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Adaptive infinite impulse response (IIR) filters have shown their worth in a wide range of practical applications. Because the error
surface of IIR filters is multimodal in most cases, global optimization techniques are required for avoiding local minima. In this
paper, we employ a global optimization algorithm, Quantum-behaved particle swarm optimization (QPSO) that was proposed by
us previously, and its mutated version in the design of digital IIR filter. The mechanism in QPSO is based on the quantum behaviour
of particles in a potential well and particle swarm optimization (PSO) algorithm. QPSO is characterized by fast convergence, good
search ability, and easy implementation. The mutated QPSO (MuQPSO) is proposed in this paper by using a random vector in
QPSO to increase the randomness and to enhance the global search ability. Experimental results on three examples show that
QPSO and MuQPSO are superior to genetic algorithm (GA), differential evolution (DE) algorithm, and PSO algorithm in quality,
convergence speed, and robustness.
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1. Introduction

Adaptive IIR filters have been proven to be useful in many
fields such as channel equation, noise reduction, echo
cancelling, and system identification [1, 2]. A major problem
in adaptive IIR filters design is that their error surface may
be usually nonquadratic and multimodal. If this problem
is considered, global optimization technique is required to
get the global minima in a multimodal error surface. In
the recent years, population-based intelligent algorithms and
heuristic algorithms, such as genetic algorithm (GA) [3–
6], simulated annealing (SA) algorithm [3, 7], differential
evolutionary (DE) [8] algorithm, particle swarm optimiza-
tion (PSO) algorithm [9, 10], Tabu search (TS) algorithm
[11], ant colony optimization (ACO) [12] algorithm, and
artificial bee colony algorithm [13], have been proposed
and used in the digital IIR filter design. GA has received
considerable attention for the digital IIR filter design. How-
ever, its disadvantages are lack of good local search ability
and premature convergence. The drawback of standard SA
algorithm is that it can be very slow and often requires much
more number of cost function evaluations to converge to the

global minima. The problem with DE algorithm is that it
is sensitivity to the choice of its control parameters. PSO is
quite easy to be programmed and outperforms GA in many
practical applications. However, as the particles in PSO only
search in a finite sampling space, PSO can easily get trapped
in local optima. TS algorithm and ACO algorithm are more
suitable for the combinatorial type problems. As a variant
of PSO, Quantum-behaved Particle Swarm Optimization
(QPSO) was proposed [14, 15] in 2004. It is inspired by
quantum mechanics and fundamental theory of particle
swarm. It is convenient for PSO and QPSO to apply in the
digital IIR filter design as the design can be reduced to a
minimization problem and solved by these algorithms. In
addition, the particle is real coded and represents a set of
filter’s parameters and then the swarm represents all the
candidate solutions. In this paper, a mutated version of
QPSO (MuQPSO) is proposed by introducing a random
vector in QPSO in order to enhance the randomness and
global search ability. Then both QPSO and MuQPSO are
applied to digital IIR filter design. Three examples for the
purpose of system identification are tested and compared
with the results of using GA, DE, and PSO.
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Table 1: Parameter settings for the competitor algorithms.

GA DE PSO QPSO MuQPSO

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

Crossover rate 0.8 Scaling factor 0.8 w 0.9 → 0.4∗ α 1 → 0.5∗ α 1 → 0.5∗

Mutation rate 0.2 Combination factor 0.8 c1, c2 2 CR 0.8

Population size 10/30/50 (Examples 1, 2, and 3)

Max. iteration 100/500/100 (Examples 1, 2, and 3)

Data length (N) 500/500/100 (Examples 1, 2, and 3)
∗The sign of a→ b represents that the parameter value is linearly decreased from a to b according to the iteration.

This paper is organized as follows. In Section 2, QPSO
is described and MuQPSO is proposed. In Section 3, the
problem for digital IIR filter design is formulated and the
method of applying QPSO and MuQPSO to the design of
IIR filters is presented, and the experimental results are given
in this section. A conclusion is given in Section 4.

