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Grain boundary distributions in the space of macro-
scopic boundary parameters are basic statistical char-
acteristics of boundary networks. To avoid artifacts
caused by the currently used computation method, it is
proposed to utilize the kernel density estimation tech-
nique and to determine boundary distributions based on
metric functions defined in the boundary space. A dis-
tribution is calculated at points of interest by summing
areas of boundaries that fall within specified distances
from these points. The new method is illustrated on
experimental data of a nickel-based superalloy.
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A variety of properties of polycrystalline materials are
affected by grain boundaries. To explore relationships
between boundary structures and material properties,
the boundaries need to be investigated at both atomic
and ‘‘macroscopic’’ levels. Studies at the atomic scale
are limited by experimental capabilities, but the macro-
scopic boundary parameters (i.e., misorientations be-
tween neighboring grains and directions of boundary
plane normals[1]) can be relatively easily determined.
Experimental methods of three-dimensional microstruc-
ture characterization have been improved greatly over
the last decade, and large sets of boundary parameters
are being collected, e.g., References 2, 3. The sizes of
resulting data sets allow for statistical analyses of
boundaries.

One of the most basic statistical characteristics of a
boundary network is the distribution of grain bound-
aries with respect to the macroscopic boundary param-
eters. In relevant reports published so far (e.g.,
References 4 through 8), the distributions have been
computed using a method[4] based on partition of a
certain domain in the boundary parameter space into
equivolume bins. Although this method has been
successfully applied to various materials, it has deficien-
cies leading to artifacts in computed distributions, and

complicating estimation of the reliability of the distri-
butions.
This note presents an alternative approach to com-

putation of the boundary distributions. Suggestions
given in Reference 9 are followed to adapt the kernel
density estimation technique and to replace the partition
of the boundary space by probing the distributions at
selected points and counting boundaries that are not
farther from those points than an assumed limiting
distance defined in the boundary space. It is shown that
this change of the computation method leads to signif-
icant improvements in the quality of resulting distribu-
tions. The new method also allows for a direct
estimation of the reliability of the distributions. In the
following, deficiencies of the hitherto used approach are
discussed. Then, the new approach is described and
confronted with the old one. Both methods are applied
to grain boundary data of a nickel-based superalloy. For
simplicity, only cubic ðm�3mÞ crystal symmetry is con-
sidered; similar analysis can be performed for other
holohedral symmetries.
The grain misorientations and boundary plane normals

are usually parameterized by Euler angles u1; U; u2 and
spherical (polar and azimuth) angles # andw, respectively.
With cubic crystal symmetry, the parameter domain used
in the partition-based approach is restricted by
0 deg � u1;U;u2; # � 90 deg and 0 deg � w � 360 deg.
The ‘‘rectangular’’ box u1 � cosU� u2 � cos#� w
is partitioned into equivolume rectangular bins of
dimensions Du1 ¼ Du2 ¼ 90 deg=k, Dw ¼ 90 deg=k0,
DðcosUÞ ¼ 1=k and Dðcos#Þ ¼ 1=k0, where k, k0 are
positive integers.[4] Typically, ‘‘ 10 deg-bins’’ ( k ¼ 9 ¼ k0)
are used. It is easy to see that the partition results in
elongated bins. For instance, the U-dimensions of 10 deg-
bins with cosU in the ranges ½0; 19� and ½89 ; 1� are, respec-
tively, 6.4 and 27:3 deg. The disparities in the bin dimen-
sions are schematically illustrated inFigure 1(a). Large bin
elongation should be avoided because boundaries at the
opposing extremities of a long bin have significantly
different geometries. Moreover, the bin sizes do not really
correspond to experimental resolutions, which—in the
case of EBSD-based data—are believed to be about 1 deg
for misorientations and about 7:5 deg for boundary
planes.[4] With a sufficiently large data set, the volumes of
the bins could be reduced by increasing k and k0. Such an
increase, however, does not eliminate the bin elongation,
and it results in even larger relative differences between
angular dimensions of the shortest and the longest bins.
In the process of boundary distribution determina-

tion, boundary networks are reconstructed in the form
of meshes. To calculate the distribution, areas of mesh
segments are accumulated in the bins. With the domain
used in the partition-based approach, a boundary (of
multiplicity 1) is represented by 36 (different) symmet-
rically equivalent points. Therefore, at the accumulation
step, each segment contributes to multiple bins, and in
the end, a value of the grain boundary distribution at a
given point is obtained by averaging over the bins
containing equivalent points. In the presence of elon-
gated bins, the averaging smooths but also excessively
flattens the resulting distributions. As a consequence,
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Fig. 1—(a) Schematic illustration of the angular dimensions of the ‘‘ 10 deg-bins’’ in the partition-based method. (b) R5 section through the test
distribution obtained by the partition-based approach with ‘‘ 10 deg-bins’’. (c) R5 section calculated using the metric-based method with
qm ¼ 5 deg ¼ qp. ( d; e; f) Essential parts of the sections through the test distribution computed using the partition into ‘‘ 10 deg-bins’’ for the
misorientations R3, ½110�=57 deg and ½111�=50 deg, respectively.
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weak maxima may become indistinguishable from the
background.

