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Object tracking by an acoustic sensor based on particle filtering is extended for the tracking of multiple objects. In order to
overcome the inherent limitation of the acoustic sensor for the simultaneous multiple object tracking, support from the visual
sensor is considered. Cooperation from the visual sensor, however, is better to be minimized, as the visual sensor’s operation
requires much higher computational resources than the acoustic sensor-based estimation, especially when the visual sensor is not
dedicated to object tracking and deployed for other applications. The acoustic sensor mainly tracks multiple objects, and the visual
sensor supports the tracking task only when the acoustic sensor has a difficulty. Several techniques based on particle filtering are
used for multiple object tracking by the acoustic sensor, and the limitations of the acoustic sensor are discussed to identify the
need for the visual sensor cooperation. Performance of the triggering-based cooperation by the two visual sensors is evaluated and
compared with a periodic cooperation in a real environment.

1. Introduction

Tracking multiple objects has been of great interest in
numerous surveillance-required areas applied in diverse
fields such as military, industry, medical, and mining fields
[1, 2]. Among a variety of sensors deployed in a surveillance
system, an acoustic sensor is widely used since it allows
easy and quick deployment with a less computational
complexity as well as a broad sampling range [3, 4].
Acoustic sensor-based object tracking is widely studied with
several approaches. A time-delay estimation method aims at
measuring the time delays of arrival signals at receivers [5].
A beamforming method uses a frequency-averaged output
power of a steered beamformer [6]. A bearings-only tracking
method aims at estimating position, velocity, and possibly
some extra features by measuring the angles of the objects
[7]. Using particle filtering’s state-space approach, the object
localization from an acoustic sensor is studied in [8], where
the problem of multipath reflection of the acoustic signal
is considered. Throughout this paper, we use a micropower
gradient flow acoustic localizer, where four microphones
measure interaural time differences of an object [3].

Despite the easy deployment of the acoustic sensor,
there are several difficult issues when one acoustic sen-
sor tracks multiple objects. Multiple objects and multiple
measurements are randomly and inconsistently mapped
especially when an acoustic sensor receives the bearing
estimates with negligibly small difference [9]. In addition,
the number of measurements is varying when the objects
do not transmit sound wave, new objects come into an
acoustic sensing range, or objects move out an acoustic
sensing range. The varying number of measurements gives
inconsistent measurement sequences to the acoustic sensor-
based estimator [10]. Furthermore, when measurements are
corrupted by the noise or the dynamic models are incorrect,
the estimation performance is more severely degraded for the
case of the multiple object tracking.

In order to overcome the limitations of the acoustic
sensor-based estimation for multiple objects’ tracking, the
visual sensor-based estimation can be combined [11-15]. In
[11], the visual sensor mainly tracks the objects, and the
acoustic sensor partially supports the estimation when the
tracked objects are occluded. This method is experimentally
shown in a video conferencing environment. In the problem
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FIGURE 1: Resampling of L X J X N(z(k)) particles to L particles.
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FiGURE 2: IMM-PF data flow and the visual sensor cooperation.

of identifying the speaker inside a cluttered meeting room,
audiovisual information from multiple acoustic and video
sensors are combined in [12], where it is shown that
the audiovisual multimodal framework outperforms the
audio-only system in most scenarios. In [13], the acoustic-
visual combining method is presented with the iterative

decoding algorithm from the theory of turbo codes and
factor graphs. This method computes the likelihood values
both from the acoustic sensor and the visual sensor, and
the one with a higher likelihood is selected for a more
accurate estimation. In [14, 15], data from acoustic and
visual sensors are simultaneously combined. In [14], a way
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FiGURE 3: The estimation only with an acoustic sensor for various measurement noise variances 0%:0,0.5, 1.5, and 5.0.

of jointly processing different sources of information is pre-
sented using cooperative Hidden Markov Models (HMM:s)
with appearance models whereas in [15], a particle filter
tracker is applied for both acoustic and video observation
regarding the overlapped state-space models. Our interest
is to minimize the resources from visual sensor since the
visual sensor-based object localization requires much higher
computational complexity [16, 17], and the visual sensor is
assumed to be deployed for other purposes, so the visual
sensor cannot dedicate its operation to support one acoustic
sensor. A similar joint tracking can be found in [18, 19] with
a specific application in mind. A large number of sensors are
used in a heterogeneous sensor network to cover a large area
in [18] whereas the concert hall application is considered in
[19]. We take the approach where an acoustic sensor mainly
tracks the multiple objects and the visual sensor cooperation
is performed only when the acoustic sensor has a difficulty.

Therefore, the cooperation is triggered by the acoustic
Sensor.

The acoustic sensor-based estimation is performed with
bearings-only tracking developed by the sequential Monte
Carlo methods known as the particle filter. In the fields
of wireless communications, navigation systems, sonar, and
robotics applications, the particle filtering is adopted as
an emerging powerful tool for solving nonlinear and non-
Gaussian problems [20-23]. The particle filters are generally
used for an estimation and/or a detection of dynamic system
parameters or states in real-time application. While the
particle filter with an acoustic sensor tracks multiple objects,
the visual sensor detects the objects and localizes their
positions when the acoustic sensor triggers for the visual
sensor cooperation.

The remainder of the paper is organized as follows. In
Section 2, the object tracking by the acoustic sensor with
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FIGURE 4: Visual sensor cooperation performance for periodic cooperations with T,: 1075, 30T, 50T, and 1007, based on the result with
measurement variance 5.0 in Figure 3(d) (500 particles are used in the simulation).

the multimodel and multimeasurement particle filtering is
introduced as a background. In Section 3, several issues in
tracking multiple objects based on an acoustic sensor are
presented, and the corresponding triggering conditions are
proposed for the visual sensor cooperation. In addition,
the performance of the proposed visual sensor cooperation
is compared with a periodic visual sensor cooperation. In
Section 4, we verify the visual sensor cooperation with
real data through the experiment. Our contribution is
summarized and the final remarks are given in Section 5.