2. QPSO and Its Mutated Version

2.1. QPSO Algorithm. PSO, proposed by Kennedy and
Eberhart [16] and Shi and Eberhart [17], is a new global
search technique. The underlying motivation for the devel-
opment of PSO was social behaviour of animals such as
bird flocking, fish schooling, and swarm theory. In the PSO
algorithm, each particle is represented as a potential solution
to a problem in D-dimensional space and is denoted as
Xi = (xi1, . . . , xid . . . , xiD). Each particle remembers its own
previous best position and its velocity along each dimension
as Vi = (vi1, . . . , vid, . . . , viD). The velocity and position of
particle i at (t+1)th iteration are updated by the following
equations:

vt+1
i j = w · vti j + c1 · rt1 j ·

(
Pt
i j − xti j

)

+ c2 · rt2 j
(
Pt
g j − xti j

)
, rt1 j , r

t
2 j ∼ U(0, 1),

xt+1
i j = xti j + vt+1

i j ,

(1)

where c1 and c2 are two positive constants, known as the
cognitive and social coefficients, which control the relative
proportion of cognition and social interaction, respectively.
Vector Pi = (Pi1, . . . ,Pi j , . . . ,PiD) is the best previous position
(the position giving the best fitness value) of particle i, which
is called pbest. And vector Pg = (Pg1, . . . ,Pg j , . . . ,PgD) is the
best position discovered by the whole population, which is
called gbest. Parameter w is known as inertia weight and the
optimal strategy to control it is to initially set to 0.9 and
reduce it linearly to 0.4 [17].

QPSO is inspired by quantum mechanics and fundamen-
tal theory of particle swarm. In the QPSO algorithm with M

Table 2: Example 1 with randomly chosen initial positions for
system identification.

Number of hits

Global minimum Local minimum

{−0.311,−0.906} {0.114, 0.519}
GA 27 73

DE 92 8

PSO 95 5

QPSO 97 3

MuQPSO 100 0

particles in D-dimensional space, the position of particle i at
(t+1)th iteration is updated by

xt+1
i j = pti j ± α ·

∣∣∣GPt
j − xti j

∣∣∣ · ln

(
1
uti j

)
, uti j ∼ U(0, 1),

(2)
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i j · Pt
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i j
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· Pt

g j , ϕt
i j ∼ U(0, 1), (3)
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(4)

where parameter α is called contraction-expansion (CE)
coefficient. Pi and Pg have the same meanings as those in
PSO. GP is called Mean Best Position, which is defined as the
mean of the pbest positions of all particles.

The characteristics of QPSO algorithm are reflected
mainly in two ways. First of all, the introduced exponential
distribution of positions makes QPSO search in a wide space.
Furthermore, the introduction of Mean Best Position into
QPSO is another improvement. In the standard PSO, each
particle converges to the global best position independently.
In the QPSO with mean best position GP, each particle can-
not converge to the global best position without considering
its colleagues because that the distance between the current
position and GP determines the position distribution of the
particle for the next iteration.
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Table 3: Mean values and standard deviations of the filter coefficients in Example 1 (mean of 100 random runs with randomly chosen initial
positions).

a b CPU time (s)

GA −0.2630± 0.2084 −0.6125± 0.5222 7.843

DE −0.2754± 0.1164 −0.7926± 0.3891 2.780

PSO −0.2892± 0.0965 −0.8366± 0.3063 2.785

QPSO −0.2919± 0.0902 −0.8522± 0.2720 2.334

MuQPSO −0.3106± 0.0094 −0.9067± 0.0034 2.308

2.2. The Mutated QPSO Algorithm. Although QPSO pos-
sesses better global search behaviour than PSO, it may
encounter premature convergence [18], a major problem
also encountered by GA, PSO, and other evolutionary
algorithms in multimodal optimization, which results in
great performance loss and suboptimal solutions. In QPSO,
although the search space of an individual particle is the
whole feasible solution space of the problem throughout
the iterations, diversity loss of the whole population is also
inevitable due to the collectiveness. From (2), one can see
that if |GPj − xi j| is small enough, the search space will
be narrowed and xi j cannot obtain a new position in the
upcoming iterations. The explorative power of particles is
lost and the evolution process will stagnate. This case can
even occur at an early stage if |GPj − xi j| is zero. In the latter
stage of evolution process, the loss of diversity for |GPj −
xi j| is often occurred. To prevent this undesirable trend, a
random vector is constructed according to the difference
between two positional coordinates that are rerandomized in
the problem space, and the value of the random vector will
replace |GPj − xi j| with a certain probability CR. Then the
particle’s position is updated by the following equation:

