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Abstract In the current paper the Lagrangian of a clas-
sical, relativistic point particle is obtained whose conju-
gate momentum satisfies the dispersion relation of a quan-
tum wave packet that is subject to Lorentz violation based
on a particular coefficient of the nonminimal standard-
model extension (SME). The properties of this Lagrangian
are analyzed and two corresponding Finsler structures are
obtained. One structure describes a scaled Euclidean geom-
etry, whereas the other is neither a Riemann nor a Randers
or Kropina structure. The results of the article provide some
initial understanding of classical Lagrangians of the nonmin-
imal SME fermion sector.

1 Introduction

Finsler’s interests as a Ph.D. student rested upon geometries
characterized by path length functionals that were general-
ized versions of the Riemannian definition. He studied man-
ifolds whose geometric properties such as curvature both
depend on the point considered on the manifold and on the
angle that a chosen line element encloses with a given direc-
tion in the tangent space of the manifold [1]. Subsequently
these types of spaces were called Finsler spaces by Cartan
[2,3]. According to Chern [4] it should be avoided saying
that Finsler spaces are a generalization of Riemannian ones.
Instead, it is better to denote them as Riemannian spaces
without the quadratic restriction.

The monographs [5,6] deliver a mathematical introduc-
tion of Finsler geometry including various applications. A
Finsler space is, indeed, not a point space but a set of line
elements. Each is endowed with an underlying Riemannian
metric [7], which determines vector magnitudes and angles
between vectors. Besides, a real-valued function on its tan-
gent bundle is introduced, which has certain properties and
is often denoted as a Finsler structure. One basic example for
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a Finsler structure is provided by the time that a salesman
needs to travel between different locations on a hillside (see
p. 46 in [5,8]). The solution of the Zermelo navigation prob-
lem, which asks the question of minimizing the navigation
time of a ship or plane in the presence of wind, leads to a
further example of a Finsler structure.

One essential application of Finsler geometry lies in the
field of Lorentz symmetry violation, which was initiated
by the seminal articles [9–12]. Since the development of
the (minimal) standard-model extension (SME) [13] the
investigation of Lorentz violation has become more and
more prominent. The (minimal) SME is a framework of all
power-counting renormalizable, Lorentz-violating operators
compatible with the standard model of elementary particle
physics. The minimal SME was extended by the nonminimal
SME [14–16], which comprises all Lorentz-violating terms
having arbitrary operator dimension.

In this context the interest lies in establishing a correspon-
dence between the dispersion relation of a quantum wave
packet, which follows from the Lorentz-violating field the-
ory, and the kinematics of a classical, relativistic point par-
ticle. So the goal is to associate classical Lagrangians to the
SME and there are several good reasons for doing that. First,
the latter may be closely linked to a Finsler space, which
has already been thoroughly investigated by mathematicians.
This will provide a large toolbox of methods and theorems
to understand the classical limit of the SME in an elegant
way. Second, the dispersion relation is merely a first inte-
gral of the equations of motion. The motion of a particle in a
background field can only be completely analyzed once the
equations of motion are known. Third, Finsler geometry is
a reasonable and natural procedure to describe background
fields in a (curved) manifold, e.g., Lorentz violation in the
presence of gravity. This can be done by promoting the con-
stant Lorentz-violating coefficients to spacetime-dependent
functions and by replacing the flat intrinsic metric with a
curved metric.
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Before delving into the physics, a classical Lagrangian
in flat spacetime has to be found and its properties must be
understood. In [17–19] classical Lagrangians were derived
for certain sets of Lorentz-violating coefficients of the mini-
mal SME fermion sector. In [18,20,21] these Lagrangians
were promoted to Finsler structures, which were then
inspected closely. The goal of the current paper is to carry this
out for a framework based on a particular Lorentz-violating
coefficient of the nonminimal fermion sector. The properties
of this Lagrangian will be investigated with the result that it
can be promoted to two different Finsler structures.

In general, a playground for Finsler geometry in physics
is investigating modifications of relativity. One of the first
applications was delivered by Randers in [22]. The Finsler
structure introduced by him carries his name and is of great
importance in science. For example, the structure being a
solution of the Zermelo navigation problem is of Randers
type. Questions of spacetime causality in relation to Finsler
structures were addressed in [23,24] where Randers struc-
tures play an essential role as well. In [25] a Randers struc-
ture is used to determine speed limits in quantum information
processing.

Further applications of Finsler geometry include, e.g.,
optical geometry and gravitational lensing in general rela-
tivity [26–28], geometrical optics in anisotropic media [29],
electron optics under the influence of magnetic fields, ther-
modynamics, biology (see [5] for the latter topics), psychom-
etry [8], dynamical systems [30,31], and imaging [32].

Note that Finsler spacetimes have recently been exam-
ined in the literature more profoundly. Due to their pseudo-
Riemannian signature, the definition of Finsler spacetimes is
more involved than that of Finsler geometries with a Rieman-
nian signature. In [33–37] Finsler spacetimes are constructed
such that they have a light cone structure and allow for the
notion of timelike and lightlike vectors. Implications of a
Finsler spacetime geometry on a scalar quantum field theory
were investigated in [38,39] and references therein. The con-
cept of Finsler spacetimes is also applied, e.g., in the context
of very special relativity [40]. In [41–44] Finsler spaces and
spacetimes are investigated further. In the first and second
of these articles the analog of Fermat’s principle in special
Finsler spacetimes is analyzed. Reference [43] deals with the
geodesic deviation equation and applies the obtained results
in the context of gravity. Reference [44] reviews causality in
Finsler spacetimes and the correspondence between standard
stationary spacetimes and Randers spaces. In a certain sense,
Finsler spacetimes generalize Lorentz invariance instead of
violating it [36].

The paper is organized as follows. Sections 2 and 3 give
brief introductions to the nonminimal SME fermion sec-
tor and describe how to obtain the classical point-particle
Lagrangian from the fermion dispersion relation. In Sect. 4
the classical Lagrangian is derived for the sector consid-

ered and its characteristics are investigated. Section 5 briefly
reviews the mathematics of Finsler structures and demon-
strates how such structures can be obtained from the clas-
sical Lagrangian computed. Finally in Sect. 6 the physics
of the Lagrangian is discussed assuming a sufficiently small
Lorentz-violating coefficient. Last but not least the results of
the paper are summarized in Sect. 7. Calculational details are
relegated to the appendix. Natural units with h̄ = c = 1 are
used throughout the article.

2 Fermion sector of the nonminimal standard-model
extension

The SME is a collection of all Lorentz-violating operators of
Standard Model fields that are gauge-invariant with respect
to SU(3)c×SU(2)L ×U(1)Y . The minimal sector comprises
power-counting renormalizable terms, whereas the nonmin-
imal sector includes all contributions up to arbitrary operator
dimension. In [16] the operators of the nonminimal SME
fermion sector are classified according to their transforma-
tion properties under the improper Lorentz transformations
P and T, and the charge conjugation C. The action of the
nonminimal Lorentz-violating fermion sector reads

S =
∫
R4

d4x L, L = 1

2
ψ
(
γ μi∂μ − mψ14 + Q̂)ψ + H.c.

(2.1)

Here ψ is the standard Dirac field, ψ = ψ†γ 0 the Dirac con-
jugate field, mψ is the fermion mass, and 14 the unit matrix
in spinor space. The gamma matrices γ μ for μ = 1 . . . 4
are standard and satisfy the Clifford algebra {γ μ, γ ν} =
2ημν14 with the flat Minkowski metric ημν with signa-
ture (+,−,−,−). The quantity Q̂ comprises any possible
Lorentz-violating operator of the fermion sector.