2. Background

2.1. Object Tracking with Multimodel and Multimeasurement.
The acoustic sensor’s object tracking is performed with
bearings-only measurements. A bearings-only tracking is to

estimate object positions and velocities with a sequence of
noisy bearing measurements [7, 24]. For an object of interest,
its state at discrete time k, k € {1,2,...}, is described by

x(k) = F"®x(k — 1) + w(k - 1), (1)
z(k) = H(x(k)) + v(k), (2)

where x(k) denotes the state vector of the object as
[x(k)y(k)V"(k)Vy(k)]T and z(k) is the corresponding
bearing measurement for the object. [x(k), y(k)] is the
2-dimensional location of the object at time k, and
[V¥(k)V?(k)] is the x- and y-directional velocity of the
object at time k. H(x) is the bearing measurement function
for state vector x as H(x(k)) = arctan((y(k))/(x(k))).
The noise random process w(k — 1) and measurement
noise v(k) are modeled as zero-mean independent Gaussian.
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F" is the 4 x 4 state-transition matrix for model m,
m € {1,2,...,]}, where ] is the number of the hypoth-
esized models [1, 25] and m(k) is the model index at
time k for the object in tracking. The model plays an
important role to estimate an object state by representing
complicated object motion with mathematical expression.
Various mathematical models of object motion have been
developed for both practitioners and researchers in the
tracking community [26]. In this paper, we adopted con-
stant velocity model, clockwise coordinated turn model,
and anticlockwise coordinated turn model. For the object
of interest, the model switching is governed by a finite-
state Markov chain according to the switching probabilities
Prob[m(k) = v | m(k — 1) = u] of switching from
model u to v, u,v € {1,2,...,]}. Note that this switching
probabilities are not needed in the following estimation. As
there are multiple bearing measurements, let z(k) denote a
set of measurements as {z'(k),z2(k),...,zV =) (k)}, where
Zi(k) is the ith measurement and N(z(k)) is the number
of bearing measurements at time k. Also, define z/(1
k) as the set of measurements up to and including time
k as {z/(1),7(2),...,Z'(k)}, where i = 1, 2,...,N(z(k)).
Note that as the unlabeled measurements are received by
an acoustic sensor, it is not known which measurement
index corresponds to the object of interest. Furthermore, the
correspondences between the objects and the measurements
are not consistent—the relationship changes over time.

The goal of object tracking is to estimate the state of
the object and the probability that the object’s model index
is m at time k for the given history of observations. More
specifically, based on the particle filtering, the following
items are estimated:

(i) conditional probability density function (pdf) of the
object’s state x(k) at time k given the history of
observation up to time k; p(x(k) | z(1 : k)),

(ii) conditional expected state when the model index is m
at time k; X,,(k),

(iii) unconditional probability that the object’s model
index is m at time k; pp, (k),

where m € {1,2,...,]J} and Z{ﬂ:hum(k) = 1. Conditional
expected means and the probabilities are not directly used
for the object tracking but they are used to trigger the visual
sensor cooperation discussed in the next section. As we use
the particle filtering technique for the state estimation, the
conditional pdf is estimated with many particles in the state
space, where each particle is of equal conditional probability
density through the sequential importance resampling (SIR)
algorithm [27]. L, L > 1, particles are updated for every
new observation, and the estimation is done as follows.
L resampled particles are given, and they represent the
conditional pdf, p(x(k—1) | z(1 : k —1)). Then, there is a set
of new N(z(k)) measurements {z'(k),z2(k),...,zN®®) (k).
From these measurements and the given L particles, we want
to obtain

(i) L resampled particles representing p(x(k) | z(1 : k)),

(ii) conditional mean vector, X,,(k) and the uncondi-
tional probabilities of the object’s model, wp,(k),
where m € {1,2,...,]}, then eventually the mean
vector estimate X(k) as the weighted sum.

2.2. Multiple Model Particle Filter with Visual Sensor Coop-
eration. The state estimation is done by the interacting
multiple model particle filter (IMM-PF) framework [28].
The IMM estimator is a state-estimation algorithm for a
system represented by Markovian switching model with
multiple model indices. In the particle filtering stage at time
k, L x J, particles ﬁg,)(k), for ] € {1,2,...,L} and m €
{1,2,...,]}, are drawn from the previous a posteriori density
function p(x(k—1) | z(1 : k—1)) for each model m as follows:

20 (k) = FmO(k — 1) +nW(k), forl € {1,2,...,L},

m e {1)27---’]})
(3)

where XV (k — 1) is the resampled particles at time k — 1 and

ny (k)’s are identically distributed independent Gaussian
zero-mean noise. The predicted bearing measurements to

particles %D (k)’s are obtained as

20k | k= 1) = H(ZD(K)) = arctan i (k) @
m m k\%)(k) ,

for I € {1,2,...,L} and m € {1,2,...,]}, where
@%) (k),f%)(k)) is the Ith particle’s 2-dimensional position

of )A(ﬁ,)(k) with model m. Note that there are L X ] predicted
measurements for the object of interest. These LxJ predicted



6 EURASIP Journal on Advances in Signal Processing

50 " ]

§ Q 4 [0} o - A oo +® QA
2

40 - B i
<

g w0 : :
h~1 o

8 g _
o %)

>20F S ]
=

Q -
=

10+ 3 .
=

0 1 1 1 1 1
0 0 20 40 60 80 100 120 140 160 180 200

X position (m)

(a) The 23-meter radius acoustic sensing range and object trajectories

Acoustic sampling time

« »

(b) Triggering timings where “o0” is by the varying number of objects

and “x” is by the measurements resolution problem

FIGURE 6: The triggering timings based on system dynamics.