−→
δ = mu xk −mu xs, xt+1

i j = pti j ± α ·
∣∣∣−→δ
∣∣∣ · ln

(
1
uti j

)
,

(5)

where mu xk and mu xs are two random particles generated
in the problem space. One can see that as the random vector
is introduced, the particles may escape from the current
position and locate in a new search area.

The variant of QPSO is called MuQPSO. The procedure
of MuQPSO is listed as follows.

Step 1. Initialize particles with random position and set the
control parameter CR.

Step 2. For t = 1 to maximum iteration, execute the
following steps.

Step 3. Calculate the mean best position GP among the
particles.

Step 4. For each particle, compute its fitness value f [xi(t)]. If
f [xi(t)] < f [Pi(t)], then Pi(t) = xi(t).

Step 5. Select gbest position Pg(t) among particles.

Step 6. Generate a random number, denoted as RN, in the
range of (0 1).

Step 7. If RN <CR then update the position according to (2),
(3), (4), else according to (3), (5).

3. Application of QPSO andMuQPSO to
the Design Problem

3.1. Problem Formulation. In general, the basic structure of
an IIR filter is identical to that of the autoregressive moving-
average (ARMA) model, whose input-output relation is
defined by the following difference equation [2]:

y(k) +
M∑

i=1

bi y(k − i) =
L∑

i=0

aix(k − i), (6)

where x(k) and y(k) are the filter’s input and output,
respectively, and M(>=L) is the filter order, ai and bi are the
adjustable coefficients of the model. The transfer function of
this IIR filter can be written in the following general form:

H(z) = A(z)
1 + B(z)

=
∑L

i=0 aiz
−i

1 +
∑M

i=1 biz−i
. (7)

Then an IIR filter design can be formulated as an
optimization problem with the mean square error (MSE) as
the cost function

J(w) = E
[
e2(k)

] = E
[(
d(k)− y(k)

)2
]

, (8)

where d(k) is the filter’s desired response, e(k) = d(k)− y(k)
is the filter’s error signal, and the composite weight vector
of the filter is defined by concatenating the two sets of
coefficients {ai}Li=0 and {bi}Mi=1, according to the formula

� = [a0, a1, . . . , aL, b1, . . . , bM]T. (9)

The goal is to minimize MSE (8) by adjusting �. In
practice, ensemble operation is difficult to realize, and the
cost function (8) is usually substituted by the time-averaged
cost function

J(�) = 1
N

N∑

k=1

e2(k), (10)

where N is the number of samples used for the calculation of
cost function.
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Table 4: Mean values of the filter coefficients in Example 1 (mean of 100 random runs with four fixed positions).

Fixed initial positions

{0.114, 0.519} {0.8, 0} {0.9,−0.9} {0.9, 0.9}
CPU time (s)

a b a b a b a b

GA 0.1131 0.5243 −0.0361 0.0526 −0.1697 −0.4768 −0.2630 −0.6125 7.470

PSO 0.1140 0.5190 0.0447 0 0.9000 −0.9000 0.9000 0.9000 2.700

DE 0.1140 0.5190 0.8000 0 0.9000 −0.9000 0.9000 0.9000 2.650

QPSO 0.1140 0.5190 0.8000 0 0.9000 −0.9000 0.9000 0.9000 2.515

MuQPSO −0.3105 −0.9068 −0.3105 −0.9070 −0.3104 −0.9066 −0.3108 −0.9073 2.298
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Figure 1: Coefficients a (a) and b (b) learning curves for Example 1 and comparison of convergence behaviours for Example 1 (c).
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Figure 2: Comparison of convergence behaviours for (a) Example 2 and (b) Example 3.

