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Abstract This paper presents a new method for quantifying 
regional vulnerability to natural hazards in China. In recent 
decades, the study of vulnerability has gained a position of 
centrality in natural hazards research. How to quantitatively 
assess vulnerability has raised much interest in academia. 
Researchers have proposed a variety of methods for quantita-
tive assessment. But these methods are very sensitive to 
weights set for subindices. As a result, analytic results are 
often less convincing. A model based on data envelopment 
analysis (DEA) is used for the assessment of regional vulner-
ability to natural hazards in an attempt to improve existing 
analytical methods. Using a regional natural disaster system 
framework, this article constructs an input-output DEA model 
for the assessment of regional vulnerability, and takes China’s 
mainland as a case study area. The result shows that the 
overall level of vulnerability to natural hazards in mainland 
China is high. The geographical pattern is that vulnerability is 
highest in western China, followed by diminishing vulnerability 
in central China, and lowest vulnerability levels in eastern 
China. There is a negative correlation between the level of 
regional vulnerability and level of regional economic develop-
ment. Generally speaking, the more economically developed 
a region, the lower its regional vulnerability.

Keywords DEA model, geographical pattern, natural 
hazards, regional vulnerability

1 Introduction

Steady global environmental and climate changes produce 
natural disasters that have become an increasingly serious 
threat to the sustainable development of regional socioeco-
nomic systems (Kates et al. 2001). Current natural hazards 
research has attracted great attention internationally, although 
scholars have long been concerned with natural hazards 
(Montz and Tobin 2010). Early studies were mainly descrip-
tive and placed blame for catastrophes firmly on nature rather 
than on human endeavors, which can be seen as a form of 

“hazards determinism.” Because such studies on physical 
processes can only explain what populations or areas may 
be exposed, this research was not sufficient to understand 
the degree to which people at a location are threatened by 
hazard exposure. Natural hazards may produce significantly 
different impacts on people and places, often depending not 
only on the severity of the hazards, but also on their biophys-
ical attributes and the socioeconomic characteristics of a 
locale. As a response to the deficiencies in early studies, 
scholars proposed a new concept of vulnerability to address 
natural hazards related issues, which can be dated back to 
the landmark work of Gilbert White, Human Adjustment to 
Floods (White 1945).

Currently, the study of vulnerability is increasingly gather-
ing momentum, and the concept of vulnerability is used in 
many fields and at different spatial levels. However the term 
varies among disciplines and research areas (Liverman and 
O’Brien 1991; Watts and Bohle 1993; Dow and Downing 
1995; Cutter 1996; Fraser et al. 2006; Janssen et al. 2006; 
Metzger et al. 2006). Despite differences in the conceptual-
ization of the term “vulnerability,” three main perspectives 
have emerged (Adger 2006). The first major research theme 
treats vulnerability as a preexisting condition and focuses on 
potential exposure to hazards (Cutter 1996). Studies conduct-
ed in accordance with this perspective tend to assess the 
distribution of a hazardous condition, the nature of human 
occupancy in the hazard zone, and the degree of loss of life 
and property resulting from a particular event. The second 
major perspective on vulnerability suggests that not all indi-
viduals and groups exposed to a hazard are equally vulnera-
ble. Rather, affected people display patterns of differential 
loss. In addition to exposure to a stress or crisis, this differen-
tial vulnerability also depends on the coping ability of the 
individuals and communities affected. Studies that follow the 
second approach assess the social vulnerability of impacted 
populations. People living at the margins, such as those 
without access to social services or political power, are more 
vulnerable than those with better access to resources. The 
third major theme takes the concept of vulnerability as a 
“hazard of place,” which combines elements of the first two 
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perspectives. The vulnerability of places framework treats 
vulnerability as a social response to a biophysical danger 
within a specific geographic domain, which is in accordance 
with the theory of regional natural hazards system (Shi 
1996).

This article adopts the vulnerability of places approach in 
which the concept of regional vulnerability is used to measure 
capacity to withstand natural hazards in different regions with 
distinctive economies (Timmerman 1981; Turner II 2010). 
Specifically, vulnerability is the characteristic of a region to 
be wounded and has little capability to cope (defined as 
the ability to absorb the damaging impacts of a hazard and 
continue functioning), without the consideration of resilience 
(the ability to recover rapidly from disaster). In short, with 
the same severity of natural hazards and exposure of regional 
socioeconomic systems, regions that suffer more disaster 
loss have higher levels of vulnerability. In this research, 
vulnerability is a reflection of the degree to which a certain 
regional socioeconomic system might be destroyed more 
readily by natural hazards.