To illustrate artifacts in boundary distributions
obtained by the partition-based method, let us examine
an artificial test function containing two individual
boundary types: the symmetric R5 ( ½100�=36:9 deg
misorientation) boundaries with ð012Þ planes and the
(fcc twin) boundaries with R3 ( ½111�=60 deg) misorien-
tations and ð111Þ planes. Two nearly point-like maxima
are expected at the ð012Þ and ð0�21Þ poles in the R5
section of the distribution, and a single peak at the ð111Þ
pole in the R3 section. Values for all other boundary
types should be zero. However, in the distribution
obtained by the conventional method, besides the
expected peaks, also artifacts are observed. In the R5
section calculated using 10 deg-bins, the peaks are
spread along the ½010� direction (Figure 1(b)). In the
R3 section, the peak at the ð111Þ pole has full width at
half-maximum of about 7 deg (Figure 1(d)). Its ‘‘tail’’ is
still visible at the neighborhood of the ð�111Þ pole for the
½110�=57 deg misorientation, which is 13:5 deg away
from the ½110�=70:5 deg misorientation—one of equiva-
lent representatives of R3 (Figure 1(e)). The tail is also
present in the closer ½111�=50 deg section (Figure 1(f));
this section has been considered without accounting for
the impact of the peak at the twin boundary.[5,6] Clearly,
large spread of peaks causes difficulties in interpretation
of the distributions.

Boundary distributions can be computed by an
alternative method which does not lead to artifacts
and uses parameters which can be directly linked to both
the experimental resolution and the size of a data set.
The idea is to use the kernel density estimation
technique and to get a value of the distribution at a
given point by summing areas of boundaries that are not
farther from that point than an assumed limiting
distance. A metric in the boundary space can be defined
in a number of ways,[10] but it is essential that two
boundaries are close (distant) if they have similar
(different) geometric features, and that symmetrically
equivalent representations of boundaries are taken into
consideration. The boundary space is a Cartesian
product of misorientation and boundary plane subspac-
es. For calculation of distributions of boundary planes
for fixed misorientations, it is convenient to consider
distances in these subspaces separately. In the misori-
entation subspace, the difference between two boundary
geometries is quantified by the angle dm* of the rotation

relating the misorientations, and in the boundary-plane

subspace by dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv21 þ v22Þ=2
q

, with vi denoting the
angles between boundary plane normals; there are two
angles vi because the boundary planes of two crystallites
need to be taken into account. Moreover, dm and dp are
calculated for all symmetrically equivalent boundary

representations and minimum values minðdmÞ and
minðdpÞ are used as the distances. Having separate
limiting distances for misorientations ðqmÞ and for
boundary planes ðqpÞ allows for adjusting the bin shapes
to actual experimental resolutions of measured bound-
ary parameters. This option would not be available if a
single distance defined in the complete boundary space
was used.
To obtain a section through a distribution for a fixed

misorientation, all boundary segments whose distances
minðdmÞ from that misorientation are smaller than qm

(i.e., segments that fall into the ball of radius qm

centered at the fixed misorientation) are first identified.
Then, the distribution is calculated at evenly dispersed
directions. Areas of the identified segments whose
normals are located at distances minðdpÞ not larger than
qp from a given direction (i.e., that fall into the ball of
radius qp in the boundary-plane subspace) are accumu-
lated. In the end, values ascribed to the bins are
expressed as multiples of the random distribution: the
normalized values obtained from experimental data are
divided by the corresponding normalized values ob-
tained from large sets of computer generated random
boundaries. Clearly, with the new approach, the aver-
aging over bins is eliminated, and the bins are spherical
(with respect to the used metrics) in the subspaces of
misorientation and boundary planes. Thus, the bin in
the boundary space is a Cartesian product of balls given
in the misorientation and boundary-plane subspaces.
Bin shapes are also quite regular in the complete space if
qp and qm are similar.
The benefits of using the metric-based approach are

demonstrated for the same test distribution containing
R5=ð012Þ and R3=ð111Þ boundaries as considered above.
The volume of 10 deg-bins of the partition is close to that
of the distance-based bins when qm ¼ 5 deg ¼ qp. With
these radii, peaks in R3 and R5 sections of the test
distribution are contained in disks with radii equal to the
assumed qp (Figure 1(c)). There is no spread along the
½010� direction in the R5 section of the resulting distribu-
tions, and sections for the ½111�=50 deg and ½110�=57 deg
misorientations are flat with the value of 0 at all poles.
The volume v of an individual bin, and thus the

limiting radii qm and qp, influence the uncertainties of the
values of the grain boundary distribution. With f being a
value of the distribution in the bin, the minimal number
of measurements n, required for the relative error defined
as (standard deviation of f) / f to be smaller than certain e
is given by n � c=ðe2vfÞ, where c is a coefficient accom-
modating correlations in the data.[11] With n being the
number of distinct grain boundaries (not the number of
segments in a reconstructed mesh), the data are only
weakly correlated, and hence, c � 1 can be assumed.
With this assumption, the above formula will be used to
estimate the relative error e � ðnvfÞ�1=2.
The metric-based approach was applied to experi-

mental data set Small IN100. The set contains three-
dimensional microstructural data of Ni-based superal-
loy IN100. A detailed description of the material and
data collection can be found in Reference 2. The data
clean-up and reconstruction of boundary surfaces were