In order to apply QPSO and MuQPSO to design the
digital IIR filters, the filter coefficients defined in (9) are
represented as a particle in QPSO and MuQPSO. The particle
is real coded and is treated as a trial solution. The dimension
of a particle is equal to the size of the parameter vector �
and each dimension of a particle is in correspondence to
a filter coefficient. The stability of the filter is guaranteed
by constraining the range of the particles’ position [8]. The
fitness of a particle is evaluated by its position and the fitness
value is calculated using the cost function (10). The length N
of the cost function is selected according to the problem.

3.2. Experimental Results. Three examples are used in the
simulation studies. GA, DE, and PSO algorithm are also
used for the digital IIR filter design in order to make a per-
formance comparison with QPSO and MuQPSO. For each
simulation, 100 Monte Carlo simulations are performed.
The parameter settings of each example for the competitor
algorithms are shown in Table 1.

Example 1 (see [3, 7, 8, 11, 12]). The unknown plant and the
filter have the following transfer functions:

Hp(z) = 0.05− 0.4z−1

1− 1.1314z−1 + 0.25z−2
, H(z) = a

1 + bz−1
.

(11)

As the plant is a second-order system and the filter
is a first-order IIR filter, local minima problems could
be encountered. The system input, x(k), was chosen to
be random Gaussian noise with zero mean and unit
variance. The error surface has a global minimum at
{a, b} = {−0.311,−0.906} and a local minimum at {a, b} =
{0.114, 0.519}. For all the five algorithms, the search space

is (−1, 1). Randomly chosen initial positions and fixed
initial positions are considered in the simulation. The fixed
initial positions are {0.114, 0.519}, {0.8, 0}, {0.9,−0.9}, and
{0.9, 0.9} [7].

Table 2 shows the comparison of the number of global
and local minimum hits by various algorithms. The results
are given by 100 random simulations with randomly chosen
initial positions. The table lists that GA is likely to converge
to the local minimum. DE, PSO, and QPSO might jump
to the global minimum valley with more opportunities and
converge to the global minimum, but it also can jump to
the local minimum valley and then converge to the local
minimum. MuQPSO could converge to the global minimum
in all the runs. Tables 3 and 4 demonstrate the mean values
of filter coefficients along with the standard deviations and
the CPU times of each algorithm. From Table 3, one can
see that MuQPSO could find the global minimum with the
least standard deviations among all the five algorithms. As
seen from Table 4, MuQPSO can jump out of any of the
settled fixed initial positions and find the global minimum
while the other algorithms are all trapped in these fixed initial
algorithms. Figure 1 presents the coefficients learning curves
and convergence behaviours of the five algorithms applied to
design Example 1. The results are averaged over 100 random
runs with randomly chosen initial positions.

Example 2 (see [7, 11]). The plant is a third-order system and
filter is a second-order IIR filter with the following transfer
functions:

Hp(z) = −0.3 + 0.4z−1 − 0.5z−2

1− 1.2z−1 + 0.5z−2 − 0.1z−3
,

H(z) = a0 + a1z−1

1 + b1z−1 + b2z−2
.

(12)
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Table 5: Mean values and standard deviations of the filter coefficients in Example 2 (mean of 100 random runs with randomly chosen initial
positions).

a0 a1 b1 b2 CPU Time (s)

GA −0.3313± 0.1092 −0.0586± 0.1205 −0.5450± 0.3894 −0.2354± 0.30342 72.379

DE −0.3909± 0.01380 −0.0769± 0.0162 −0.2187± 0.01683 −0.5796± 0.0148 48.453

PSO −0.3912± 0.01317 −0.0761± 0.0174 −0.2167± 0.01944 −0.5792± 0.0176 43.408

QPSO −0.3912± 0.01197 −0.0768± 0.0176 −0.2164± 0.01629 −0.5806± 0.0133 51.174

MuQPSO −0.3948± 0.01345 −0.0742± 0.0195 −0.2230± 0.0200 −0.5739± 0.0155 44.071

Table 6: Mean values and standard deviations of the filter coefficients in Example 3 (mean of 100 random runs with randomly chosen initial
positions)

a0 a1 a2 b1 b2 b3 CPU Time(s)

