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Bacteremia causes hippocampal apoptosis in
experimental pneumococcal meningitis
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Abstract

Background: Bacteremia and systemic complications both play important roles in brain pathophysiological
alterations and the outcome of pneumococcal meningitis. Their individual contributions to the development of
brain damage, however, still remain to be defined.

Methods: Using an adult rat pneumococcal meningitis model, the impact of bacteremia accompanying meningitis
on the development of hippocampal injury was studied. The study comprised of the three groups: I. Meningitis
(n = 11), II. meningitis with attenuated bacteremia resulting from iv injection of serotype-specific pneumococcal
antibodies (n = 14), and III. uninfected controls (n = 6).

Results: Pneumococcal meningitis resulted in a significantly higher apoptosis score 0.22 (0.18-0.35) compared to
uninfected controls (0.02 (0.00-0.02), Mann Whitney test, P = 0.0003). Also, meningitis with an attenuation of
bacteremia by antibody treatment resulted in significantly reduced apoptosis (0.08 (0.02-0.20), P = 0.01) as
compared to meningitis.

Conclusions: Our results demonstrate that bacteremia accompanying meningitis plays an important role in the
development of hippocampal injury in pneumococcal meningitis.

Background
Bacteremia and systemic complications are frequently
associated with pneumococcal meningitis and, in
approximately half of all fatal cases, are judged to be the
primary causes of death [1,2]. Experimental pneumococ-
cal meningitis studies have shown that accompanying
bacteremia not only influenced mortality [3], but also
the meningeal inflammatory response [4], cerebral auto-
regulation [5], and both ventricle size and brain edema
[6]. Apoptosis in the dentate gyrus of hippocampus is
an important histopathological finding in patients dying
from bacterial meningitis [7], and in experimental
meningitis, hippocampal apoptosis has been associated
with the development of learning deficits (for a review
see [8]). Both the invading pathogen [9] and host
immune reactions [10,11] contributed to hippocampal
injury during bacterial meningitis. Whilst it has been
observed that systemically introduced pneumococci
induced apoptosis in a non-meningitis sepsis model
[12], the role of accompanying bacteremia on

hippocampal apoptosis still remains to be defined in
bacterial meningitis. Consequently, we investigated the
role of bacteremia in the development of hippocampal
apoptosis during experimental pneumococcal meningitis.

Methods
All experimental protocols were approved by the Danish
Animal Inspectorate. Meningitis was produced by intra-
cisternal inoculation of ~3 × 104 colony forming units
(CFU) Streptococcus pneumoniae, serotype 3 into the
cisterna magna of anaesthetized (midazolam (1.88 mg/
kg, Dormicum®) and fentanyl/fluanisone (0.12 mg/kg,
Hypnorm®)) adult male Wistar rats (300-320 g in
weight). The study was performed as part of a pre-
viously published magnetic resonance imaging (MRI)
study [6].
The study was comprised of 3 experimental groups:

I) Meningitis (n = 12). II) Meningitis with an attenuated
bacteremia due to treatment with an iv injection of 4.5
g serotype-specific rabbit anti-pneumococcal capsular
serotype 3 antiserum (Pneumosera®, Statens Serum Insti-
tut, Denmark) at time of bacterial inoculation (n = 14).
III) Uninfected control rats (n = 8).
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Cerebrospinal fluid (CSF) and blood samples were
obtained 28 hours after bacterial inoculation and were
analyzed for white blood cell (WBC) count using an
automatic cell counter (Medonic CA620 VET, Boule
Medical AB, Sweden) and for bacterial concentrations
by plating 10-fold serial dilutions. A “disease severity
score” included activity (0-4) and characteristics of eyes
(0-2) and fur (0-2) as previously described in detail (i.e.
0 = normal; 8 = highest disease severity [13]). Rats were
then sacrificed by an overdose of pentobarbital (Mebu-
mal®, Nykomed, Denmark) at 28 hours after inoculation.
However, 8 out of 14 rats having an attenuated bactere-
mia from therapy with serotype-specific antibodies were
sacrificed at 38 hours due to a significant better clinical
performance at 28 hours compared to the meningitis
group (see below). All animals were perfused transcar-
dially with 1.5% paraformaldehyde and their brains
removed and stored in 1.5% paraformaldehyde prior to
histopathological examination.
For the assessment of hippocampal brain damage,

