(12)P = D−1A

(13)P
′ = P +

n
∑

1

1

n
A

(14)P
′ = αP

′ + (1− α)
IT

n
A
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estimated in this part will be multiplied by the PPR value returned from Algorithm 5. 
After that, all qualified node and their relative estimated PPR value with respect to node 
e will be captured in a set named Fe. After that, Algorithm 5 will be read when function 
Set_m is called from Algorithm 3. This function is responsible for generating random 
walks from node i to w as well as for counting the number of walks and their estimation 
values.

Finally, Random Walk Estimation (Algorithm 5) defines the calculation for the second 
half of PPR value; this is done by calculating the number of walks from node i to w and 
by calculating the probability of hitting the first node in Fe. The final step, as given in 
algorithm 3 is to accumulate the values from Algorithms 4 and 5 if they satisfy the con-
ditions defined. 
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Discussion

As stated in “Related work” section, the edge-weighted PPR method is used with model 
reduction based on proper orthogonal decomposition (POD) and principal components 
analysis (PCA). Edge-weighted methods are used to calculate the PR value, whereas 
in ORS, a node-based searching method is used. This section describes how the edge-
weighed method works and why the model reduction used in this method when it is not 
of any use in the optimized search model.

On reduction models based on PCA, a reduced size sample is made out of the original 
contribution vector. However, the contribution vector is based on edge features vector. 
In the proposed work, model reduction based on PCA was applied by building a reduced 
space out of the contribution vector of the nodes set of the graph; R is the space calcu-
lated from contribution vector C = {c1, c2, c3,…, cr}, where C is the proposed edge based 
contribution matrix defined as:

As shown in (15), by applying singular value decomposition (SVD), RC and VC matri-
ces are given. In the next step is to get some approximation of the reduced space UC 
already made, do the calculation and make the changes to the proposed system. This 
means that only significant values in the contribution system will be saved as some new 
equations for the contribution vector, which will guide the next step on how to calculate 
the PPR based on reduced dimension values. As shown in (16), the reduced vector U 
should satisfy the condition.

(15)C = RC
∑

(

VC
)T

(16)vT
[

A(v)Ry(v)− q
]

= 0
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In the last step, the most significant values are obtained from the contribution vector, 
and the reduced PPR vector is calculated accordingly.

For the diagonal matrix, put index I wherever the answer is 1, and ignore it if the 
answer is 0. However, the problem with this method is that, first, all the formulas and 
calculations are edge-weighted and over feature vectors as given in (17) we can make 
the Cw members so that their sum is equal to one using the proposed R reduce vectors 
accordingly. Experiments using edges, in which nodes were used in the search method, 
were based on the work by Xie et al. [24]. Contribution vectors in this work were calcu-
lated using:

The second problem with this method is that many calculations are case-based, and 
depend on graphs and feature data-sets that vary. As a result, many calculation should 
be done in a supervised manner; however, this is time-consuming and takes a great deal 
of effort.

Issue in calculating PR

As mentioned in “Introduction” section, the rank of a node can be calculated from ranks 
of nodes appointed to that node. There are three main issues with PR estimation and two 
groups of problems. One issue involves calculating iterative updates, and the rest involve 
the following. Source nodes are the nodes that have no incoming nodes, and they only 
have out degree nodes. Absorbing nodes are those that have only outgoing links and no 
incoming nodes. Cycles are the nodes following each other in succession. The problem 
with cycles is when they are iterated, the rank goes from one node to another without 
stabilizing on any fixed rank.

The issue of cycling nodes is solved in the algorithm by adding an extra condition 
before going through the calculation check on whether the node number is in the esti-
mation vector: if the node id is there, ignore it; if not, go on. Issues of absorbing nodes 
and source nodes did not affect this study because of the normalization process con-
ducted with the data; another factor was the jumping factor mentioned in “Related 
work” section, which covers any dead-end node.

Experimental results
In this experiment, the correctness of two main ideas were verified. Firstly, by applying 
model reduction methods, the running time of every single query was reduced by the 
minimum time; in addition, the larger the graph, the greater the impact of reduction. Sec-
ondly, the accuracy of results improves, as the insignificant nodes from the PPR calcula-
tion were reduced, which made the estimation of node i to e more accurate and realistic.

(17)Min
∥

∥

∥
vT

[

A(v)Ry(v)− q
]

∥

∥

∥

2

s.t.
∑

j

(

Ry(v)
)

j
= 1

(18)q(v) =
m
∑

s=1

vsq
s

(19)x(t+1) = αPxt + (1− α)
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Set‑up

This experiment was performed on a computer with Intel® Xeon(R) E5−1607 @ 3 GHz 
processors and 16 GB RAM. A single core was used to run the algorithm. All the matri-
ces were loaded in the machine’s main memory before calculating the time spent for the 
search algorithm. All the proposed algorithms were implemented in Java programming 
language, and the library used was Graph Implementation. A JAMA library was used for 
the matrices and their operations.