GA
−0.16971 0.3237 −0.36228 −0.32859 0.24936 −0.088051

9.526
±0.10512 ±0.13643 ±0.18295 ±0.4228 ±0.19746 ±0.16182

DE
−0.20038 0.39887 −0.49927 −0.59984 0.25 −0.19935

4.523
±3.5234 · 10−03 ±4.2860 · 10−03 ±4.0880 · 10−03 ±7.1866 · 10−03 7± .9695 · 10−03 ±7.3890 · 10−03

PSO
−0.2 0.39998 −0.49999 −0.59987 0.24988 −0.20017

4.878
±5.2177 · 10−04 ±8.4274 · 10−04 ±7.6267 · 10−04 ±1.3235 · 10−03 ±1.2103 · 10−03 ±1.0724 · 10−03

QPSO
−0.2 0.4 −0.5 −0.6 0.25 −0.2

3.921
±8.89 · 10−06 ±1.49 · 10−05 ±1.06 · 10−05 ±1.07 · 10−05 ±1.39 · 10−05 ±1.43 · 10−05

MuQPSO
−0.19997 0.39993 −0.49993 −0.59987 0.24992 −0.20002

3.998
±1.404 · 10−04 ±2.0459 · 10−04 ±1.6004 · 10−04 ±2.5557 · 10−04 ±2.8176 · 10−04 ±2.7258 · 10−04

The input x(k), which takes values from (−0.5, 0.5), was a
uniformly distributed white sequence, and the SNR= 30 dB.
Since the reduced order filter is employed for the identifica-
tion, the error surface of the cost function is multimodal.

Table 5 shows the experimental results by various algo-
rithms in Example 2, which gives the mean best values
and standard deviations of the filter coefficients. All the
results are averaged over 100 random runs with randomly
chosen initial positions. Figure 2(a) shows the comparison of
convergence behaviours for Example 2. As seen from Table 5,
mean best values produced by PSO, QPSO and MuQPSO are
approximate, while QPSO has smaller standard deviation. In
Figure 2(a), one can see that convergence speed of QPSO and
MuQPSO is faster than the other three algorithms.

Example 3. The plant and the filter are both third-order
system with the following transfer functions:

Hp(z) = −0.2 + 0.4z−1 − 0.5z−2

1− 0.6z−1 + 0.25z−2 − 0.2z−3
,

H(z) = a0 + a1z−1 + a2z−2

1 + b1z−1 + b2z−2 + b3z−3
.

(13)

The input x(k) was a white Gaussian noise with the mean
of zero and unit variance. Since the filter order is equal to that
of the system, the error surface is unimodal. The best solution
should be located at {−0.2, 0.4,−0.5,−0.6, 0.25,−0.2}.

Table 6 shows the mean best values and standard devi-
ations of filter coefficients in Example 3 averaged over 100
random runs with randomly initial positions. Figure 2(b)
shows the comparison of convergence behaviours for
Example 3 averaged over 100 random runs. As seen from

Table 6, the filter coefficients found by QPSO are exactly
located at the best solution and the standard deviation is
smaller than that yielded by any other algorithms. QPSO
and MuQPSO are the most and the second most robust
algorithms among the five ones. From Figure 2(b), we can
see that the convergence speeds of QPSO and MuQPSO are
much faster than those of GA, DE, and PSO.

From the above three examples, QPSO and MuQPSO
have shown their stronger search abilities both on the
multimodal problem and on the unimodal one. QPSO and
MuQPSO outperform GA, PSO, and DE in convergence
speed, robustness and qualitatively of the final solutions.

4. Conclusions

In this paper, we have introduced the new global optimiza-
tion technique, QPSO, and proposed its variation, MuQPSO.
MuQPSO has enhanced the randomness by modifying the
update equation of QPSO. The modified method replaces
a part of the update equation with a random vector in a
certain probability. QPSO and MuQPSO were both used in
the design of digital IIR filters for the purpose of system
identification. Experimental results have shown that the
performance of QPSO and MuQPSO is superior to GA, DE,
and PSO in the digital IIR filter design problem and they will
be an efficient tool for this design problem.
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