fixed brains were examined for the occurrence of apoto-
sis in the dentate gyrus of the hippocampus. Cryosec-
tions (45 μm thick) were stained for Nissl substance
with cresyl violet. Quantification of apoptotic nuclei in
the hippocampal dentate gyrus was performed as
described earlier [10]. In brief, cells exhibiting character-
istic histomorphological features of apoptosis were
counted in 4 different slices spanning the hippocampus
of the right hemisphere. Three visual fields in each of
the two blades of the dentate gyrus were inspected for
the appearance of cells showing morphological signs
indicative of apoptosis (condensed, fragmented dark

nuclei, apoptotic bodies; Figure 1E). Each visual field
was judged according to the following score: 0-5 cells =
0; 6-20 cells = 1; > 20 cells = 2. A mean value per ani-
mal was calculated from all inspected fields (48 fields
per animal). Apoptosis was evaluated by a person
blinded to the experimental grouping.
Statistically analysis
All results are shown as medians with interquartile
range. Comparisons between two groups were per-
formed with Mann Whitney test. Correlation was per-
formed with Spearman rank test. P-values less than 0.05
were considered significant.

Results
As per the study design, blood bacterial concentrations at
28 hours after bacterial inoculation were significantly
lower in meningitis rats treated with serotype-specific
antibodies (0 Log10 CFU/mL (0-0.9)) as compared
to untreated rats with meningitis (2.3 Log10 CFU/mL
(1.8-2.9), Mann Whitney test, P = 0.001). Meningitis rats
treated with serotype-specific antibodies also had a signif-
icantly lower disease severity score than untreated rats
with meningitis at 28 hours (3 (2.8-3) vs. 4 (3-5), respec-
tively, P < 0.05), whereas no significant differences in
CSF bacterial concentration and in CSF and blood WBC
were observed between the two groups. Uninfected con-
trols had no signs of meningitis and a normal disease
severity score (for details of laboratory data, see [13]).
As shown in Figure 1, untreated rats with meningitis

had a significantly higher score of hippocampal apopto-
sis (0.22 (0.18-0.35) than uninfected controls (0.02 (0.00-
0.02), Mann Whitney P = 0.0003), and when compared

Figure 1 Impact of bacteremia on hippocampal apoptosis in experimental pneumococcal meningitis. A. Meningitis controls had
significantly lower apoptosis scores* than uninfected controls and than meningitis rats with attenuated bacteremia due to treatment with
serotype-specific antibodies (Mann Whitney, P = 0.0003 and P = 0.01, respectively). Bars represent medians. Hippocampal dentate gyrus histology
showed sporadic occurrence of apoptotic cells (arrowhead) in rats with attenuated bacteremia (B+C) as compared to meningitis controls having
a higher number of apoptotic cells (D+E). * Appearance of apoptotic cells were counted in 4 different slices spanning the hippocampus (3 visual
fields in each of the two blades of the dentate gyrus). Each visual field was judged according to the following score: 0-5 cells = 0; 6-20 cells = 1;
> 20 cells = 2. A mean value per animal was calculated from all inspected fields (48 fields per animal).
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to meningitis rats with attenuated bacteremia due to
treatment with serotype-specific antibodies (0.08 (0.02-
0.20), P = 0.01). No significant difference in apoptosis
scores was observed between meningitis rats with atte-
nuated bacteremia that were euthanized at 28 hours or
at 38 hours (0.13 (0.04-0.28) vs. 0.05 (0.02-0.15), respec-
tively, P = 0.3), despite rats euthanized at 38 hours
having a significantly higher disease severity score (5.0
(4.0-5.8)) than rats euthanized at 28 hours (P < 0.05).
The apoptosis scores correlated significantly with CSF

bacterial concentrations, when all meningitis rats were
analyzed together (n = 26, rho = 0.52, P = 0.008), but not
when analyzed within each experimental group (untreated
rats with meningitis: rho = 0.32, P = 0.33, and antibody
treated rats: rho = 0.52, P = 0.06). In meningitis rats, no
correlation was found between apoptosis scores and dis-
ease severity (rho = -0.09, P = 0.67), WBC in CSF (rho =
0.24, P = 0.24), and WBC in blood (rho = 0.10, P = 0.64).