As one of the worst natural hazards inflicted countries 
in the world, China has frequently suffered the ravages of 
natural disasters. According to government statistics during 
the 19 years from 1990 to 2008, on annual average, natural 
disasters affected about 300 million people, destroyed more 
than three million buildings, and forced the evacuation 
of more than nine million people. The direct financial losses 
exceeded 200 billion Yuan (Information Office of the State 
Council of the People’s Republic of China 2009). Floods in 
the Yangtze, Songhua, and Nen river valleys in 1998, serious 
droughts in Sichuan Province and Chongqing Municipality in 
2006, devastating floods in the Huai River valley in 2007, 
extreme cold weather and sleet in south China in early 2008, 
and the earthquake that shook Sichuan, Gansu, Shaanxi, and 
other places on 12 May 2008 all caused tremendous losses. 
Study of China’s regional vulnerability to natural hazards can 
provide benefits if such research leads to the adoption of 
effective strategies for future disaster mitigation. Although 
the concept of vulnerability has been applied in many research 
fields, vulnerability assessment remains a difficult task. 
Researchers have struggled to find suitable frameworks 
and metrics for vulnerability assessment (Blaikie, Cannon, 
and Davis 1994; Klein and Nicholls 1999; Cutter, Boruff, and 
Shirley 2003; Cutter and Finch 2008; Boruff, Emrich, 
and Cutter 2005). The methods adopted by most current 
researchers are to establish an index of vulnerability based on 
complicated proxy data sets that indicate vulnerability. These 
methods provide useful tools for identifying and monitoring 
vulnerability over time and space, as well as introduce a 
way to understand the processes underlying vulnerability.

But, this type of research has generated additional 
questions. The first question relates to the choice of proxies 
for vulnerability assessment. Because of the complexities 
involved in the concept of vulnerability, researchers use 
different proxies to indicate vulnerability. The second issue 

relates to the relative contributions of the variables used to 
define vulnerability. Some researchers choose not to weigh 
variables differentially to allow for dissimilar effects (Cutter, 
Mitchell, and Scott 2000), while others have explored distinc-
tive weighting schemes designed to reflect variations in 
importance (Brooks, Adger, and Kelly 2005; Lazarus 2010). 
Most methods used for calculating weights are more or less 
subjective, which reduces confidence in the results. Thus 
determining appropriate weighting is challenging for this 
type of methods of vulnerability assessment (Lazarus 2010).

Taking a different approach, a model based on a data 
envelopment analysis (DEA) is proposed in an attempt to 
improve upon traditional methods because the DEA approach 
does not require determining weight parameters. In recent 
years, DEA modeling has been used to evaluate the perfor-
mance of various entities engaged in different activities in 
varied contexts, including benchmarking in health care 
(hospitals, doctors), education (schools, universities), banks, 
manufacturing, and management evaluation (Anderson 2002). 
But only limited DEA research in the field of natural disasters 
has occurred, although some researchers have begun to use 
DEA models to carry out preliminary studies (Wei et al. 2004; 
Zou and Wei 2009). There are some shortcomings in these 
studies, including relatively simplistic selection of indicators 
for assessment and inadequate consideration of the regional 
physical context of natural hazards. This article first discusses 
the applicability of DEA modeling to natural hazard vulner-
ability assessment. It then constructs indices that are used for 
regional vulnerability assessment based on a natural disaster 
system framework. Finally, an analytical model is developed. 
Based on the annual data of governmental statistics from 
2001 to 2008 (National Bureau of Statistics of China 2001–
2008; Department of Finance and Administration, Ministry of 
Civil Affairs of China 2001–2008), regional vulnerabilities in 
China’s mainland area are assessed as a case study.