In [45] certain quantum field theoretic properties of some
families of nonminimal operators were investigated. One of
the sets of coefficients studied was the dimension-5 part
of the Lorentz scalar m̂, i.e., m̂ = m(5)μν pμ pν . These
coefficients are CPT-even and supposedly the simplest of
higher dimension. We consider an observer frame where all
coefficients vanish except of m(5)00. Then the theory to be
examined is characterized by the action of Eq. (2.1) with
Q̂ = −m̂14 = −m(5)00 p2

014. The modified off-shell disper-
sion law reads

p2 −
(
mψ + m(5)00 p2

0

)2 = 0, (2.2)

which is quartic in p0. The coefficientm(5)00 has mass dimen-
sion −1, which gives the product m(5)00 p2

0 the suitable mass
dimension 1, such that it can be added to the fermion mass
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Fig. 1 Contour plots of the
modified dispersion law in
Eq. (2.2) for mψm(5)00 = 1/10
in two (a) and three dimensions
(b)

(a) (b)

mψ . The solutions of Eq. (2.2) with respect to p0 are the mod-
ified dispersion relations of an on-shell fermion affected by
the single coefficient m(5)00. There are two dispersion rela-
tions that are perturbed versions of the standard dispersion

law p0 =
√
p2 + m2

ψ with the spatial momentum p. These

are stated in [45]. Besides, there are two spurious disper-
sion laws that do not correspond to the standard limit for a
vanishing Lorentz-violating coefficient.

Two- and three-dimensional slices of the dispersion law
given in Eq. (2.2) are plotted in Fig. 1 for a particular Lorentz-
violating coefficient m(5)00. In comparison to the standard
fermion dispersion relation the resulting surface is not a two-
shell hyperboloid, but it is homeomorphic to two discon-
nected (hyper)spheres. For momenta lying in the order of
magnitude of 1/m(5)00 the dispersion relation is heavily mod-
ified, which even changes the topology of the corresponding
(hyper)surface. Because of this there are regions with verti-
cal tangents on the (hyper)surface corresponding to infinite
group velocities.

These properties are characteristic for frameworks based
on Lorentz-violating operators involving additional time
derivatives. Even for minimal operators additional time
derivatives lead to an unconventional time evolution of states,
which is why asymptotic states do not correspond to physical
free-particle states directly [46]. The spurious modes can be
understood as Planck-scale effects and for kinematics they
do not play a role as long as the particle energy and momen-
tum are much smaller than the Planck scale where the SME is
valid as an effective framework. In [45] it was demonstrated
that the spurious modes for the dimension-5 operator involv-
ing m(5)00 do not lead to problems with unitarity. Therefore
the particular dispersion relation of Eq. (2.2) results in a con-
sistent quantum field theory (at least at tree-level), which is
why it will be taken as a basis for this article.

The SME is suitable to describe the sub-Planckian limit
of an underlying, fundamental theory—whatever the latter

may look like. Even if at the level of effective field theory
certain issues arise for energies in the vicinity of the Planck
scale such as infinite group velocities, they are expected to be
cured by other Lorentz-violating operators stepping in. After
all, the underlying theory should be well-behaved right up to
the Planck scale.

3 Obtaining classical Lagrangians from dispersion
relations

In general, the field equations of the SME lead to modified
particle dispersion relations p0 = p0(pi ) with the particle
energy p0 and the spatial momentum components pi ; see, for
example, Eq. (2.2) for the nonminimal fermion sector con-
sidered. The dispersion relations are necessary conditions for
the free-field equations to have nontrivial plane wave solu-
tions. By introducing appropriate smearing functions these
plane waves can be used to construct quantum wave packets.

Given a dispersion relation p0 = p0(pi ), which is modi-
fied by a Lorentz-violating background field, a Finsler struc-
ture can be constructed as follows. Consider a classical, rel-
ativistic point particle at the spacetime point x ≡ (x0, xi )
with a four-velocity u ≡ (u0, ui ) (i = 1 . . . 3) whose kine-
matics is described by a Lagrangian L = L(x, u). The
goal is to find a Lagrangian such that its canonical momen-
tum pμ = −∂L(x, u)/∂uμ obeys the dispersion relation
p0 = p0(pi ) of the quantum wave packet. Hence one looks
for a correspondence between the dispersion relation, which
is a quantum field theoretic result, and the Lagrangian of a
classical point particle. Note that contrary to most other con-
texts in field theory the canonical momentum is defined with
a minus sign to ensure the kinetic energy in the nonrelativistic
limit to be nonnegative.

The classical point particle travels along a well-defined
trajectory. All physical results, especially the action, should
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not depend on the choice of its parameterization. This is
granted as long as L is positively homogeneous of degree
1 in u:

L(x, κu) = κL(x, u), κ > 0. (3.1)

Since the Lagrangian has this property, according to a theo-
rem by Euler [6] it can be written as follows:

L = ∂L

∂uμ
uμ = −pμu

μ, pμ = − ∂L

∂uμ
. (3.2)

The latter equation is very helpful. If the momentum can be
determined as a function of the velocity, it leads us to the
Lagrangian immediately.

For most purposes the group velocity of a quantum wave
packet can be interpreted as its physical velocity. To establish
the correspondence to the classical point particle, the spatial
velocity components of the point particle should correspond
to the group velocity components of the wave packet:

∂p0

∂pi
= − ui

u0 . (3.3)

The off-shell dispersion relation (for example, Eq. (2.2)) and
Eqs. (3.2), (3.3) give five equations of the nine unknowns
pμ, uμ, and L . Four of these equations must be used to
eliminate pμ in favor of uμ and L . The procedure employed
in most cases considered in the literature so far was to use
L = −pμuμ to eliminate pμ, which then led to a polynomial
of L . The classical Lagrangian is given by one of the zeros
of the latter polynomial with respect to L . In the next section
it will become evident that a different procedure will lead to
the goal here.

4 Classical Lagrangian

Now the interest lies in the Lagrangian for a classical point
particle reproducing the dispersion relation of a spin-1/2
fermion underlying Lorentz violation with the single nonzero
coefficient m(5)00 given by Eq. (2.2). According to Sect. 3
the group velocity of a quantum-mechanical wave packet
ought to be equal to the three-velocity of the corresponding
point particle. The group velocity components ∂p0/∂pi can
be obtained by implicit differentiation of Eq. (2.2) and solv-
ing the resulting equation with respect to ∂p0/∂pi . This leads
to

∂p0

∂pi
= pi

p0
[
1 − 2mψm(5)00 − 2p2

0(m(5)00)2
] = − ui

u0 .

(4.1)

Using Eq. (4.1) the spatial momentum components can be
expressed via p0. Inserting these relations in the off-shell
dispersion relation of Eq. (2.2), the resulting equation can be
solved with respect to p0. Calculational details of this proce-
dure are outlined in Appendix A. The computation involves
complex third roots. The result will be restricted to the first
root, since it gives the correct Lagrangian for a vanishing
Lorentz-violating coefficient (see Sect. 4, 4.1). This leads to
the following momentum–velocity correspondence:

p0 = 1

2
√

3

1

|u||m(5)00|
√

4u2Q3 − (u0)2 − Q2 f (Q1, Q2),

(4.2a)

pi = − ui

u0 p0

[
1 − 2mψm

(5)00 − 2p2
0(m

(5)00)2
]
, (4.2b)

with the definitions

f (x, y)≡cos

[
1

3
arccos

(
x

y3

)]
−√

3 sin

[
1

3
arccos

(
x

y3

)]
,

(4.3a)

Q1 ≡ −8u6Q3
3 − (u0)2

{
(u0)4 + 6(u0)2u2Q3

−6u4
[
7 − 4mψm

(5)00(7 + 2mψm
(5)00)

]}
,

(4.3b)

Q2 ≡ |(u0)2 + 2u2Q3|, (4.3c)

Q3 ≡ 1 − 2mψm
(5)00, (4.3d)

|u| =
√

(u1)2 + (u2)2 + (u3)2. (4.3e)

Note that for the minimal Lorentz-violating frameworks con-
sidered in [17] it was not possible to determine an analo-
gous momentum–velocity correspondence directly from the
dispersion relation. It works here, as the theory has been
restricted to the isotropic sector. Since taking the absolute
value of Q2 complicates many of the analytical calculations,
we will restrict the expression above to |m(5)00| ≤ 1/(2mψ).
Then Q2 is nonnegative and the absolute value bars can be
omitted. This is in accordance with considering Lorentz vio-
lation as a perturbative effect.