O e © e

®

© T O,
Lo @/9@ 3

(a) I(k—1)=3

(c) N(z(k)) = I(k-1) (d) N(z(k)) = I(k-1)

73

150
1@

(e) N(z(k)) = I(k—1)

() N(z(k)) = 1(k-1)

FIGURE 7: Examples when the triggering based on (14) does not work.

Bearing measurement z* (k)

(x(k), y(K)

FIGURE 8: 95% confidence true bearing ranges-based triggering
method.

measurements lead to the weight evaluation from the set of
actual measurements z(k)

Wil (k) = d(2(k) = 20 | k= 1), (5)
fori € {1,2,...,N(z(k))}, I € {1,2,...,L}, and m €
{1,2,...,]}, where d(-) is the particle weight evaluation
function from the Gaussian probability density function
[23, 29]. Since each particle ﬁ%)(k) is assigned with N(z(k))
weights, there are L X J X N(z(k)) weights. W’,;,(l)(k) denotes
the (unnormalized) weight of the /th particle in model m for

given measurement z'(k). These L x J x N(z(k)) weights are
normalized as follows:

i',l
wil) (k)

N(z(k N 4
Sy S S (k)

wyi (k) (6)
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FiGurek 11: Particle distribution containing 95% (20 confidence) of
the particles assuming they are Gaussian distributed.

for i € {1,2,...,N(z(k))}, I € {1,2,...,L}, and m €
{1,2,...,J}. The SIR algorithm is used to obtain XD (k)s,
I € {1,2,...,L} with the equal conditional probability

density from f{,&?(k) particles with wih(l)(k) weights. Note

that there are L X ] particles, and each particle has
N(z(k)) weight values. However, in order to apply the
SIR algorithm, each particle has to have only one weight.
Each particle is identically copied N(z(k)) times to have
the same number of weights, then the SIR algorithm is
applied as in Figure 1, where L X J X N(z(k)) particles are
transformed to L resampled particles. Fach circle in Figure 1
illustrates the weight of the particle. The resampled particles
are assigned with an equal weight of 1/L. The particles
distribution with the resampled particles X (k) with each
corresponding weight value 1/L represents the conditional
pdf of p(x(k) | z(1:k)). The resampled particles, X (k),
are used for generating particles )A(%)(k + 1) as in (3) for time
k+1.

In order to estimate the final estimated state vector
denoted as X(k), the joint probability density association
(JPDA) method is used, which makes use of all LxJxN (z(k))
particles. X(k) can also be obtained from the resampled L
particles, but using the original L X J X N(z(k)) particles can
give a better mean estimate of the state. The JPDA technique
uses a weighted average of all the measurements falling inside
an object track’s validation region to update the object state
[30]. In addition, the weighted average of all possible |
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Figure 15: Four microphones measure interaural time differences
of an object, and the azimuth and elevation angles are derived by
scaling the speed of wave propagation and the unit dimensions of
the microphones array.

models is also applied for estimating X(k). First, X, (k)’s, the
conditional means of the state given each measurement z*(k)
over the particles set, )’Egl)(k)’s of model m is obtained as

L
(k) = > (k) - whD(k), forie {1,2,...,N(z(k))},
=1
me {1,2,...,]}.
(7)

Then, X,,(k)’s, m € {1,2,...,]}, the conditional means of the
state for model m is obtained as

NGk) '
Xn(k) = 3 %, (k) - i (K), (8)

i=1

where pi, (k) represents the probability that the model index
is m given the measurement z*(k), and it is obtained as

St win (k)
Sho(SEowi ) (9

forie {1,2,...,N(z(k))},

ul, (k) =

me {1,2,...,]}.

Finally, the mean state vector estimate X(k) is obtained as

J
X(k) = > Xm(k) - pm(K), (10)
m=1

where p,,(k)’s, m € {1,2,...,]}, is the probability that the

object’s model index is m, and it is obtained as
Zf\i(ll(k)) ‘lxllm(k)

S (S ()

pm(k) = (11)

Let (x["(k), yII(k)) denote the visually localized position
of the triggered object at time k. Then, if the cooperation
is performed at time k, the final estimated state vector
x(k) = [®(k)7(k)V (k)V”(k)]" of the object of interest is
replaced by [x!V(k)y!"(k)V" (k)V” (k)]. Figure 2 illustrates
the acoustic sensor-based IMM-PF data flow incorporated
with the visual sensor cooperation, where the triggering
conditions can be from measurements and/or estimated
results with the particle filtering.

3. Effect of Visual Sensor Cooperation

In this section, the triggering conditions of the visual sensor
cooperation are discussed. As a reference, unconditional
periodic triggering is discussed in Section 3.1, and we
show that additional triggering conditions are needed unless



10

B Camera Viewer

EURASIP Journal on Advances in Signal Processing

SNAP SHOT
BACKGROUND UPDATE
auim
I Show D [v] Show localspace
[|Save Al [ Save final image
| Save histogram || Save basic
Save debug || Save background
¥ Motion Box (¥ Valid 1 {Red)
¥ Valid 2 (Green) || Valid 3 (Gray)

Tyne of Debug Window
Motion: object i

Type of Bounding Box
|Local Tracking |+ |

MinAssoCorr : 0.1

PAUSE

FI1GURE 16: Visual sensors-based tracking demo: two visual sensors simultaneously detect, identify, and localize multiple objects.