2 Methods

2.1 Introduction of the DEA Model

Data envelopment analysis is a relatively new, data-oriented 
approach for evaluating the performance of a set of peer 
entities, called Decision Making Units (DMUs), which con-
verts multiple inputs into multiple outputs. Because DEA 
requires very few assumptions, in their original study Charnes, 
Cooper, and Rhodes (1978) described DEA as a mathematical 
programming model applied to observational data that 
provides a new way of obtaining empirical estimates of 
relations—such as production functions and/or efficient pro-
duction possibility surfaces. Formally, DEA is a methodology 
directed to frontiers rather than central tendencies. Instead of 
trying to fit a regression plane through the center of the data 
as in statistical regression, for example, one “floats” a piece-
wise linear surface to rest on top of the observations (Cooper, 
Seiford, and Zhu 2004). Because of this characteristic, DEA 
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proves particularly adept at uncovering relationships that 
remain hidden from other methodologies.

Based on the concept of relative efficiency, researchers 
take a DEA model as an excellent and easily used methodol-
ogy for modeling operational processes for performance 
evaluations. DEA model is a useful tool for the efficiency 
evaluation of an “input-output” system. In the context of 
natural disasters, the occurrence of loss from natural disasters 
represents the product of interactions within regional natural 
disaster system, which can be seen as an “input-output” 
system. Specifically, disaster losses (as output factors) are the 
products of interactions within the regional natural disaster 
system whose input factors include hazards, disaster forma-
tive environment, and exposure units (Shi 1996). Hazards 
are the physical processes of the earth system that threaten 
human society. Disaster formative environment is the condi-
tions of the physical environment that aggravate or decrease 
the effects of hazards, such as slope, elevation, soil, and 
vegetation. Exposure units mainly include all types of human 
activities. 

For example, flood as a hazard is dangerous only when 
a locale is near a river or has a low elevation, which can 
be seen as the action of the disaster formative environment. 
Hazard and disaster formative environment are only external 
conditions for disaster losses—the hazard danger is relative to 
human socioeconomic activities in a flood-prone place. These 
regional human activities are the internal reason for disaster 
losses. A place devoid of human activity is not in danger, 
so the role of human activity is to create exposure units that 
experience damage in a flood. While human activities and 
structures constitute components that are the prerequisite 
for disaster losses, only the vulnerable locale will suffer 
loss. This variable vulnerability is a hidden characteristic of 
regional human activity, which is simply reflected in the 
differential severity of the disaster loss sustained by different 
areas under the same natural hazards scenario. We conclude 
that disaster losses are the synergic action of regional natural 
disaster systems. In the face of natural disasters, people would 
hope for less loss from the disasters. But the normal DEA 
model expects more losses (products) with the same level of 
flood (input). This appears in conflict with the goal of actual 
disaster impact reduction in most management situations. 

Seen from the process of disasters, the essence of relative 
efficiency is similar to regional vulnerability. More generally, 
regional vulnerability to natural hazards is reflected in the 
production efficiency of loss caused by natural disasters. 
Usually a region with higher vulnerability, under the same 
level of natural hazard impact, will suffer more severe 
damage. That is, the operational efficiency of the regional 
natural disaster system is high. While on the other hand, for 
regions with low vulnerability, because of the low efficiency 
in generating damages, the loss caused by natural disasters is 
usually relatively light. This article uses relative efficiency 
calculated by a DEA model to reflect regional vulnerability to 
natural hazards (Figure 1).

Since the DEA method was developed, various DEA 
models have been proposed. In this article, the classical C2R 
model is adopted for analysis. Because the main purpose of 
our work is the application of the DEA model, we only make 
a simple introduction of the model; detailed description 
and calculations can be found in related work (Coelli 1996). 
The model assumes that there are n decision-making units, 
DMUj (j = 1, 2, ···, n ) (the region unit for vulnerability assess-
ment); each DMUj has m inputs and s outputs. The input 
vector can be written as Xj = (x1j, x2j, ···, xmj)T, while the 
output vector is Yj = (y1j, y2j, ···, ysj)T. So the C2R model for the 
assessment of regional vulnerability to natural hazard is as 
follows:
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 Eq. 1

Where θ (0 < θ ≤ 1) is total economic efficiency, λj is weight 
variable; S– is a slack variable, S+ is the remnant variable; ε 
is non-Archimedean infinitesimal, generally taking ε = 10–6. 
If the θ score of one DMU is close to 1, it indicates that this 

Figure 1. Framework for the assessment of regional vulnerability to natural hazards based on a DEA model
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unit has a high input-output ratio, namely high efficiency 
for production. In the case of natural hazards, it can be con-
sidered that the region has a higher potential to be harmed. In 
other words, it has a higher vulnerability. A lower θ score 
implies that the region concerned has relatively low vulnera-
bility. When θ = 1, the ratio of input to output is at the optimal 
production frontier, so the production efficiency of the region 
reaches the maximum. That is, the damage caused by natural 
disasters is maximized and regional vulnerability to natural 
hazards is the highest. 