Having a momentum–velocity correspondence right from
the start is convenient because now the Lagrangian can be
constructed via L = −pμuμ. The result is cast in the form

L(u;mψ,m(5)00) = − 1

12
√

3u0|u||m(5)00|

×
√

4u2Q3 − (u0)2 − Q2 f (Q1, Q2)

×
[
5(u0)2−2u2Q3 − Q2 f (Q1, Q2)

]
.

(4.4)
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It is considered as a four-dimensional function of the four-
velocity components uμ where mψ and m(5)00 are taken
as parameters. In contrast to the cases investigated in [17]
the form of the Lagrangian is far from simple and rather
unpleasant, since the original equations involve third-order
polynomials in p0. Solving Eqs. (2.2) and (4.1) with a com-
puter algebra system resulted in expressions involving cubic
roots of complex quantities, which are themselves multi-
plied by complex numbers. These expressions are not mani-
festly real, which is why the Lagrangian was brought to the
manifestly real form of Eq. (4.4) by several manipulations
(see Appendix A). The latter are supposedly only valid for
real four-velocity components and parameters. Furthermore
the Lorentz-violating coefficient m(5)00 must be sufficiently
small.

As a cross check, the four-momentum can be computed
from the Lagrangian via pμ = −∂L/∂uμ. Using this pμ,
Eqs. (2.2) and (3.3) can be demonstrated to be valid numer-
ically for certain four-velocities. An analytic proof is pro-
hibitively difficult to perform due to the complicated struc-
ture of the Lagrangian.

4.1 Properties of the classical Lagrangian

Although the classical Lagrangian given by Eq. (4.4) is rather
complicated, it is possible to deduce some of its properties
either analytically or numerically.

1. Limit for a vanishing Lorentz-violating coefficient:
At first by looking at Eq. (4.4) one may think that the
Lagrangian has a pole at m(5)00 = 0. This would indicate
a spurious Lagrangian that does not correspond to the
standard result for vanishing Lorentz violation. However,
consider the limit of the term under the square root for a
vanishing Lorentz-violating coefficient:

lim
m(5)00 �→0

[
4u2Q3 − (u0)2 − Q2 f (Q1, Q2)

]

= O[(m(5)00)2], (4.5)

cf. Eq. (B.2). This is the reason why the Lagrangian does
not have a pole at m(5)00 = 0. On the contrary, L is
regular in this limit and corresponds to the standard case
(see Eq. (B.4)):

lim
m(5)00 �→0

L(u;mψ,m(5)00) = L(u;mψ)

= −mψ sgn(u0)
√
u2, (u0)2 − u2 ≥ 0, (4.6a)

with the sign function

sgn(x) =
⎧⎨
⎩

1 for x > 0,

0 for x = 0,

−1 for x < 0.

(4.6b)

It is important to remark that this limit only exists for
time- and lightlike u as indicated. Details of how to
obtain it can be found in Appendix B.1. The sign function
takes into account that the point-particle velocity ui/u0

in Eq. (3.3) changes sign when u0 changes sign. There-
fore the Lagrangian has a discontinuity on the |u|-axis,
i.e., for u0 = 0.

2. Limit for vanishing velocity components:
Equation (4.4) seems to have a pole for both u0 = 0
and |u| = 0. For this reason these limits shall be investi-
gated. Due to Q1(u0 = 0, |u|) = −8u6Q3

3 and Q2(u0 =
0, |u|) = 2u2Q3 the factor in square brackets after the
square root in Eq. (4.4) results in

lim
u0 �→0

[5(u0)2 − 2u2Q3 − Q2 f (Q1, Q2)]
= −2u2Q3 − 2u2Q3(−1) = 0. (4.7)

Therefore the Lagrangian does not have a pole for u0 �→
0, but it is not continuous in this limit (see the previ-
ous item). As a next step consider |u| = 0, for which
Q1(u0, |u| = 0) = −(u0)6 and Q2(u0, |u| = 0) =
(u0)2. We then obtain for the radicand under the square
root of Eq. (4.4)

lim|u|�→0

√
4u2Q3 − (u0)2 − Q2 f (Q1, Q2)

=
√

−(u0)2 − (u0)2(−1) = 0. (4.8)

Because of this the Lagrangian does not have a pole in
the limit |u| �→ 0, as well. Furthermore no pole appears
for the combined limit uμ �→ 0μ.

3. Global sign of the Lagrangian:
Due to the square root in the Lagrangian it is real only
for values of the velocity components, fermion mass, and
the Lorentz-violating coefficient lying within a domain
such that 4u2Q3 − (u0)2 − Q2 f (Q1, Q2) ≥ 0. For this
reason Q2 f (Q1, Q2) ≤ 4u2Q3 − (u0)2 and for the fac-
tor behind the square root the following estimate can be
obtained:

5(u0)2 − 2u2Q3 − Q2 f (Q1, Q2)

≥ 5(u0)2 − 2u2(1 − 2mψm
(5)00) + (u0)2

− 4u2(1 − 2mψm
(5)00)

= 6
[
(u0)2 − u2 + 2u2mψm

(5)00
]

≥ 0, (4.9)

for (u0)2 ≥ u2 and m(5)00 ≥ 0. Hence for time- and
lightlike four-velocity, for the condition u0 > 0 due to the
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prefactor, and for nonnegative Lorentz-violating coeffi-
cient we have L(u;mψ,m(5)00) ≤ 0. This simple analyt-
ical estimate can be refined numerically. The Lagrangian
is negative, zero or positive for the four-velocity compo-
nents lying in certain regimes. Therefore we define the
following sets:

R1 ≡ {u ∈ R
4|h(u0,u) ≥ 0}, (4.10a)

R2 ≡ {u ∈ R
4|h(u0,u) < 0}, (4.10b)

h(u0,u) ≡ 5(u0)2 − 2u2Q3 − Q2 f (Q1, Q2), (4.10c)

R3 ≡ {u ∈ R
4|u0 > 0,u 	= 0}, (4.10d)

R4 ≡ {u ∈ R
4|u0 < 0,u 	= 0}. (4.10e)

The values of (u0,u) lying in these domains can be deter-
mined numerically. For (u0,u) ∈ R1 ∩ R3 and (u0,u) ∈
R2 ∩ R4 we have L(u;mψ,m(5)00) <

(−)
0, whereas for

(u0,u) ∈ R2 ∩ R3 and (u0,u) ∈ R1 ∩ R4 we have
L(u;mψ,m(5)00) >

(−)
0. For both cases the equality sign

is only valid when the set R1 is involved. Otherwise the
Lagrangian cannot be zero. In R3 and R4 we also exclude
the line {u ∈ R

4|u = 0} for reasons of differentiability;
see the fifth item below.

4. Symmetries:
The form of the Lagrangian in Eq. (4.4) allows one
to show that L(u0,−u;mψ,m(5)00) = L(u0,u;mψ,

m(5)00). So it is symmetric with respect to a reflection
at the point u = 0. However, the second argument of
L(u0,u;mψ,m(5)00) will always be assumed to be non-
negative, since for this isotropic case the Lagrangian only
depends on the spatial velocity components via |u|.