the cooperation period is sufficiently small. The acoustic
sensor-based estimation can have difficulties from two dif-
ferent perspectives—the system dynamics and the estimation
performance. These two issues can be considered as two
different triggering conditions. First, due to the system
dynamics, the number of objects in tracking and the number
of measurements in the acoustic sensor can be different. If so,
the acoustic sensor cannot track multiple objects correctly,
and the support from the visual sensor is needed. There
can be several cases for the system dynamics, and they are
discussed in Section 3.2. The performance degradation of
the object tracking by the acoustic sensor, in our application
the particle filter’s performance, can be overcome by the
support from the visual sensor even when the number of
tracked objects and the number of measurements are the
same. In this case, the performance of the estimation can
be a condition for the triggering, and they are discussed
in Section 3.3. Performance improvement by having the
two triggering conditions is presented by the simulation
in Section 3.4. Throughout this section, the acoustic-based
bearing measurements are simulated instead of real bearing
estimates. In addition, the visually localized position of the
triggered object is assumed to be given. On the condition,
we will first evaluate and analyze the performances of the
acoustic sensor-based particle filter and our visual sensor
cooperation method.

3.1. Periodic Visual Sensor Cooperation. Suppose that the
visual sensor periodically localizes the object positions and
supports the acoustic sensor-based estimation every visual
sampling time T). Note that we define acoustic sampling time
as T;. In order to verify the effect of the periodic visual sensor
cooperation, the tracking environment with three objects
and an acoustic sensor are used as follows.

(i) Objects O', 0%, and O? are initially positioned at
(50 m,30 m), (35m,50 m), and (45 m,45 m), respec-
tively. Trajectories of the three objects are shown in
Figure 3(a). Note that the simulation dimension is set
to 50 m X 50 m for simulation analysis only, and the

dimension is practically adjusted in the next section
for the real data experiment.

(ii) Each object trajectory is sampled by 200 acoustic
bearing data, and T = 1 second.

(iii) Three models are considered — constant velocity F(),
clockwise coordinated turn F®, and anticlockwise
coordinated turn F® with manoeuvre rotation accel-
eration 0.01 m/s? [26]. They are

10T, 0
01 0 T
(1) —
B - 001 0
00 0 1
sin(D‘{,(cp)Ts) (1 — cos(i)‘{,(f)Ts))
- AP
k k
01 (l—cos@%,((p)Ts)) sin(i)%ip)ﬂ)
F(P) _ ml(cp) %}((P)

—sin (%ip) Ts)

cos(i)‘igf)Ts)
(12)

where p = 2,3 and ERI((P ) is the model-dependent
turning rates expressed as

R = £ ,
JVE(k = 1)) + (V2 (k - 1))
» (13)
%y

Ve =12 + (k- D)
with « being the factor determining the rotation
degree as 1 m/s?.

(iv) Measurement noise variance 2 varies from 0.0 to 5.0,
which corresponds to v(k) in (2).
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Figure 3 shows the performance of the acoustic sensor
based estimation for various noise variances, where 500
particles are used for each object in each model. As the
noise variance increases, the estimation has a higher Root-
Mean-Square (RMS) position error. Especially with the noise
variance of 5.0, the RMS position error of each object is 3.98,
9.80, and 1.08, respectively. Under the same condition with
the noise variance of 5.0 in Figure 3(d), the visual sensor
periodically supports the acoustic sensor-based estimation
by updating the localized object position for each object.
The effect of the periodic visual sensor supporting different
sampling time T, is shown in Figures 4 and 5. In Figure 4, the
estimated trajectories are shown for different visual sensor’s
sampling times T,: 10T;, 20T, 5075, and 1007T;. Figure 5
shows the average RMS position errors with visual sensor’s
sampling time T, from 17, to 1007 through 1,000 time
trials, respectively.

From the results shown in Figures 4 and 5, it is difficult
to find an optimal visual sensor’s sampling time T,. It can
only be seen that the estimated object position becomes
more accurate as the visual sensor’s sampling time T, is
close to the acoustic sampling time T;. Even when the
acoustic sensor estimates an object’s position close to the true
position, the visual sensor may unnecessarily support the
acoustic sensor through the periodic cooperation. In order
to efficiently use the precious visual sensor cooperation, it
has to be triggered only when the cooperation is necessary.
Furthermore, the periodic cooperation does not efficiently
support the acoustic sensor-based estimation against devi-
ated estimation, measurement resolution problem, and a
varying number of objects. These issues are discussed in the
following subsections.

3.2. Triggering Based on System Dynamics. An acoustic
sensor can have a difficulty in measuring multiple bearing
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measurements when the difference is negligibly small—the
acoustic sensor has a limited resolution of Azuigca [3, 31].
The bearing measurement difference of two objects less than
AZcritical Can cause an acoustic sensor to recognize only one
sound wave by merging the multiple incoming sound waves.
Let I(k) denote the number of objects estimated by the
acoustic sensor at time k. Then, if the acoustic sensor cannot
differentiate the objects, the number of measurements at
time k, N(z(k)) and the number of estimated objects at time
k — 1 become unequal as

N(z(k)) #I(k —1). (14)

The visual sensor cooperation should be triggered in case of
(14). Once the visual sensor supports the acoustic sensor-
based estimator with the visually localized positions at time
k, the number of estimated objects I(k) is updated and
verified with N(z(k + 1)) for time k + 1.

Together with the measurement resolution problem, an
acoustic sensor also has a difficulty in estimating the state
with a varying number of objects/measurements positioned
within the measurable range of the acoustic sensor. The
number of measurements is varying when the objects
do not transmit sound wave, new objects come into an
acoustic sensing range, or objects move out an acoustic
sensing range. Then, similarly to the measurement resolution
problem, the number of measurements at time k and the
number of estimated objects at time k — 1 become unequal
as in (14). More specifically, in the varying number of
objects/measurements, if N(z(k)) < I(k — 1), objects move
out of acoustic sensing range, or/and an acoustic sensor does
not receive bearing measurements from objects at time k. On
the other hand, if N(z(k)) > I(k— 1), new objects are moving
into the acoustic sensing range at time k. That is, the varying
number of objects/measurements can also be triggered for
the visual sensor cooperation with the same condition as
(14). After the visual sensor cooperation, I(k) is updated and
verified with N(z(k + 1)) for time k + 1.