2.2 Index Construction and Data Processing

As discussed above, disaster loss is the synergic action of 
the regional natural disaster system. Each element of the 
system plays a different role in the process of natural disas-
ters. The combined effect of the hazard and disaster formative 
environment is seen as a threat or danger; while exposure 
units such as properties, buildings, and people take on the 
characteristics of regional socioeconomic systems. Only the 
simultaneous action of the two aspects will induce disaster 
losses. Specifically, the regional natural hazards system 
can be seen as negative “production activities;” the “input” 
factors include the danger of the natural hazards, namely the 
combination of the magnitude and frequency of regional 
natural hazards and the conditions of natural environment, 
such as elevation, slope, geological conditions, vegetation, 
and so on, as well as the exposure of the socioeconomic 
system, such as the area planted with crops, total population 
size, level of economic activity, existing infrastructure, 
and similar variables. The “output” elements are the disaster 
losses, such as the size of the affected area, number of people 
impacted, scale of economic losses, and extent of casualties. 
Efficiency can be taken as a reflection of vulnerability. 
The higher the efficiency, the higher the vulnerability of the 

region. So this research builds the input and output factors 
for the DEA model of regional natural hazards from three 
aspects: (1) the danger of regional hazards (DI), an input 
factor; (2) the exposure of the regional socioeconomic system 
(EI), an input factor; and (3) the regional natural disaster 
losses (LI), an output factor. The efficiency calculated by the 
DEA model can be used as a surrogate by which to assess 
regional vulnerability to natural hazards. There have been 
many debates about the deficiencies of the DEA model, 
because the results differ depending on the selection of 
model variables. It is therefore very important to make a good 
choice of the variables. Considering the availability and rep-
resentativeness of data, we made a selection of the following 
indicators for each index (Table 1), and identified 31 basic 
assessment units, including 22 provinces, 5 autonomous 
regions, and 4 municipalities of mainland China.

In order to make a quantitative assessment of the danger of 
natural hazards, this article takes as a point of departure the 
research work of Ma (1994), which makes a quantitative as-
sessment of the danger posed by various natural hazards. Be-
cause disaster losses fluctuate greatly over the years, single 
year disaster loss data are unsuitable for vulnerability analy-
sis. We use the average of disaster losses over multiple years 
(2001–2008) instead. Correspondingly, in order to keep con-
sistency between the model input and output, we also take the 
average value of indicators of exposure of regional socioeco-
nomic system (Table 1) for analysis.

Although DEA model   can be used to assess the relative 
efficiency of the DMUs with multiple inputs and outputs, the 
number of the inputs and outputs is not unlimited. There is an 
important rule of thumb that the number of DMUs must be no 
less than the number of inputs and outputs, and the variables 
must have low correlation, or the capacity of DEA model to 
calculate efficiency will be reduced (Anderson 2002). So it is 
better to reduce the number of inputs and outputs when the 

Table 1. Indicator system and data for vulnerability assessment

Description of Index Indicator Selection Data Processing Data Source

Danger of regional 
hazards (DI) 

The reflection of the comprehensive 
action of hazards and disaster formative 
environment, decided by the magnitude 
and frequency of regional natural hazards 
and natural environmental conditions.

The five main types of natural hazards 
in China, including earthquake; 
meteorological hazards such as hail, 
frost, sandstorm; drought; flood; and 
geological hazards.

Calculate the mean value 
of the danger score of 
natural hazards, used as 
the DEA model input.†

Ma 1994 

Exposure of regional 
socioeconomic 
system (EI)

The assessment of lives and property 
threatened by natural disasters in the 
region. Usually the higher the degree of 
exposure, the greater the potential losses.