5. Differentiability:
First of all, the argument inside the inverse trigonometric
functions shall be investigated:

g(u0, |u|) ≡ Q1(u0, |u|)
Q2(u0, |u|)3 . (4.11)

One can show that this function has minima g(u0, 0) =
g(0, |u|) = −1 and maxima g((u0)max, |u|) ≤ 1 for
values (u0)max = (u0)max(|u|,m(5)00) depending on the
Lorentz-violating coefficient. A summary of this anal-
ysis is presented in Appendix B.2. Then for all possi-
ble four-velocity components the argument lies within
[−1, 1] where arccos(x) is C∞ for x ∈ (−1, 1). The sine
and cosine functions are C∞ and the square root is C∞
as long as its argument is larger than zero (see the third
item).
The latter is, indeed, the case. According to Appendix B.2
the maximum of f (Q1, Q2) is taken at u0 = (u0)max.
The upper bound of f (Q1, Q2) is equal to 1 when
m(5)00 = 0 where (u0)max = ±|u|. Then the lower bound

of the radicand is given by

4u2Q3 − (u0)2 − Q2 f (Q1, Q2)

≥ 4u2Q3 − (u0)2
max − Q2 = 2u2Q3 − 2(u0)2

max

= 2u2Q3 − 2
(
±|u|√Q3

)2 = 0. (4.12)

Hence the radicand is positive except for (u0)2 − u2 =
0 and m(5)00 = 0 where it vanishes. For a vanishing
Lorentz-violating coefficient the Lagrangian corresponds
to the standard result of Eq. (4.6a), whereby the latter
results make sense.
Therefore the Lagrangian is C∞ except at the |u|-axis
(see the first item) and the u0-axis (see Appendix B.2):

L(u;mψ,m(5)00) ∈ C∞, u ∈ T M\R0, (4.13a)

R0 = {u ∈ R
4|u0 = 0 ∨ u = 0}. (4.13b)

6. Positive homogeneity of degree 1:
Now we want to check the homogeneity of the Lagrangi-
an, which is one of its essential properties accord-
ing to Eq. (3.1). For κ ∈ R we take into account
that Q1(κu0, κu) = κ6Q1(u0,u) and Q2(κu0, κu) =
κ2Q2(u0,u). A short calculation then yields

L(κu0, κu;mψ,m(5)00)

= − 1

κ|κ|
1

12
√

3u0|u||m(5)00| |κ|

×
√

4u2Q3 − (u0)2 − Q2 f (Q1, Q2)

×κ2
[
5(u0)2 − 2u2Q3 − Q2 f (Q1, Q2)

]

= κL(u0,u;mψ,m(5)00). (4.14)

Hence for both positive and negative κ the Lagrangian
is homogeneous of first degree. Therefore it is especially
positively homogeneous.

Finally, the dimensionless quantity Lψ/mψ is plotted in
Fig. 2. Some of its properties such as the discontinuity for
u0 = 0 are directly visible.

5 Finsler structures and manifolds

After understanding the properties of the Lagrangian it shall
be promoted to a Finsler structure. In general, a Lagrangian
depends on n + 1 velocity components u0, ui where ui for
i = 1 . . . n are the spatial components. The underlying metric
of the Lagrangian is called rμν and it is used to lower and raise
indices, e.g, uμ = rμνuν . It is a pseudo-Riemannian metric
with signature (+,−, . . . ,−), whereas a Finsler structure in
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Fig. 2 Surface plot of the Lagrangian (4.4) divided bymψ as a function
of u0 and |u|. The plain, blue lines show points where the function h of
Eq. (4.10c) (and, therefore, also the Lagrangian) vanishes. For the plot
mψm(5)00 = 1/10 has been chosen

n dimensions is characterized by a Riemannian metric with
signature (+,+, . . . ,+). First, the defining properties of a
Finsler structure shall be reviewed.

Consider an n-dimensional manifold M with its tangent
bundle T M where xi ∈ M , yi ∈ T M for i = 1 . . . n. The
underlying Riemannian metric will be denoted as ri j (x). M
is promoted to a Finsler manifold by introducing a function
F : T M �→ [0,∞) with F = F(x, y) where the following
properties hold:

1) F(x, y) > 0 for y ∈ T M\{0} (positivity),
2) F(x, y) ∈ C∞ for y ∈ T M\{0} (differentiability),
3) F(x, κy) = κF(x, y) for all κ > 0 (positive homogene-

ity of first degree for y),
4) and the Hessian matrix

gi j (x, y) ≡ 1

2

∂

∂yi
∂

∂y j
F(x, y)2, (5.1)

is positive definite for y 	= 0 (strong convexity).

Some texts, e.g., [5] include the first property, whereas it
is omitted in [6]. The function F is called the fundamental
function, metric function, Lagrangian [5] or simply a Finsler
structure [6] and gi j is named the derived metric, fundamental
Finsler tensor or just metric Finsler tensor [5].

Finsler structures that fulfill the properties of (1)–(4) for
all y ∈ TxM except at slits (such as the zero section y = 0)
are called y-global [6]. If this is not the case they are some-
times denoted as y-local; examples for the latter are the mth
root Finsler spaces [47]. Furthermore for the “classical” def-
inition of a Finsler structure the property (4) is crucial. How-
ever, Matsumoto [48] and the majority of later authors agree

that fundamental tensors, which are invertible but not posi-
tive definite, are reasonable extensions of the realm of Finsler
geometry [49,50]. In this context the strong convexity condi-
tion (4) is replaced by the requirement that det(gi j ) 	= 0 and
F(x, y) could then be called an indefinite Finsler structure.
By doing so, the other conditions can be relaxed as well. It is
then sufficient to require F(x, y) with the properties stated
above to be defined on a subset of T M \ {0} only, where
the associated y are called the “admissible vectors” by some
authors [50]. Examples for indefinite Finsler metrics will be
encountered in the following.

5.1 Construction of a Finsler structure

According to [20] a Finsler structure can be constructed from
a Lagrangian by either restricting L(u;mψ,m(5)00) to the
spatial domain or by performing a Wick rotation. The fermion
mass is then often set to 1 in this procedure. However, it will
be kept in what follows so that the mass dimensions of the
various terms will not be spoilt. Pursuing the first possibility,
the expansions

4u2Q3 − (u0)2 − Q2 f (Q1, Q2)

= 6u2(1 − 2mψm
(5)00) + O(u0), (5.2a)

5(u0)2 − 2u2Q3 − Q2 f (Q1, Q2)

= −3u0|u|
√

2(1 − 4mψm(5)00)

1 − 2mψm(5)00
+ O[(u0)2], (5.2b)

for |u0|  1 lead us to

F(y)≡ 1

mψ

L(u0 =0, ui = yi ;mψ,m(5)00) = A
√
ri j yi y j ,

A =
√

1 − 4mψm(5)00

2mψ |m(5)00| , (5.3)

with (ri j ) = diag(1, 1, 1). The result corresponds to the
Finsler structure of Euclidean three-dimensional space (in
Cartesian coordinates) being scaled with a dimensionless fac-
tor A. It is only defined for nonzero m(5)00 although accord-
ing to the first item in the previous section the Lagrangian
corresponds to the standard result for m(5)00 �→ 0. How-
ever, note that this limit only exists for time- and lightlike u,
(u0)2 − u2 ≥ 0, where the latter condition is not valid for
u0 = 0 and ui = yi considered in Eq. (5.3).

The pole of Eq. (5.3) inm(5)00 can be explained as follows.
Considering m̂ = m(5)00 p2

0 it is evident that the Lorentz-
violating coefficient is directly coupled to the zeroth compo-
nent of the four-momentum. This translates from the wave
packet to the velocity of the classical point particle, which
forbids the combined limit u0 �→ 0 and m(5)00 �→ 0.
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The Finsler structure of Eq. (5.3) describes a Euclidean
geometry where distances between two points are scaled by
the factor A in comparison to conventional Euclidean geom-

etry being characterized by the structure F(y) =
√
ri j yi y j .

Angles are not affected by the scaling. Note that such a
geometry is described by the spatial part of the Friedmann–
Lemaître–Robertson–Walker metric (with zero curvature),
which has a wide application in cosmological models. In the
latter metric there appears a time-dependent scale factor.

The second possibility, i.e., a Wick rotation of the
Lagrangian with u0 = iy4 fails to produce a Finsler struc-
ture. It can be demonstrated numerically that F(y, y4) ≡
L(iy4, y;mψ,m(5)00)/mψ does not have a positive definite
metric gi j according to Eq. (5.1).1 The reason is as follows.
The sets R1 and R2 defined in Eqs. (4.10a) and (4.10b) sep-
arate L(u0,u;mψ,m(5)00) into two parts with completely
different properties. For the limit of a vanishing Lorentz-
violating coefficient these sets are given by

lim
m(5)00 �→0

R1 = {u ∈ R
4|(u0)2 − u2 ≥ 0}, (5.4a)

lim
m(5)00 �→0

R2 = {u ∈ R
4|(u0)2 − u2 < 0}. (5.4b)

According to Eq. (4.6a) the Lagrangian corresponds to the
standard result in the limit of zero m(5)00 if (u0)2 − u2 ≥ 0.
Hence the Lagrangian describes the physics of a classical, rel-
ativistic point particle in the presence of nonminimal Lorentz
violation caused by the coefficient m(5)00 only if u ∈ R1.
Performing a Wick rotation of (u0)2 − u2 > 0 would lead
to (u0)2 − u2 �→ (iy4)2 − y2 = −(y4)2 − y2 < 0 and
then u ∈ R2. However, for u lying in the latter domain
the Lagrangian is not supposed to describe the physics of
the same classical point particle. What is then the meaning
of L(u0,u;mψ,m(5)00) in that regime? The answer to this
question will be examined now.