Consider the environment shown in Figure 6(a), where
the acoustic sensor is positioned at (25m,25m), while the
bearing sources are sampled every 1 second during 200
seconds period with the noise variance of 3. Object 1 and
object 2 start from (5m,3m) and (22m,3m) with ini-
tial velocities of (0.2m/s,0.2m/s) and (—0.2m/s,0.2m/s),
respectively. Two objects are with model F(!) except at time
k = 51T, 101Ts, and 151T. Their models at those times are
F? or F® defined in (12), and the resulting trajectories are
shown in Figure 6(a). Object O' is moving into the acoustic
sensing range at time 25T and object O? is moving out at
time 175T;. The new object O%, is moving in the acoustic
sensing range at time 637 and moving out at time 1887T5.
Object O is initially with model F"), and it changes to F?)
and returns to FV at time 1017 and 1517, respectively.
Figure 6(b) shows the triggering timings based on the system
dynamics including the measurement resolution problem
and the varying number of objects. For better understanding,
“0” is marked when the triggering timing is caused by the
varying number of objects, while “x” is marked when it is
caused by the measurement resolution problem.
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3.3. Triggering Based on Estimation Performance. The trig-
gering based on (14) cannot trigger the visual sensor
cooperation for a simultaneous varying number of objects
or measurements. Figure 7 shows several examples. Given
the three objects in Figure 7(a), Figure 7(b) shows that a
new object O* moves into the acoustic sensing range, while
O® bearing measurement is not received by an acoustic
sensor. In this case, the number of objects I(k — 1) and the
number of measurements N (z(k)) are the same even though
the number of objects is varying and the cooperation of a
visual sensor is needed. Similarly, the condition in (14) does
not trigger a cooperation either for the case in Figure 7(c),
where the new object O* moves into the acoustic sensing
range, while O® moves out the acoustic sensing range. Figures
7(d), 7(e), and 7(f) also illustrate similar cases, where the
cooperation is not triggered despite the need. The cases in
Figures 7(b) through 7(f) should trigger the visual sensor
cooperation by considering the estimation performance at
the particle filtering state.

The triggering based on the estimation performance is
to find the triggering timing with the deviated estimation
at the particle-filtering stage, while the triggering based on
the system dynamics is to find the triggering timing with
the inconsistency between I(k) and N(z(k)). The deviated
estimation is caused by the cases in Figure 7 or an incorrect
interaction between the measurement and the predicted
particles. It is nontrivial to evaluate how the estimated
position is deviated from a true object position because an
acoustic sensor receives only the bearing measurements, and
the triggering should be based on the difference between the
angle from the estimated position and the bearing measure-
ment. Let (X(k), ¥(k)) be the estimated position of an object
and a bearing measurement z/(k), i € {1,2,...,N(z(k))}
with noise variance ¢ are given as illustrated in Figure 8.
Assuming that the bearing measurement z'(k) follows the

Gaussian distribution, its range between z'(k) — 20 and
z'(k) + 20 contains 95% (20 confidence) of the true bearing.
Then, the estimated position (¥(k), y(k)) is considered as a
deviation if the following condition is satisfied

YK\ _
arctan(x(k)) <z'(k)-20 or

(15)

y(k) i
arctan(x(k)) > 7Z'(k) + 20,

Vie {l,2,...,N(z(k))}.

This means that if no bearing measurement falls within
+20 of the estimated angle, then the visual sensor is
triggered for the cooperation. Note that the measurement
variance o? is known from the acoustic sensor’s performance
characteristics.

The 95% confidence true bearing range plays an impor-
tant role to evaluate the deviated estimation, especially
for estimating multiple object states with multiple models,
I(k) > 1 and J > 1. Consider the estimation with multiple
objects and two models. Figure 9 illustrates a deviated
estimation example with simplified sequential steps from
particles generation to object state estimation. In Figure 9(a),

~

two-model-based particles 20 (k) and £ (k) are gener-
ated for an object, and the unlabeled measurements z!(k)
and z%(k) are updated. Suppose that measurement z!(k)
is obtained from the object of interest while measurement
z?(k) is obtained from another object. Suppose also that
0 (k) is generated close to z! (k) and 20 (k) is generated

close to z%(k). Then, in Figure 9(b), particles’ weights for

—1,(1:L)

model 1 given measurement z!(k), w; and particles’

weights for model 2 given the measurement z*(k), wylh)

are evenly dominating for the particles 20 (k) and £ (k),



EURASIP Journal on Advances in Signal Processing

o o o
N =) =S
L L L

Triggering probability

o
)
L

OLLB_LJ_LUJM_EL_A_AMJ_LUJJJ_M_U_MILMLUA_LLULL

0 50 100 150 200 250 300 350 400 450 500
Ts
(a) Triggering probabilities with visual sensor cooperation in the
sensor A
1r i
0.8 E

e
=
L

Triggering probability
<
=

e
o

Ohm., TR MMMWWW

0 50 100 150 200 250 300 350 400 450 500
T

(c) Triggering probabilities without visual sensor cooperation in the
sensor A

13
1. -
0.8 R
j
;'—‘5
2
S 06 k
a,
o1s)
.8
& 04 ¢ |
j=19)
=
0.2 E
0 P T P T T W N lll.lll [ |
0 50 100 150 200 250 300 350 400 450 500

T

(b) Triggering probabilities with visual sensor cooperation in the sensor
Ay

1. -
0.8 B
jn
E
S 061 h
(=¥
1)
g
-
5 0.4 1 |
oo
Z
0.2+ g
ol M’I Abodl | oMK LHIA’IA [ | ﬂl‘mhﬂ“ A
0 50 100 150 200 250 300 350 400 450 500

Ts

(d) Triggering probabilities without visual sensor cooperation in the
sensor Ay

FI1GURrk 19: Triggering probabilities of the two sensors between 17T and 5007T;.

respectively. According to the weights, the estimated object
state X(k) is obtained with the average of each model-
based particles information. Finally, the bearing of the
estimated position arctan(y(k)/x(k)) strays off from the
95% confidence true bearing range of z! (k) as illustrated in
Figure 9(c).