Regional total population, GDP, per 
capita GDP, population density, 
cultivated areas, GDP km–2, regional 
urbanization level.

Factor analysis, taking 
the extracted principal 
components as the DEA 
model input.

National Bureau 
of Statistics of 
China 2001–2008

Regional natural 
disaster losses (LI)

The assessment of regional losses caused 
by natural disasters, such as casualties, 
crop yield reduction or total loss of 
harvest, building damage, and other 
losses.

Disaster affected area, area with total 
loss of harvest, proportion of farmland 
with total loss of harvest, affected 
population, number of deaths from 
disasters, population with drinking 
water problem, number of collapsed or 
damaged building units, direct 
economic losses.

Factor analysis, taking 
the extracted principal 
components as the DEA 
model output.

Department of 
Finance and 
Administration, 
Ministry of Civil 
Affairs of China 
2001–2008

†  The danger of natural hazards faced by any given region is the combined result of various hazards, and it is difficult to determine the weight of each 
hazard. So we take the average of the scores of all natural hazards as a comprehensive assessment.
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number of DMUs is limited, although it is also important to 
maintain the original information represented by the input 
and output variables. Factor analysis is a useful tool for reduc-
ing the number of variables while minimizing the information 
loss of the original variables. This research uses factor analy-
sis to process the indicators, using the extracted principal 
components as the input and output variables. Since the prin-
cipal components extracted will have negative values that are 
forbidden in the DEA model, data transformation is needed. 
We make a linear stretch of the data to a new data range of 
1 to 5 by using the minimum-maximum standardization 
method. The transformation is done as follows:

V
V

new new newA

A A
A A Ap =

-
-

- +
min

max min
( _ max _ min ) _ min

Eq. 2

Where V p is the new data value after normalization, V is the 
original data value, maxA and minA represent the maximum 
and minimum of original data sets, while new_maxA and 
new_minA are taken as the maximum and minimum values of 
the new data sets.

3 Results and Analysis

3.1 Result of Factor Analysis

We first perform a factor analysis of the DEA model input and 
output factors. Two principle factors are extracted from the 
indicators of exposure of regional socioeconomic system and 
two other principle factors are extracted from regional natural 
disaster losses (Table 2). From the loadings of each principal 
component, we can see that the principal exposure factors 
of the regional socioeconomic system largely describe the 
density (factor 1) and total amount (factor 2) characteristics 
of regional exposure. The principal factors of regional natural 
disaster losses reflect human and economic losses (factor 1) 
and agricultural losses (factor 2). We use these four new 

principle factors as the final variables of the DEA model to 
calculate the efficiency of each DMU.

3.2 Vulnerability Assessment Based on Relative 
Efficiency

After data processing, we obtained the production efficiency 
of natural disaster losses of the 31 DMUs using the DEAP 
Version 2.1 software (Table 3), which can be used for the 
analysis of vulnerability. The efficiency of Inner Mongolia, 
Heilongjiang, Fujian, Jiangxi, Hainan, Chongqing, Sichuan, 
Yunnan, and Ningxia all equal to1, which means that the rela-
tive production efficiency of natural disaster losses is highest 
in all these DMUs. From a vulnerability perspective, these 
regions have low capacity to resist natural hazards and thus 
have higher vulnerability. As a result, for the same natural 
hazards (with the same model inputs), more disaster losses 
are expected as compared with other regions. In fact, these 
regions are the typical vulnerable regions to natural hazards. 
For example, Fujian and Hainan are provinces that have 
suffered from typhoons every year, and Yunnan Province 
experienced a severe drought three years ago. Generally, 
these places often suffer great economic losses due to the 
disastrous consequences of these events. The three regions 
that have the lowest efficiency are Shanghai (0.463), Beijing 
(0.499), and Jiangsu (0.561). These places are the most 
economically and socially developed regions in mainland 
China, with a higher capacity to invest in disaster prevention. 
Even if natural disasters caused great damage to these places, 
compared to the huge size of the regional economy disaster 
losses would be relatively modest. As a consequence, these 
regions have a low vulnerability to natural hazards. Regional 
vulnerability as explained by the efficiency of DEA model is 
in accordance with the actual vulnerability situation in China, 
so this method produces a good analytical result.