First of all, for simplicity the further analysis will be
restricted to L = L(u0, |u|;mψ,m(5)00) as a function of
(u0, |u|) ∈ R

2 due to the isotropy of the Lagrangian. Then
we define

F (2)(y) ≡ F (2)(y1, y2) ≡ 1

mψ

L(y2, y1;mψ,m(5)00),

y ≡ (y1, y2) ∈ R̃2 ∩ R̃3, (5.5a)

R̃2 ≡ {(u0, |u|) ∈ R × R
+|h(u0, |u|) < 0}, (5.5b)

R̃3 ≡ {(u0, |u|) ∈ R
+ × R

+}. (5.5c)

1 To do so the original expressions obtained from the computer algebra
system have to be used instead of Eq. (4.4), since the Lagrangian in its
latter form is only valid for real uμ, mψ , and m(5)00. Alternatively an
anti-Wick rotation was investigated where u0 = y4 and u = iy. This
did not lead to a positive definite metric either.

Fig. 3 The blue curve shows α as a function of 1/(mψm(5)00) where
u0 = ±α|u| are the zeros of h(u0,u) defined by Eq. (4.10c). The
horizontal asymptote for mψm(5)00 �→ 0 is α = 1

Here the index “(2)” of F (2)(y) indicates that this is a two-
dimensional function of y where mψ , m(5)00 are consid-
ered as parameters. The sets R̃2, R̃3 are the two-dimensional
restrictions of R2, R3 of Eqs. (4.10b) and (4.10d) to (u0, |u|).
Note that R2 is the set for which the Lagrangian does not
describe the physics of a classical point particle moving in a
Lorentz-violating background. It can be determined by com-
puting the zeros of h(u0,u). Due to the homogeneity of the
function h, to obtain the zeros the ansätze u0 = ±α|u| are
made where α is calculated numerically (see Fig. 3 for a
certain range of the Lorentz-violating coefficient).

As a next step the metric corresponding to F (2) shall be
investigated. It is computed according to Eq. (5.1):

g(2)
i j (y) = 1

2

∂

∂yi
∂

∂y j
[F (2)(y)]2. (5.6)

This is an extremely complicated (2 × 2)-matrix, which will
not be written down explicitly. The computation is straight-
forwardly done with a computer algebra system, as only
derivatives have to be performed. Now the definiteness of
this metric shall be checked by calculating its eigenvalues
and looking at their signs. Choosing special values for mψ

and the Lorentz-violating coefficient m(5)00, the eigenvalues
are plotted in Fig. 4. One can see that the first eigenvalue is
larger than zero for the shown range of y, while the second
eigenvalue is most probably positive for y ∈ R̃2.2 Hence
there exist strong indications that the metric is positive defi-
nite for y ∈ R̃2.

Furthermore F (2)(y) > 0 for y ∈ R̃2 ∩ R̃3 and the
Lagrangian is C∞ for y ∈ R̃2 ∩ R̃3 (cf. Eq. (4.13a)). In addi-
tion, it is positively homogeneous of first degree according to
Eq. (4.14). Therefore the performed numerical investigations

2 Numerically (see also Fig. 3) it follows that u0 ≈ ±0.774597|u| are
the zeros of the function h of Eq. (4.10c) for mψm(5)00 = 1/10, which
are most probably the lines separating the positive from the negative
eigenvalues in Fig. 4b.
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(a) (b)

Fig. 4 First (a) and second eigenvalue (b) of the metric tensor of Eq. (5.6) as functions of y1, y2 for mψm(5)00 = 1/10. Only positive eigenvalues
are shown. a There is a strong suggestion that the first eigenvalue is always positive for the region presented, whereas the second can be negative

indicate that the Lagrangian L(y2, y1;mψ,m(5)00)/mψ itse-
lf is a two-dimensional Finsler structure without any Wick
rotation at all as long as y lies in the domain R̃2 ∩ R̃3. There-
fore since L(y2, y1;mψ,m(5)00)/mψ fulfills the require-
ments of a Finsler structure on an exceptional set only, it must
be considered as a y-local Finsler structure. If an indefinite
Finsler metric is permitted instead of a positive definite one,
the latter Lagrangian can be considered as a Finsler structure
on a larger set of admissible vectors (cf. the end of Sect. 5).
However, this possibility shall not be studied further.

Now this Finsler structure shall be classified. A first step
is to compute the Cartan torsion Ci jk , which is given by [51]

Ci jk ≡ 1

2

∂gi j
∂yk

= 1

4

∂3

∂yi∂y j∂yk
F2. (5.7)

Note that some authors define Ci jk with an additional pref-
actor F (see, e.g., [6]). The mean Cartan torsion is defined
as

I ≡ Ii y
i , Ii ≡ g jkCi jk, (gi j ) ≡ (gi j )

−1, (5.8)

with the inverse Finsler metric gi j . According to a theorem
by Deicke, a Finsler space is a Riemann space if and only if I
vanishes [52]. Both Ci jk and I can be obtained for Eq. (5.5a).
The computation is again straightforward but the result is
very lengthy, which is why it will not be given. However, it
can be demonstrated that I does not vanish for certain numer-
ical parameters. For example, with y2 = 1/2, y1 = 1, and
mψm(5)00 = 1/10 one obtains

I1 ≈ 2.874592, I2 = −2I1. (5.9)

Hence the Finsler space, which is defined by the Lagrangian
for a certain subset of velocities, is definitely not Riemannian.

A further important quantity, which helps to classify
Finsler spaces, is the Matsumoto torsion:

Mi jk ≡Ci jk− 1

n+1
(Ii h jk+ I j hik+ Ikhi j ), hi j ≡F

∂2F

∂yi∂y j
,

(5.10)

where n is the dimension of the Finsler space to be con-
sidered [51]. The Matsumoto–Hōjō theorem tells us that
a Finsler space with dimension ≥ 3 is a Randers space,
F(x, y) = α + β, or a Kropina space, F(x, y) = α2/β,
if and only if the Matsumoto torsion vanishes [53]. Here

α =
√
ai j (x)yi y j and β = bi (x)yi where ai j (x) is a Rie-

mannian metric and bi (x) a vector field.3 However, note that
for a two-dimensional Finsler space Mi jk ≡ 0 (see, e.g.,
exercise (11.2.4) in [6]), which is why the Matsumoto–Hōjō
theorem cannot be applied. This concludes the analysis of
the two-dimensional Finsler structure of Eq. (5.5a).