However, the 95% confidence true bearing range as in
(15) does not necessarily trigger the visual sensor coop-
eration. Figure 10 illustrates another deviated estimation
example, where the visual sensor cooperation cannot be
triggered with the 95% confidence true bearing range from
the condition in (15). Similarly to the example in Figure 9,
suppose that measurement z! (k) is obtained from the object
of interest while measurement z2(k) is obtained from another
object. In Figure 10(a), two-model-based particles R (k)
and f(él:L) (k) for the object of interest are generated and both
of them are at the angle close to z! (k). Then, in Figure 10(b),
particles’ weights for model 1 given measurement z' (k) and

particles’ weights for the model 2 given the measurement

2 (k), wy"" and w,"" are evenly dominating for the
particles 250 (k) and £ (k), respectively. According to the
weights, the estimated object state X(k) is obtained with
the average of each model-based particles. As illustrated in
Figure 10(c), even though the estimated object state X(k) is
deviated by the two models, the bearing of the estimated
position arctan(y(k)/x(k)) does not trigger the visual sensor
cooperation from the condition in (15).

In order to overcome the limitation of the triggering
with the 95% confidence true bearing range in (15), we
consider an additional triggering condition based on pre-
dicted particles distribution. The particle distribution can
be expressed with an ellipse representing the region, which
contains 95% (20 confidence) of the particles assuming
that they are Gaussian distributed [32] in two dimensions.
Denote the 95% confidence ellipse of }A(S-IZL)(k) as D;(k),
where j € {1,2,...,M} represents the model index.
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Figure 11 illustrates the 95% confidence particles ellipses
D; (k) and D;(k) corresponding to 20 (k) and =5 (k)
in the deviated estimation example in Figure 10. If the
estimated position (X(k), y(k)) is obtained outside the 95%
confidence predicted particles ellipse as in Figure 10, then it
is considered as a deviation. In a general form, the estimated
position (X(k),y(k)) is considered as a deviation with the
condition of

(x(k),y(k)) ¢Dj(k), Vje{1,2,...,M}. (16)

Even though the 95% confidence particles ellipses in the
condition (16) is to overcome the limitation of the triggering
with the 95% confidence true bearing range in the condition
(15), these two conditions should be used together—at least
one condition indicates a deviation, then the cooperation
should be triggered. Figure 12 illustrates another deviated
example, where the visual sensor cooperation are triggered

not by (16) but by (15). Also, suppose that measurement

z!(k) is obtained from the object of interest while measure-
ment z*(k) is obtained from another object. In Figure 12(a),
three-model-based particles £\ (k), 2" (k), and %" (k)
for the object of interest are generated as, f((ll:L)(k) are
generated close to z'(k), and )A(gu)(k) are generated close to
z2(k). Then, as illustrated in Figure 12(b), each model-based
particles’ weights D) g2 (i) bl g (D) - (L)
and W?’(I:L) are evaluated corresponding to the unlabeled

—1,(1:L
Wl( )

measurements z!'(k), z2(k), and z°(k), where and
wy " are evenly dominating for the particles %" (k) and
ﬁgu)(k), respectively. Finally, the estimated object state X(k)
is obtained with the particles information averaged over
model 1 and 2, which is close not to %\"”(k) but to
ﬁgu)(k). In this case, the estimated position (x(k), y(k)) is
satisfied with (16), but the bearing of the estimated position
arctan(y(k)/x(k)) is not satisfied with (15) as illustrated in

Figure 12(c). Thus, the 95% confidence particles ellipses in
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(16), and the 95% confidence true bearing range in (15)
should be considered together.

3.4. Performance Evaluation with Simulation. In this sub-
section, the performance of the triggering-based visual
sensor cooperation is evaluated with the comparison to
the performance of the periodic visual sensor cooperation
as well as nonvisual sensor cooperation (acoustic-only
case). For the performance evaluation, the environment
described in Figure 6(a) is considered with 200 acoustic
sampling times, and the simulated bearing estimates are
corrupted by noise variance 3. There are 100 trials to
get the average results. Figure 13 shows the average RMS
position errors corresponding to triggering-based visual
sensor cooperation, periodic visual sensor cooperation, and
nonvisual sensor cooperation (acoustic-only case). As shown
in Figure 13(a), the average RMS position errors of object
O! is 1.38 based on the triggering-based visual sensor

cooperation and 7.54 without the visual sensor cooperation.
Also, the average RMS position errors with the periodic
visual sensor cooperation are shown according to different
visual sensor’s sampling time T,: 1T; to 1007;. In the
triggering-based visual sensor cooperation, the average visual
sensor’s sampling time T, is approximately 4.557. In the
periodic visual sensor cooperation, on the other hand,
the visual sensor’s sampling time T, corresponding to the
average RMS position error 1.38 is approximately 4.167.
It shows that the triggering-based visual sensor cooperation
requires less visual sensor resources than the periodic visual
sensor cooperation for the same tracking performance.
Similarly, Figures 13(b) and 13(c) show the same pattern
for objects O? and O°. Furthermore, in the periodic visual
sensor cooperation, the visual sensor’s sampling time T,
corresponding to the average RMS position error 0.64
is approximately 4.217; on an average over the three
objects.
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TaBLE 1: Performances of the triggering-based visual sensor coop-
eration, the periodic visual sensors cooperation and the nonvisual
sensor cooperation (acoustic-only case).