Vulnerability to natural hazards has a close relationship 
with the physical and social environments of a region. In 
order to determine the key factor that causes vulnerability, 
a correlation analysis was carried out in this research. 

Table 2. The extracted principal components based on factor analysis

Exposure of Regional Socioeconomic System Regional Disaster Losses 

Indicators Factor 1 Factor 2 Indicators Factor 1 Factor 2

Total GDP 0.837 Disaster affected area 0.921
Total population 0.958 Area with total loss of harvest 0.963
Population density 0.931 Proportion of farmland with total loss of 

harvest
0.736

GDP km-2 0.920 Affected population 0.842
Cultivated areas 0.675 Number of deaths from disasters 0.849
Per capita GDP 0.967 Population with drinking water problem 0.616
Urbanization level 0.896 Number of collapsed building units 0.871

Number of damaged building units 0.947
Direct economic losses 0.650

Note: Factor loadings smaller than 0.6 are not listed. Factors selected have greater than 1 eigenvalue and the contribution of the cumulative variance is more than 80 percent.
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Table 3. Regional vulnerability assessment for mainland China

EI DI LI Production Efficiency 
of Disaster Losses

Density Total Amount Human and Economic Losses Agricultural Losses

Beijing 3.07 1.64 3.6 1.25 1.22 0.499
Shanghai 5.00 2.00 2.2 1.45 1.00 0.463
Jiangsu 2.24 4.34 3.2 2.72 2.14 0.561
Guangdong 2.34 4.49 3.6 3.39 1.94 0.572
Liaoning 1.85 2.81 3.2 1.56 3.20 0.621
Tianjin 2.79 1.40 3.4 1.17 1.55 0.639
Zhejiang 2.25 3.07 3.0 3.25 1.97 0.673
Shandong 1.93 5.00 3.6 3.09 3.56 0.681
Hebei 1.49 3.75 3.8 2.28 3.45 0.719
Xinjiang 1.23 1.95 2.0 1.99 1.96 0.772
Jilin 1.46 2.33 2.4 1.62 3.32 0.789
Hubei 1.48 3.12 3.2 3.59 2.97 0.806
Shanxi 1.36 2.29 3.4 2.12 3.20 0.853
Gansu 1.02 2.09 3.6 1.80 2.85 0.868
Guangxi 1.19 2.61 3.2 3.74 2.33 0.894
Qinghai 1.26 1.07 2.2 1.35 1.57 0.906
Anhui 1.32 3.20 3.2 3.40 3.38 0.916
Henan 1.38 4.50 2.8 3.00 3.83 0.920
Shaanxi 1.26 2.35 4.0 3.19 2.75 0.942
Guizhou 1.00 2.30 2.8 3.39 2.26 0.972
Tibet 1.08 1.00 2.6 1.53 1.43 0.978
Inner Mongolia 1.32 2.47 2.2 1.46 5.00 1.000
Heilongjiang 1.33 3.48 2.0 1.51 4.49 1.000
Fujian 1.78 2.26 3.6 4.12 1.87 1.000
Jiangxi 1.32 2.34 2.2 3.62 2.23 1.000
Hunan 1.37 3.10 3.2 5.00 3.02 1.000
Hainan 1.46 1.18 3.8 1.54 2.11 1.000
Chongqing 1.48 1.95 3.0 3.47 2.32 1.000
Sichuan 1.19 3.79 3.6 4.68 2.64 1.000
Yunnan 1.03 2.73 3.2 4.73 1.74 1.000
Ningxia 1.31 1.15 2.6 1.00 2.49 1.000

Three indicators were selected as independent variables in 
the correlation analysis with natural disaster losses: (1) the 
proportion of primary industry in GDP; (2) per capita GDP; 
and (3) the danger index of regional hazards (Table 4). The 
results show that among the three indicators the ratio of 
the primary industry has a predominant positive correlation 
with vulnerability. The reason for this correlation is the high 
sensitivity of the agricultural sector to the impacts of natural 
hazards. Per capita GDP as the representative of regional 
economic capacity has a significant negative relationship 
with vulnerability, because the more developed an area is, 
the higher is the level of preventative measures deployed 
to mitigate the impact of natural hazards. The danger index 
of regional hazards does not have a significant correlation 
with vulnerability. It is even slightly negatively related to 
vulnerability, which is contrary to common sense. This is 

because some regions in the high natural hazard danger areas 
may have low vulnerability due to a strong regional economi c 
capacity. In fact, the first two variables can be taken as repre-
sentatives of the socioeconomic situation, while the third 
variable acts largely as the deputy of the physical factors. We 
conclude that the social environment is the main factor affect-
ing regional vulnerability to natural hazards. That is, disasters 
are not caused by natural hazards, but by the social systems 
that make people or regions vulnerable (Cutter 2010).