Finally the following four-dimensional function is consid-
ered where y ≡ (y1, y2, y3):

F (4)(y) ≡ F(y, y4) ≡ 1

mψ

L(y4, y;mψ,m(5)00),

y ≡ (y, y4) ∈ R2 ∩ R3. (5.11)

Then analogously to Eq. (5.6) a metric tensor g(4)(y) can
be constructed again, which is now a (4 × 4)-matrix. Its
eigenvalues behave similarly to the eigenvalues of the two-
dimensional Finsler metric g(2). There are strong numeri-
cal indications that all four eigenvalues are positive as long
as y ∈ R2 and therefore the metric is probably positive
definite for y lying in this domain. Besides, F (4)(y) > 0,
F (4)(y) ∈ C∞ for y ∈ R2 ∩ R3, and F (4)(y) is positively

3 Randers and Kropina spaces are special examples for (α, β)-spaces.
The latter have a fundamental function of the form F(x, y) = α φ(β/α)

where φ is a C∞ positive function on an interval I = [−r, r ] such that
r ≥ β/α for all x and y ∈ T M [51].
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(a) (b) (c)

Fig. 5 Eigenvalues of g(1)
i j (a, b) and first eigenvalue of g(2)

i j (c)

homogeneous of first degree. This is what makes F (4)(y)
a Finsler structure for y ∈ R2 ∩ R3. For this case the
mean Cartan torsion, Eq. (5.8), and the Matsumoto torsion
of Eq. (5.10) are computed numerically as well. The Cartan
torsion does not vanish and at least some of the Matsumoto
torsion coefficients are not equal to zero. Numerical results
for the mean Cartan torsion and the nonvanishing Matsumoto
torsion coefficients for y4 = 1/2, y1 = 1, y2 = y3 = 0, and
mψm(5)00 = 1/10 are given by

I1 ≈ 5.354806, I2 = I3 = 0, I4 = −2I1, (5.12a)

M111 ≈ −0.416782, (5.12b)

M114 = M141 = M411 = −2M111, (5.12c)

M122 = M212 =M221 =M133 =M313 = M331 ≈ 0.625763,

(5.12d)

M224 = M242 =M422 =M334 = M343 = M433 = −2M122,

(5.12e)

M144 = M414 = M441 = 4M111, (5.12f)

M444 = −8M111. (5.12g)

This shows that Eq. (5.11) is neither a Riemann nor a Ran-
ders/Kropina structure, since now the Matsumoto–Hōjō the-
orem can be applied. Therefore it is a further, though com-
plicated, example for a Finsler space with these properties
in the context of the SME. An alternative example is the
b-structure,

Fb(y) =
√
y2 ±

√
b2y2 − (b · y)2, (5.13)

where bμ are the CPT-odd, pseudovector fermion coeffi-
cients of the minimal SME. The latter is given in Eqs. (5),
(6) of [20] by setting the CPT-odd vector coefficients aμ

equal to zero. Besides, further structures with nonvanishing
Matsumoto torsion have been found such as the bipartite
structures given by Eq. (9) in [21] and a structure that is
formed from a particular choice of the minimal, CPT-odd
tensor coefficients gλμν , cf. Eq. (35) in [18].

Finally along the derivation of the Lagrangian in Appendix
A the remaining two complex roots can be taken into account
in p0. The Lagrangian that results from taking the sec-
ond/third root of unity in p0 will be denoted as L(1) and
L(2), respectively. From these Lagrangians the derived met-
rics will be computed based on Eq. (5.1):

g(1)
i j ≡ 1

2

∂

∂yi
∂

∂y j
(F̃(1))2, F̃(1) ≡ 1

mψ
L(1)(y2, y1;mψ,m(5)00),

(5.14a)

g(2)
i j ≡ 1

2

∂

∂yi
∂

∂y j
(F̃(2))2, F̃(2) ≡ 1

mψ
L(2)(y2, y1;mψ,m(5)00),

(5.14b)

where the replacements u0 = y2 and |u| = y1 have been per-
formed. Figures 5a, b show numerical results for the eigen-
values of g(1)

i j where mψm(5)00 = 1/10. The first eigenvalue

of g(2)
i j is presented in Fig. 5c where the second eigenvalue is

largely negative such as the first one and therefore has been
omitted. The results suggest that both eigenvalues of g(1)

i j are

positive. Besides it can be checked that F̃ (1) > 0 for y2 < 0,
whereas F̃ (2) ∈ C for all y1 > 0 and y2 ∈ R. This turns F̃ (1)

into a y-local Finsler structure as well. It seems that L(2) cor-
responds to the standard Lagrangian (modulo a global sign)
for (u0)2 < u2, which complements the result of Eq. (4.6a).

6 Physical implications

The dynamics of a classical particle corresponding to the
dispersion relation of Eq. (2.2) can in principle be found by
interpreting the left-hand side of the dispersion law as the
Hamiltonian H(x, p) of the particle. Integrating the Hamil-
ton equations will then result in the particle trajectories. How-
ever, since the connection to Finsler geometry shall be out-
lined in this article, the positively homogeneous Lagrangian
in Eq. (4.4) will be taken as a basis to discuss the physics. Its
complexity makes it difficult to study its physical properties
for an arbitrarily large Lorentz-violating coefficient m(5)00.
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Therefore using the relations of Eq. (B.1), the Lagrangian
will be expanded in the dimensionless quantity m(5)00mψ

when assuming the latter to be much smaller than one. This
gives the following more transparent result:

L = −1

6
mψ sgn(u0)

×
√

(u0)2
[
1 + 2mψm(5)00

]− u2
(
1 + 4mψm(5)00

)
[(u0)2 − u2]2

×
{

6[(u0)2 − u2] + 12u2mψm(5)00
}

+ O[(m(5)00)2]

= −mψ sgn(u0)

√
(u0)2 − u2

(
1 + (u0)2

(u0)2 − u2 mψm(5)00

)

+ O[(m(5)00)2]. (6.1)

Hence at first order in the Lorentz-violating coefficient the
Lagrangian is characterized by an additional isotropic con-
tribution, which involves the observer Lorentz scalar uμuμ.
Furthermore it is proportional to the square of the zeroth four-
velocity component, which is reasonable, since in momen-
tum space m(5)00 couples to p2

0. The result can be compared
to the Lagrangian of Eq. (28) in [54], which was obtained for
the modified dispersion relation of their Eq. (22). The latter
involves an additional term cubic in the particle momentum.
The Lorentz-violating contribution of their Lagrangian is a
function of uμuμ as well. However, it is proportional to the
cube of the velocity, which mirrors the modified momentum
dependence of their dispersion relation.

The intention now is to understand the physics of Eq. (6.1).
Therefore we consider a classical particle with massmψ mov-
ing along a trajectory parameterized such that u0 = c and
u = v where c is the speed of light and v the conventional
three-velocity. Note that c is set equal to one. The classical
Lagrangian can then be written in the form

L = −mψ

√
1 − v2

(
1 + mψm(5)00

1 − v2

)
, (6.2)

with higher-order terms in the Lorentz-violating coefficient
neglected. If the particle is free it still moves on a straight
line such as in the conventional case. Therefore it will be
assigned an electric charge q and it will be coupled to a four-
potential (Aμ) = (φ,A). Then the Lagrangian describing
the propagation of this charged, classical particle (with its
position x) in an electromagnetic field is given by

Lem = L + q v · A − qφ, (6.3)

with L of Eq. (6.2). The Euler–Lagrange equations read as
follows:

d

dt

∂Lem

∂v
= ∂Lem

∂x
, (6.4a)

d

dt

(
γmψv

[
1 − γ 2mψm

(5)00
])

= q v × B + qE, (6.4b)

with the Lorentz factor γ = γ (v) ≡ 1/
√

1 − v2. Here
the electric and magnetic fields E, B have been introduced
according to

E = −∇φ − ∂A
∂t

, B = ∇ × A. (6.5)

Now different physical situations can be considered, e.g., the
particle moving in a constant magnetic field B = B êz and
a vanishing electric field, E = 0, with the initial conditions
v(0) = v̂ey and x(0) = R êx . Here v is the magnitude of the
velocity and R is the distance of the particle from the origin
at the beginning. Since a magnetic field does not change the
energy or the Lorentz factor of the particle, the equations of
motion in this case read as follows:

γmψ

(
1 − γ 2mψm

(5)00
) dv

dt
= q v × B. (6.6)

By plugging in the Ansatz

x(t) =
⎛
⎝R cos(ωt)
R sin(ωt)

0

⎞
⎠ , (6.7)

one can demonstrate that the particle still moves on a circle of
radius R such as in the conventional case where the cyclotron
frequency is modified as follows:

ω = − qB

γ m̃ψ

, m̃ψ ≡ mψ(1 − γ 2mψm
(5)00). (6.8)

Physically this can be interpreted as the particle having a
slightly different mass m̃ψ . The modification of the mass is
velocity-dependent via the gamma-factor, i.e., for an increas-
ing velocity the Lorentz-violating effects get enhanced. Note
that a constant rescaling of the particle mass could not be
observed. However, since this rescaling has an additional
velocity dependence, this would modify the velocity depen-
dence of the cyclotron frequency leading to an experimen-
tally observable effect.