Data sets

The datasets used in this experiment were a Twitter data set (Directed Network), Orkut 
data set, and a Live Journal graph data set (Undirected Network). Details about the data 
sets used are given in Table  2. Because the main applications for the proposed algo-
rithm are to estimate the distance between two nodes and to find a node by searching 
through neighboring nodes, social data sets are best suited for this manuscript. Tweeter 
and Orkut datasets used in this study were selected as the social network datasets. Simi-
larly, the LiveJournal dataset was from a Russian social network. The Twitter, Orkut and 
Live Journal data sets were downloaded from a website of the Interdisciplinary Research 
Institute [34].

Results and discussion

The results of this experiment are twofold. The best cases were when i-th Èe value was 
estimated on the most popular nodes with a large number of following nodes. On aver-
age, the estimated time was cut in half as compared to previous models. The result was 
based on the number of tested node pairs. The lowest results occurred when the node 
was not a popular node; as a result, there were not many followers. Therefore, there was 
not much of a difference between these results and the work done in FAST_PPR for 
unpopular nodes; however, there still was a big difference between the results and the 
previously standardized methods, as shown in Fig. 1.

Figure 1a presents the lower-bound performance of the ORS algorithm as well as the 
local update, random surfer, and FAST_PPR algorithms. As a result of being in the lower 
bound, the degree of node e is not large and there is not a big difference between ORS 
and FAST_PPR. However, as shown in Fig. 1b, for the upper bound of the algorithm, the 
value for ORS are almost half that for FAST_PPR.

In order to have a clear understanding of the improvement made to the existing 
method when using the proposed algorithms, a comparison was made between the pro-
posed algorithms and a previously existing bidirectional search method, FAST-PPR. The 
“Experimental results” section show that the proposed method worked twice faster than 

Table 2 Basic information on the data sets used

Data set Statistics

Num. nodes Num. edges

Twitter 46,5017 835,423

Orkut 3,072,441 117,185,083

Live journal 4,847,571 68,993,773
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FAST-PPR. For nodes having a high number of incoming degrees, ORS works in half 
the time and with almost the same accuracy; however, for nodes with small number of 
incoming degrees, the speed and accuracy was the same as when using FAST-PPR. After 
flagging the unpopular nodes in the adjacency matrix, they are ignored in calculating 
the estimation value. As a result, the final estimation value might be infected, which can 
result in false negative, i.e. despite existence of a connection, the algorithm return no 
connection. However, with further analysis, it was found out that such a challenge can 
be addressed with a proper threshold based on statistical properties of the nodes.

Conclusion
A new algorithm, ORS, was developed based on model reduction and a bidirectional 
searching method in order to optimize the processing running time of calculating PPR 
estimations. This algorithm estimated the importance of nodes in the graph with respect 
to the initiation and end nodes. Calculation was done over the optimized set of nodes in 
two separated steps. The first step involved going from the node i to reach node w with 
a predefined threshold; in addition, the estimated value was determined from node e to 
node u. Finally, calculations were done, as given in “Our algorithm” section, to deter-
mine if a pair counted as significant or not. The upper-bound complexity of the estima-
tion process in large scale networks was changed from O

(√

a
δ

)

 to 
(√

a
δ−m

)

, where a is 
the graph’s average degree, δ is the given threshold, and m is reciprocal to the number 
of reduced nodes. The lower bound of running time is defined as �

(

1
δ

)

. The accuracy 
used to calculate probabilities is 4/n for the experiments. Lower bound is where there 
are few children for a given node and upper bound occurs when the targets node have 
large numbers of children.

The algorithm was tested using several measures, particularly time complexity and 
performance accuracy. Regarding the time complexity, the upper bound of running time 
changed by two factors of speed for the nodes satisfying the threshold condition. “Exper-
imental results” section demonstrated that after applying the optimized search estima-
tion method to the data sets, as stated in “Data sets” section, processing time improved 
by two factors of speed. It should be noted that these improvements apply to nodes with 
a high number of followers in the corresponding social networks.

Future research includes improving the PPR estimate with regard to several aspects:

1. The amount of space needed to store all the data points created by the algorithm is to 
be modified.

Fig. 1 a Minimum node reduction (left), b maximum node reduction (right)
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2. With the proposed method, the accuracy of the results were not as close to the accu-
racy of standard algorithms, which needs to be improved.

3. The lower bound of the algorithm is �
(

1
δ

)

 at the expense of a little accuracy. This can 
be changed to a predefined constant for all cases.

4. The ORS algorithm estimates the PPR value between a selected pair of nodes at this 
stage. Future research plans to expand this algorithm to all nodes in a graph.
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