3.3 Classification and Mapping of Vulnerability 

Based on the result of relative efficiency (θ), we divide 
regional vulnerability into four levels: slight (θ < 0.6), 
medium (0.6 ≤ θ < 0.8), high (0.8 ≤ θ < 1.0), and severe (θ 
= 1). In order to illustrate the geographic patterns of regional 

Table 4. Correlation between vulnerability and physical and social environment indicators

Proportion of Primary Industry in GDP Per Capita GDP Danger Index of Regional Hazards

Pearson correlation –656** –.817** –.145

** Correlation is significant at the 0.01 level (2-tailed).
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vulnerability to natural hazards, we drew a regional vulnera-
bility map (Figure 2), which shows the geographic pattern of 
vulnerability for mainland China. Regions with slight vulner-
ability are concentrated in the developed eastern coastal areas 
of China, while regions with severe vulnerability are mainly 
located in the central and western areas of China. Most of 
the regions in central and western areas have medium or high 
vulnerability. So the overall vulnerability level of China 
decreases from west to east, which has a close relationship 
with the characteristics of the natural environment and the 
country’s level of development. This result may provide some 
useful input to the natural hazards mitigation work of the gov-
ernment. In fact, the Chinese government’s current policies 
for disaster relief are directly opposite to what this research 
has suggested. For disaster relief purposes, provinces in main-
land China are divided into three regional groups: eastern, 
central, and western. Provinces in western China, though 
underdeveloped, receive fewer central government relief 
funds compared to provinces in well-developed eastern 
China. Relief funds distributed to provinces in central China 
are at an intermediate level. Our research suggests a totally 
different approach than current practice. For future natural 
hazard prevention planning, the government should increase 
the prevention and mitigation input into the central and western 
parts in order to improve regional resilience and reduce 
vulnerability. This would especially enhance the disaster 
prevention capacity of regions with severe vulnerability. 
Considering that China has a large and critically important 

agricultural sector but possesses weak and poorly resilient 
agricultural infrastructures, sustained efforts should be made 
to increase the ability of the agricultural sector to fight natural 
hazards.

4 Conclusion

Considering the deficiencies of the more often used metrics 
of quantitative vulnerability assessment, this research has 
proposed using the DEA model as a new approach to the 
assessment of regional vulnerability to natural hazards. 
In contrast to previous vulnerability assessments, which 
emphasize identifying suitable vulnerability indicators and 
constructing an overall vulnerability index from those indica-
tors, this research has assessed vulnerability from the per-
spective of a regional natural disaster system. The production 
efficiency of natural disaster losses is taken as a reflection of 
vulnerability, and a new method for classifying vulnerability 
is also proposed. The results show that the geographical pat-
tern of vulnerability displays a decreasing trend from western 
China through central China to eastern China. Compared to 
the physical context, social context, economic development 
in particular, has a much greater influence on regional vulner-
ability. We have found a negative correlation between the 
level of regional vulnerability and regional economic devel-
opment level. The more economically developed a region, 
the lower the regional vulnerability. The structure of regional 

Figure 2. Spatial pattern of the regional vulnerability to natural hazards in mainland China
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socioeconomic systems also has a close relationship with 
vulnerability; especially the proportion of primary industry in 
GDP has a significant positive correlation with vulnerability. 
These results are relevant to disaster relief policy since 
they suggest that the government should pay more attention 
to major agricultural areas of the country in the work of 
disaster prevention and reduction. While it would be of great 
practical value to analyze how the vulnerability of regions 
changes, due to the limitations of our data, in this study we 
could only make a static assessment of regional vulnerability. 
Studies identifying changing vulnerability through time will 
be pursued in our future research.
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