The situation is similar for a particle moving along a con-
stant electric field E = E êz (where B = 0) with the initial
conditions v(0) = 0, x(0) = 0. In the relativistic case the cor-
responding differential equation can be solved, but the result
is rather involved and not very illuminating. Therefore the
nonrelativistic case will be considered with v2  1 leading
to the result

v = qEt
m̃ψ

. (6.9)
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Here the velocity-dependent mass m̃ψ of Eq. (6.8) appears
as well (with γ = 1). The interpretation of these results is as
follows. In the modified dispersion law of Eq. (2.2), which
the current paper is based on, two additional factors of the
particle energy p0 are associated to the nonminimal Lorentz-
violating coefficient m(5)00 leading to a quartic polynomial
in p0. This holds in phase space, i.e., the cotangent space of
the underlying manifold. The connection to the tangent space
is that m(5)00 is linked to two additional factors of mψγ . The
latter corresponds to the standard relativistic energy of the
particle being expressed by the particle velocity. Note that
for a sufficiently large velocity the mass m̃ψ would become
negative. The reason is that the Lagrangian considered is a
good approximation only for a sufficiently small Lorentz-
violating coefficient. The Lorentz-violating effects become
stronger for increasing velocity and we then move outside of
the domain where the expansion is valid.

The next step is to understand the conserved quantities
according to the lines of [54]. Using Eq. (3.2) the conjugate
momentum can be obtained from the Lagrangian and it reads
as follows:

pμ = − ∂L

∂uμ
= mψ√

u2
uμ+m2

ψm
(5)00 ξ · u√

u2

(
2ξμ− ξ · u

u2 uμ

)
.

(6.10)

Here the preferred timelike direction (ξμ) = (1, 0, 0, 0)T

was introduced to write the result in a covariant way. Further-
more via Eq. (5.1) a pseudo-Finsler metric can be constructed
with the fundamental function chosen to be the Lagrangian:

1

m2
ψ

gμν =
[
1− (ξ · u)4

u4 (mψm
(5)00)2

]
ημν + 2mψm

(5)00ξμξν

+ 2(mψm
(5)00)2 (ξ · u)2

u2

[
2(ξ · u)2

u4 uμuν

−2(ξ · u)

u2 (uμξν + ξμuν) + 3ξμξν

]
. (6.11)

Using the Finsler metric, the conserved quantities are
obtained via Eq. (35) in [54]. Apart from an additional fac-
tor of −1/L , where the minus sign comes from the defini-
tion of the canonical momentum used in the current paper
(see Eq. (36) in [54]), these conserved quantities correspond
to the energy and three-momentum directly obtained from
Eq. (6.10):

E = γmψ

[
1 + mψm

(5)00(1 − v2γ 2)
]
, (6.12a)

pi = γmψvi

(
1 − γ 2mψm

(5)00
)

. (6.12b)

Note that for sufficiently high velocities the energy can
become negative, too. Looking at the left-hand side of

Eq. (6.4b) it can be seen that Eq. (6.12b) is, indeed, the parti-
cle momentum. If there are no external forces both the energy
and the momentum are conserved, as expected, which is why
the particle then moves on a straight line. This demonstrates
some of the results of [54] for the particular Lagrangian of
Eq. (6.2).

A treatment of the exact Lagrangian of Eq. (4.4) along
the lines above is out of reach with such analytical tools. In
principle higher-order effects in the Lorentz-violating coef-
ficient could be studied by taking into account additional
coefficients in the series expansion of Eq. (6.1). Including
two more coefficients results in the Lagrangian

L = −mψ

γ

{
1 + γ 2mψm

(5)00
(

1 + 2mψm
(5)00

)

+ γ 6
[

4

γ 4 + 1

γ 2 − v2
]

(mψm
(5)00)3 + O[(m(5)00)4]

}
.

(6.13)

Hence this leads to higher-order terms in the Lorentz factor
(and particle velocity) coupled to the Lorentz-violating coef-
ficient, which changes the behavior for velocities approach-
ing the speed of light. That probably also cures the properties
of the new particle mass m̃ψ and the energy E such that they
do not become negative for an increasing velocity. For grow-
ing momenta the Lorentz-violating effects in the modified
dispersion relation of Eq. (2.2) are enhanced, i.e., the behav-
ior observed is again the corresponding analog in the tangent
space. Furthermore in [54] it was stated that the Finsler struc-
ture, which is seen by the propagating particle, depends on
the particle mass. Such effects are observed here as well. For
example, the modification of the particle mass, cf. Eq. (6.8),
would be larger for a muon compared to an electron.

7 Conclusions and outlook

To summarize, in this paper the Lagrangian was obtained
for a classical, relativistic point particle whose conjugate
momentum fulfills the modified dispersion relation of a quan-
tum wave packet underlying Lorentz violation caused by an
isotropic dimension-5 operator. The particularity is that it
was possible to obtain the momentum–velocity correspon-
dence and, therefore, the Lagrangian directly without having
to solve a polynomial equation of high degree. This behavior
is different from all cases of the minimal SME fermion sector
that have been investigated in the literature so far. It is traced
back to the isotropic nature of the coefficient considered and
it is expected to be possible in general as long as an isotropic
Lorentz-violating framework is taken as a basis of the studies
carried out.

Having obtained the Lagrangian its properties were dis-
cussed. The Lagrangian can be positive, zero or negative in
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certain domains of the four-velocity components plus it is
C∞ apart from the region u0 = 0 that has to be excluded.
It corresponds to the standard Lagrangian for a vanishing
Lorentz-violating coefficient as long as the four-velocity is
time- or lightlike. For this reason it describes the physics of a
classical, relativistic point particle only for a certain domain
of four-velocities.

The final goal was to promote the Lagrangian to a Finsler
structure and to understand its characteristics. Restricting the
Lagrangian to the spatial domain results in a Finsler struc-
ture describing a scaled Euclidean geometry. Performing a
Wick rotation fails to produce a Finsler structure. However,
interestingly the Lagrangian itself is a Finsler structure for
four-velocity components lying in a subset of the domain
where it does not describe the physics of a point particle.
It was demonstrated that this Finsler structure is neither a
Riemann nor a Randers or Kropina structure.

Finally the Lagrangian was expanded to first order in the
Lorentz-violating coefficient and its physical properties were
discussed. To carry this out, both the Finsler metric and the
canonical momentum were calculated, which were used to
obtain the conserved quantities for free motion of the particle.
Furthermore the particle was assigned an electric charge and
its propagation in constant electric and magnetic fields was
analyzed. Due to the Lorentz-violating background the par-
ticle acquires a modified mass, which additionally depends
on the velocity.

One last comment: note a possible connection to [55]. In
the latter reference it is shown that certain complex Rieman-
nian manifolds have real slices of all possible signatures. The
Lagrangian L(u0,u;mψ,m(5)00) considered might provide
such an example for Finsler spaces, if it can be embedded
into a complex Finsler manifold. Then both the Lagrangian
of Eq. (4.4) restricted to the domain R1 and the Finsler struc-
ture of Eq. (5.11) restricted to the domain R2∩R3 may be real
slices of the complex Finsler manifold with different signa-
tures. This is an interesting open problem for future studies.

The current paper forms one part of the investigations car-
ried out so far whose purpose is to link the SME to Finsler
spaces. These spaces are the most natural framework when
studying the motion of a particle in a Lorentz-violating back-
ground field. For example, this concerns the physical problem
of a charged particle (with spin) moving in a superposition
of an electromagnetic field and a Lorentz-violating back-
ground field, which is still to be solved. With the knowledge
on the correspondence of certain SME sectors to particu-
lar Finsler spaces, this and similar physical problems can be
tackled smartly that may otherwise be difficult or impractical
to solve.