Discussion
In the present study we showed that accompanying bac-
teremia plays a significant role in development of apop-
tosis in the dentate gyrus of the hippocampus during
pneumococcal meningitis. This is in line with our pre-
vious studies and emphasizes the importance of the sys-
temic infection on pathophysiological alterations in
meningitis such as the meningeal inflammatory response
[4], cerebral autoregulation [5], and brain edema [6] as
well as the outcome of pneumococcal meningitis [3].
Whilst several experimental meningitis studies have pre-
viously investigated the impact of various adjunctive
therapies on the development of apoptosis (for a review
see [8]), few reported blood bacterial concentrations
[11,14]. Consequently, for those previous studies where
blood bacterial concentrations were not reported, it
remains largely unclear whether the anti-inflammatory
treatment influenced the degree of bacteremia and sub-
sequent development of hippocampal apoptosis.
Apoptosis in the dentate gyrus of hippocampus is an

important histopathological finding in patients dying
from bacterial meningitis [7], as well as in experimental
meningitis, where hippocampal injury was correlated
with the development of learning deficits (for a review
see [8]). In contrary, no correlation between hippocam-
pal volume loss (evaluated by MRI volumetric analysis
[15]) and academic/behavioral limitation was demon-
strated in surviving children with bacterial meningitis.
Moreover, disturbance in memory has been correlated
to the loss of cerebral volume and to the amount of
white matter lesions in surviving adult meningitis
patients using MRI [16]. However, this discrepancy
could be explained by the relatively low resolution of
the MRI studies suggesting that future high field and
high resolution MRI studies still are warranted.

The exact mechanism by which bacteremia may influ-
ence the development of hippocampal apoptosis remains
largely undefined. In accord with this study, Orihuela
et al. showed that intravenous injection of pneumococci
or pneumococcal cell wall caused neural apoptosis in a
non-meningitis sepsis model [12]. Interestingly, the
development of hippocampal injury was not secondary to
systemic hypotension emerging during the bacteremia
[12]. Also, cerebral ischemia from reduced cerebral blood
flow/systemic hypotension occurring in experimental
meningitis [5] did not significantly influence develop-
ment of hippocampal injury, since therapy with antioxi-
dants [17] and endothelin-receptor antagonists [18] failed
to prevent hippocampal apoptosis, despite preservation
of cerebral perfusion and prevention of cortical brain
damage. In contrast, the systemic inflammatory response
(e.g. sepsis, systemic inflammatory response syndrome)
that may accompany bacteremia could play an important
role. This is supported by mouse studies where IL-10
deficiency resulted in enhanced neural apoptosis, whilst
IL-10 augmentation attenuated neural apoptosis follow-
ing intravenous administration of pneumococcal cell wall
[12]. However, we found no correlation between the hip-
pocampal apoptosis score and the number of blood
WBC, hence further studies are still required to investi-
gate the influence of the systemic inflammatory response
on hippocampal injury.
A limitation of the present study design was that not

all 14 meningitis rats treated with serotype-specific anti-
bodies were euthanized at 28 hours. Eight of these rats
were euthanized at 38 hours in the aim to increase the
disease severity score of rats with attenuated bacteremia
and to mimic meningitis controls regarding disease
severity. Since there was no significant difference in
apoptosis scores between rats euthanized at 28 or
38 hours, this suggests that the results were not con-
founded by the time difference. Indeed, Gianinazzi et al.
have previously shown, in a time course study over 168
hours, the time-point with maximal degree of hippo-
campal apoptosis in experimental pneumococcal menin-
gitis (inoculum = ~105 CFU S. pneumoniae, serotype 3)
was approximately 38 hours after infection [19].

Conclusions
Our findings continue to underline the significant influ-
ence of systemic infection on both outcome and brain
pathophysiology in pneumococcal meningitis including
the development of hippocampal injury.

Abbreviations
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