*The parameter dm defined by 2 cos dm þ 1 ¼ tr ðM2M
T
1 Þ, where

M1 and M2 are matrix representations of misorientations of two
boundaries, is based on both misorientation angles and misorientation
axes.
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Fig. 2—Distribution of grain boundaries in superalloy IN100. (a) Sections obtained using the partition-based method with 10 deg-bins; the
figures are consistent with those in Refs. [7, 13]. (b) Sections computed using the metric-based approach with qm ¼ 3 deg and qp ¼ 7 deg. (c) Error
levels for data shown in (b). Left and right columns correspond to the R3 and R9 misorientations, respectively.
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carried out using DREAM.3D.[12] There were about 13; 000
individual boundaries and about 2:5� 106 triangular
segments in the mesh of the reconstructed boundary
network. Optimal bandwidth selection for the kernel
density estimation technique is non-trivial. We have
tested a number of values for the parameters qm and qp.
The choice has an impact on the peak height and the
errors. To keep the errors at bay, qm and qp must be
sufficiently large. Since grain reconstruction process
decreases the resolution for misorientations, it is rea-
sonable to set the radius qm at 3 deg. The resolution in
the boundary-plane subspace was estimated using
coherent twin boundaries; as the standard deviation of
the Gaussian function approximating the shape of the
ð111Þ peak in the R3 section of the experimental
distribution is close to 7 deg, this value was used as the
limiting distance qp. With such radii, the peaks are not
excessively spread, while the errors stay at acceptable
levels. Sections for the R3 and R9 misorientations
calculated using the new approach are compared with
analogous sections obtained using the partition into
10 deg-bins in Figure 2. The large differences in nominal
heights of the peaks obtained by the two methods come
partly form the difference in volumes of the 10 deg-bins
and the bins limited by qm ¼ 3 deg and qp ¼ 7 deg.
Despite the smaller volume, the distribution obtained by
the new approach appears to be smoother. The distri-
butions computed using both methods are also com-
pared using one-dimensional sections of the
distributions. Figure 3(a) presents the distributions at
the ð111Þ pole for misorientations about ½111� axis vs the
misorientation angle. The curve corresponding to the
metric-based approach reveals more details than the
piecewise flat graph obtained by the partition-based
method. Figure 3(b) shows the profiles of the distribu-
tion function along ½1�10� direction for the R9 misorien-
tation. Both methods give a relatively strong peak at the
ð1�14Þ symmetric tilt boundary. The partition into
10 deg-bins leads to an artificial peak near the ð�221Þ
pole, which disappears when larger k is used; see, e.g.,
the green line in Figure 3(b). The maxima in the vicinity
of the ð�115Þ and ð1�11Þ poles, clearly visible in the
distribution obtained with the new approach are barely
discernible in the distribution obtained by the partition-
based method. It is worth noting that ð�115Þ and ð1�11Þ
poles correspond to tilt boundaries having multiple tilt
axes,[14] the ð�115Þ and ð1�11Þ planes expressed in the
second grain are ð1�1�1Þ and ð�11�5Þ, respectively,
and—according to Reference 7—minima of grain
boundary energy for R9 are at ð�115Þ and ð1�11Þ.

Summarizing, the metric-based approach to compu-
tation of grain boundary distributions allows for elim-
ination of artifacts affecting the distributions obtained
by the partition-based method. Weak maxima are better
pronounced and distinguishable in the distributions
computed using the new method. The control parame-
ters of the new approach can be easily adjusted to
experimental resolution, sizes of data sets and errors of
distribution functions. Although the reliability of grain
boundary distributions depends mainly on the amount
and quality of experimental data, it is also important to

analyze the data using tools that do not distort the final
results. This note is a step toward more effective analysis
of experimentally collected sets of grain boundary
parameters.

The authors are grateful to M.A. Groeber (of
U.S. Air Force Research Laboratory) for permission
to use the Small IN100 data set. Work of K.G. was
supported by the European Union under the European
Social Fund within Project No. POKL.04.01.00-00-
004/10.

Fig. 3—One-dimensional sections through distributions of grain
boundaries in superalloy IN100. (a) Distributions at the ð111Þ pole
for ½111�=a misorientations computed using the metric-based (disks)
and partition-based (circles) methods. (b) Profiles along the ½1�10�
zone (marked by arrows in Fig. 2) for the R9 misorientation; cf.
Fig. 7 of Ref. [6]. Solid lines correspond to the metric-based
approach with qm ¼ 3 deg, qp ¼ 7 deg (black) and qm ¼ 5 deg ¼ qp

(red). Dashed lines were obtained by the partition-based method
using 10 deg-bins, i.e., k ¼ 9 ¼ k0 (blue), and additionally, using
k ¼ 15, k0 ¼ 7 (green); in the latter case, volumes of the bins are
close to those determined by qm ¼ 3 deg, qp ¼ 7 deg.
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