In fact, the application to physical situations is the main
goal of the research carried out. But to achieve this, there
has to be a mathematical basis and there are still quite some
mathematical and theoretical questions whose answers are

unknown. For this purpose it is important to perform such
analyses, the current one included. Therefore our future
plan is to obtain and study the classical Lagrangians and
Finsler structures for alternative sets of nonminimal Lorentz-
violating coefficients. A special interest lies in Lagrangians
having a simpler form than the one considered in this
paper.
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Appendix A: Obtaining the classical Lagrangian

Finding the zeros of the third-order polynomial mentioned
below Eq. (4.1) in Sect. 4 results in the following complicated
expression for the particle energy as a function of the four-
velocity components:

p0 = 1

4
√

3|u|(m(5)00)2

√
2A − 4[(u0)2 − 4u2Q3](m(5)00)2,

(A.1a)

A = (−1 + √
3i)[(u0)2 + 2u2Q3]2(m(5)00)4B−1/3

− (1 + √
3i)B1/3, (A.1b)

Re(B) = 2Re(C)+(m(5)00)6(Q1+8u6Q3
3) = (m(5)00)6Q1,

(A.1c)

Im(B) = 2Im(C), (A.1d)

Re(C) = −4u6(m(5)00)6Q3
3, (A.1e)

Im(C) = 3
√

3u2|u0|(m(5)00)6

×
√

(1−4mψm(5)00)
[
27u4(u0)2(1−4mψm(5)00) − Q1

]
.

(A.1f)

The cubic roots in this expression make it quite involved
to check whether p0 is a real quantity. However, B can be
written in a surprisingly compact form as follows, which is
more suitable to evaluate these roots:
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B = |B|B̂, B̂ = cos ϕ + i sin ϕ, (A.2a)

|B| = (m(5)00)6|(u0)2 + 2u2Q3|3 = (m(5)00)6Q3
2, (A.2b)

ϕ = arccos

(
Re(B)

|B|
)

= arccos

(
Q1

Q3
2

)
. (A.2c)

From Eq. (A.1a) we see that in this expression there appears
the third root of the complex quantity B. The third roots of
unity of B̂ will be denoted as ζ

(n)

B̂
for n = 0 . . . 2. We then

obtain

B1/3|(n) = |B|1/3
[
Re(ζ (n)

B̂
) + i Im(ζ

(n)

B̂
)
]
, (A.3a)

Re(ζ (n)

B̂
) = cos

(
ϕ

3
+ 2π

3
n

)
, Im(ζ

(n)

B̂
)=sin

(
ϕ

3
+ 2π

3
n

)
.

(A.3b)

Now a part of the expression under the square root in
Eq. (A.1a) collapses to a convenient result:

A = (−1 + √
3i)

Q2
2(m

(5)00)4

Q2(m(5)00)2

[
Re(ζ (n)

B̂
) − i Im(ζ

(n)

B̂
)
]

−(1 + √
3i)Q2(m

(5)00)2
[
Re(ζ (n)

B̂
) + i Im(ζ

(n)

B̂
)
]

= 2Q2(m
(5)00)2

[√
3 Im(ζ

(n)

B̂
) − Re(ζ (n)

B̂
)
]
. (A.4)

Finally taking the first of the third roots of unity labeled with
n = 0, Eq. (A.1a) can be brought into the form that has been
stated in Eq. (4.2a):

p0 = 1

4
√

3|u|(m(5)00)2

√
4Q2(m(5)00)2

[√
3 Im(ζ

(0)

B̂
) − Re(ζ (0)

B̂
)
]

− 4[(u0)2 − 4u2Q3](m(5)00)2

= 1

2
√

3|u||m(5)00|

√
4u2Q3 − (u0)2 − Q2

[
Re(ζ (0)

B̂
) − √

3 Im(ζ
(0)

B̂
)
]
. (A.5)

Putting together the previous p0 and pi of Eq. (4.2a) and
introducing the function f of Eq. (4.3a) for brevity leads to
the Lagrangian of Eq. (4.4):

L = −pμu
μ = −(p0u

0 + piu
i )

= − p0

u0

[
(u0)2 − u2

(
Q3 − 2p2

0(m(5)00)2
)]

= − p0

u0

{
(u0)2 − u2

[
Q3 − 1

6u2(m(5)00)2

×
(

4u2Q3 − (u0)2 − Q2 f (Q1, Q2)
)

(m(5)00)2
]}

= − p0

u0

{
(u0)2 − 1

6

[
2u2Q3 + (u0)2 + Q2 f (Q1, Q2)

]}

= − p0

6u0

[
5(u0)2 − 2u2Q3 − Q2 f (Q1, Q2)

]
. (A.6)

Appendix B: Properties of the classical Lagrangian

Appendix B.1: Limit for vanishing Lorentz-violating
coefficient

To obtain the limit of the Lagrangian, Eq. (4.4), we con-
sider the following identities whose validity has been checked
numerically:

cos

(
1

3
arccos

[
−1 + 54(u0)2u4

[(u0)2 + 2u2]3

])

= 1

4

4u2 − (u0)2 + 3|u0|√(u0)2 + 8u2

(u0)2 + 2u2 , (B.1a)

sin

(
1

3
arccos

[
−1 + 54(u0)2u4

[(u0)2 + 2u2]3

])

=
√

3

4

−4u2 + (u0)2 + |u0|√(u0)2 + 8u2

(u0)2 + 2u2 , (B.1b)

where the second equation only holds for (u0)2 − u2 ≥ 0.
The radicand under the square root of Eq. (4.4) can then be
expanded with respect to m(5)00. Using the identities above
one can show that the first and second term in this expansion
vanish and that the leading contribution is of order (m(5)00)2:

4u2Q3 − (u0)2 − Q2 f (Q1, Q2)

= 12m2
ψ(u0)2u2

(u0)2 − u2 (m(5)00)2 + O[(m(5)00)3]. (B.2)

The leading contribution in the term behind the square root
is independent of m(5)00:

5(u0)2−2u2Q3−Q2 f (Q1, Q2)=6[(u0)2−u2]+O(m(5)00).

(B.3)

The result for a vanishing Lorentz-violating coefficient is
then
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lim
m(5)00 �→0

L(u;mψ,m(5)00)

= − 1

2
√

3u0|u||m(5)00|

√
12m2

ψ(u0)2u2

(u0)2 − u2 (m(5)00)2 [(u0)2 − u2]

= −mψ sgn(u0)
√

(u0)2 − u2, (B.4)

which is the result of Eq. (4.6a) with the sign function given
by Eq. (4.6b).

Appendix B.2: Differentiability of the Lagrangian

We consider the argument g(u0, |u|) ≡ Q1(u0, |u|)/Q2(u0,

|u|)3 of the inverse cosine in Eq. (4.4) and we want to show
that the image of g(u0,u) is the interval [−1, 1]. Partial dif-
ferentiation with respect to u0 and u, respectively, gives

∂g

∂u0 = −216u0u4(1 − 4mψm(5)00)
[
(u0)2 − u2(1 − 2mψm(5)00)

]
[
(u0)2 + 2u2(1 − 2mψm(5)00)

]4 ,

(B.5a)

∂g

∂|u| = 216(u0)2|u|3(1 − 4mψm(5)00)
[
(u0)2 − u2(1 − 2mψm(5)00)

]
[
(u0)2 + 2u2(1 − 2mψm(5)00)

]4 .

(B.5b)

Both derivatives vanish for u0 = 0, |u| = 0, and (u0)max =
±|u|

√
1 − 2mψm(5)00. The Hessian matrices evaluated at the

sets mentioned show that these are extrema with the values

g(u0 = 0, |u|) = −1, g(u0, |u| = 0) = −1, (B.6a)

g(u0 = (u0)max, |u|) = 1 − 4mψm(5)00(1 + mψm(5)00)

(1−2mψm(5)00)2
.

(B.6b)

So at u0 = 0, |u| = 0 there are minima, whereas at
(u0) = (u0)max there are maxima. The latter take their max-
imum value 1 for m(5)00 = 0 and for perturbative Lorentz
violation they are larger than zero. This shows that g(u0, |u|)
takes values within [−1, 1] where arccos[g(u0, |u|)] is dif-
ferentiable for its argument lying in (-1,1). So the lines
{u ∈ R

4|u0 = 0} and {u ∈ R
4|u = 0} have to be removed

to keep the Lagrangian differentiable.
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