(a) Average RMS position errors.

Nonvisual sensor Triggering-based

cooperation :
(acoustic-onl visual sensors
case) Y cooperation
Object 1 7.54 1.38
Object 2 3.70 0.24
Object 3 5.54 0.32
Total average 5.59 0.64

(b) Equivalent visual sensor cooperation period.

Nonvisual sensor Triggering-based

cooperation :
. visual sensors
(acoustic-only .
cooperation
case)
Object 1 4.16T;
Object 2 4.28T; 4.55T;
Object 3 4.197,
Total average 4217,

Table 1(a) summarizes the average RMS position errors
with the triggering-based visual sensor cooperation and
the nonvisual sensor cooperation (acoustic-only case).
Table 1(b) summarizes the average triggered visual sensor’s
sampling time and the periodic visual sampling time cor-
responding to the performance level as same as the RMS
position error in the triggering sensor-based cooperation. In
practice, the optimal period of visual sensor cooperation is
unknown since the triggering mechanism is dependent upon
the system dynamics and the estimation performance. In
any environment, triggering the visual sensor cooperation

can adapt to the cooperation period, while periodic visual
sensors cooperation may waste resources. In addition, under
the cooperation period restriction due to network delay and
image processing, the triggering mechanism may support the
cooperation to the objects with the highest priority since it
can recognize critical cases.

4. Experiment and Analysis

4.1. Experiment Setup. The visual sensor cooperation with
the acoustic sensor-based estimation is considered in an
indoor environment with size 14.63m x 8.23m illus-
trated in Figure 14. Object O! starts with initial velocity
(0m/s,—0.3m/s) from position (2.9m,4.5m) object O?
starts with initial velocity (0.3m/s,—0.1m/s) from posi-
tion (4.8m,3.5m), object O starts with initial velocity
(0m/s,0m/s) from position (5.1 m,8.2m). Two acoustic
sensors A; and A, are deployed on the ceiling positioned
at (3.2m,1.9m) and (7.6 m,6.8m) each with 100 emu-
lated samples per second. Each acoustic sensor receives
the acoustic samples with variance 3 during 19 seconds
and tracks the objects independently. Three visual sensors
Vi, V,, and V3 are placed at positions (1.9m,6.3m),
(13.4m,5.0m), and (5.5m, 0.3 m) each with 6 samples per
second.

4.2. Object Tracking with an Acoustic Sensor. The acoustic
sensor is used with a micropower gradient flow acoustic
localizer, where four microphones measure interaural time
differences of an object [3]. The microphones are connected
to the National Instruments USB-9162 to obtain the acoustic
signals. By scaling the speed of wave propagation and the
unit dimensions of the microphones array, the direction of
azimuth and elevation angles are derived. Figure 15 shows
the microphones for the micropower gradient flow acoustic
localizer deployed in the sensor network.
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4.3. Object Tracking with a Visual Sensor. In our application,
once an acoustic sensor triggers for visual sensor coopera-
tion, the visual sensor performs the object localization and
supports the acoustic sensor with the localized position.
The visual sensor localizes the object positions with the
parallel projection model which supports zooming, panning,
and tilting of the visual sensor [33, 34] and simplifies
the computational complexity in determining the object
positions with automatically focusing on the objects. As the
visual sensor cooperation is triggered, a pair of visual sensors
simultaneously detect, identify, and localize the multiple
objects as shown in Figure 16. The objects are detected with
motion analysis and color information as shown in [35, 36].
We assume that the viewable range of the visual sensors and
the measurable range of the acoustic sensor are overlapped
so that the visual sensors support the localized positions of
the objects moving within the measurable range of acoustic
SEensors.

4.4. Objects Dynamic Characteristics with Acoustic Sensing
Range/Capability. Figure 17 shows the three objects move-
ment by switching three dynamic models: the constant
velocity with F() (CV), the clockwise coordinated turn
with F@ (CT), and the anticlockwise coordinated turn with
F® (ACT) in (12). Also, the three people (objects) were
instructed to make a constant-strength-sound when they
move. Object O' starts with the CV model for 3.6 seconds.
Between 3.6 seconds and 7.1 seconds, the object moves with
the ACT model with « = 0.15m/s?. Between 7.1 seconds and
13.5 seconds, the object moves with the CV model. Between
13.5 seconds and 15.0 seconds, the object moves with ACT
model with « = 0.20 m/s?. Finally, between 15.0 seconds
and 19.0 seconds, the object moves with the CV model. In
the mean time, Object O! was additionally instructed not
to make a sound between 5.0 seconds and 7.0 seconds (for
two seconds). Object O? starts with the CV model for 4.5
seconds. Between 4.5 seconds and 6.1 seconds, the object
moves with the ACT model with « = 0.45m/s?>. Between
6.1 seconds and 7.5 seconds, the object moves with the CV
model. Between 7.5 seconds and 8.5 seconds, the object
moves with the ACT model with « = 0.30 m/s?>. Between
8.5 seconds and 9.5 seconds, the object moves with the CT
model with &« = 0.30m/s. Between 9.5 seconds and 13.0
seconds, the object moves with CV the model. Between 13.0
seconds and 16.0 seconds, the object moves with the CT
model with a = 0.25 m/s?. Finally, between 16.0 seconds and
19.0 seconds, the object moves with the CV model. Object O3
initially does not move without making any sound for 13.0
seconds, and starts to move with the CV model and sound
between 13.0 seconds and 19.0 seconds.

In addition, given the acoustic sensors A; and A, shown
in Figure 17, if the measurement is received by only acoustic
sensor Aj, a circle is marked (“0”). If the measurement is
received by only acoustic sensor A,, a square is marked
(“007). If the measurement is received by both sensors A;
and A,, a diamond is marked (“¢”). If the measurement
is not received by any of two sensors, a star is marked
(“x”). Note even though the three people were instructed to
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make a constant-strength-sound, we observed that acoustic
source strength changes according to an orientation and a
distance between an acoustic sensor and a source (human).
The acoustic sensor has a preprocess stage, which makes a
decision whether the incoming acoustic source is from a
real one or not (environment noise only). The decision is
based on acoustic source strength with a threshold value.
With the sound strength larger than threshold value, an
acoustic sensor makes a decision that the source is from a real
one. Otherwise, an acoustic sensor decides that the source is
absent (environment noise only).

Figure 18(a) arranges non-measurement, new object
appearance and movement out of sensing capability/range
with respect to each sensor. Sensor A; initially receives one
measurement from object O' and does not receive measure-
ments between 5.0 seconds and 7.0 seconds. At time 15.0
seconds, sensor A; starts to receive new measurement from
object O, but starts to miss the measurement from object
O! since object O! moves out the sensing range/capability.
At time 16.0 seconds, sensor A, starts to receive another new
measurement from object O%. Sensor A; initially receives one
measurement from object O%. At time 11 seconds, sensor
A, starts to receive new measurement from object O'. At
time 13.0 seconds, sensor A, starts to receive another new
measurement from object O%. Figure 18(b) shows that the
measured objects from each sensor A; and A,.

4.5. Visual Sensor Cooperation with Triggering Timing Anal-
ysis. There are a few factors making the consistent sensing
of the acoustic sources difficult—the background noise
and the variations in the strength and the orientation of
the incoming sound waves. With those, it is even more
difficult to repeat the same movements of three people for
the experiment. For these reasons, we use one set of real
bearing data from the movement of three people, but we
added 100 sets of noise with variance 3. For the triggering
timing analysis, the triggering timings are considered as the
triggering probabilities, and they are compared for the two
cases. The case one is where the visual sensor supports the
localized positions to the acoustic sensor estimator when
they are triggered. On the other hand, the visual sensor does
not support in the second case.

From time 17T to 5007, acoustic sensor A; receives
measurements from object O!, and acoustic sensor A,
receives measurements from object O?. Since each sensor
estimates different objects’ state, it is considered as the single
object estimation with a single sensor. Then, the triggering
timing is obtained from the estimation performance only.
Figures 19(a) and 19(b) show the triggering probabilities
with the visual sensor cooperation in sensors A; and A,
respectively, between 17T, and 50075. For comparison, Figures
19(c) and 19(d) show the triggering probabilities without
visual sensor cooperation in sensors A; and A,, respectively.

From time 5017 to 70075, object O! does not transmit
sound wave. Due to the non-measurement, the acoustic
sensor A; triggers visual sensor cooperation: the number
of objects and the number of measurements are different.
Figure 20 continually shows the triggering probabilities of the
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two sensors between 1T and 1,100 through 100 times trial.
Figures 20(a) and 20(b) show the triggering probabilities
with visual sensor cooperation in sensors A; and A,, respec-
tively. Also, Figures 20(c) and 20(d) show the triggering
probabilities without the visual sensor cooperation in sensors
A and A,, respectively.

At time 1,1017Ts, acoustic sensor A, receives additional
new measurement from object O?. At time 1,3007, acoustic
sensor A, receives additional new measurement from object
03. At time 1,5007T;, acoustic sensor A; receives additional
new measurement from object O?, but the measurement
from object O' is not received simultaneously. At time
1,600T;, acoustic sensor A; receives additional new mea-
surement from object O3. Figure 21 shows the triggering
probabilities of the two sensors between 1,100T and 1,90075.
Figures 21(a) and 21(b) show triggering probabilities with
the visual sensor cooperation in sensors A; and A,, respec-
tively. Also, for the comparison, Figures 21(c) and 21(d)
show the triggering probabilities without the visual sensor
cooperation in sensors A; and A,, respectively,

Finally, Figure 22 shows the estimated final position of
the three objects in each sensor. Figure 22(a) shows the final
estimated position with acoustic sensor A, and Figure 22(b)
shows the final estimated position with acoustic sensor A,.

5. Conclusion and Final Remarks

In this paper, the acoustic-visual sensor cooperation method
for multiple object tracking was presented. Since the
visual sensor-based object localization requires much higher
computational complexity than the acoustic sensor-based
estimation, minimized visual sensor cooperation is adopted
throughout this paper. The visual sensor cooperation
method was proposed based on the analysis of the limitation
in the acoustic sensor-based estimation. In order to alleviate
the limitation, the visual sensor is triggered for the cooper-
ation. For comparison, the proposed acoustic-visual sensor
cooperation method was evaluated with a periodic visual
sensor cooperation and the no cooperation case. Finally, the
cooperation method was verified in a real environment.

As a future work, the cooperation method can be
extended to a large-scale environment. Since an acoustic
sensor has a limited coverage as well as a limited capacity in
measuring the sound wave, it is required to deploy multiple
acoustic sensors to cover a large area. We investigate the
effects of interaction among multiple acoustic sensors. In
addition, we analyze the effect of visual sensor cooperation
delay time since the visual sensor and the acoustic sensor
receive measurements with different sampling rates, and
there are synchronization issues between the two sensors.
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