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1 Introduction

Five dimensional asymptotic flat vacuum Einstein gravity solutions are in the form of

Myers-Perry black holes [1] or black rings [2–4]. These solutions form a three parameter

family, specified by mass and two angular momenta. In different regions of the parameter

space of these solutions we can have black hole solutions with S3 horizon topology [1], or

black ring solutions with S2×S1 horizon topology [2–4]. There is a region in this parameter

space where black holes and rings can both exit [5]. In this overlapping region where the

hole and the ring have the same mass and angular momenta, the black hole solution has a

larger entropy than the ring and so it is expected to be a more stable configuration.

Black rings can be balanced or unbalanced. In the balanced case constructed and

discussed in [2, 3], expanding around north and south poles of topologically S2 part of

the horizon we get a 2d flat space without any deficit angle or conical singularity. In a

different viewpoint, in the balanced case the centrifugal force from the angular momen-

tum along the ring is tuned to precisely balance off the tension and self-gravitation of the

ring [5–7]. However, in the unbalanced case [5] (cf. discussions in section 3), if we adjust

the expansion around the north pole of the topologically S2 part of the horizon to be a flat
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R2, the expansion around the south pole will show a deficit (or excess) angle and we have

a conical disk [8, 9]. For the unbalanced rings the mass gets an additional contribution

from the pressure (tension) of the conical (defect) disk [5, 7–9]. Due to the contribution

of this tension the first law of thermodynamics and the Gibbs free energy for unbalanced

rings has an extra term which vanishes in the balanced case [8, 10]. The parameter space

of unbalanced rings is hence four dimensional, mass, two spins and the unbalance param-

eter. The balanced rings solutions correspond to a three dimensional subspace on this

parameter space.

The 5d Einstein-Maxwell-dilaton theory also admits charged black ring solutions.

There are in particular black rings with conserved dipole charges, while having vanishing

electric or magnetic charge [11–14]. The dipole charges can be defined as Noether-Wald

conserved charge [15, 16] and appear in the first law of black hole thermodynamics for the

black rings [17]. The (balanced) dipole-charged black rings form a four parameter family

of solutions, describing the mass, two spins and the dipole charge.

In the family of balanced, unbalanced and (neutral but) dipole charged black rings we

have geometries with vanishing surface gravity and degenerate horizon, the extremal rings.

Within the family of extremal rings, there exist a “singular” region where the horizon area

(and hence the Bekenstein-Hawking entropy) vanishes. These Extremal Vanishing Horizon

(EVH) rings are what we will focus on in this work. One of the motivations to study the

EVH rings is that, as discussed in our previous work on the topic [18], the EVH points are

generically in the part of the parameter space of the ring solutions where the hole and ring

solutions can coexist [5] and the hole-ring transition can be studied.

Despite of being singular, the EVH black hole/rings, have their own interesting features

which makes their analysis worthwhile. Many different examples of EVH black holes in

various dimensions and various asymptotics and theories have been studies, see [19–28] for

an incomplete list. To be more precise, EVH black holes/rings are defined as black objects

with AH , TH → 0 limit while TH/AH is kept fixed, where AH is the horizon area and TH
is the Hawking temperature [19]. Moreover, the vanishing of horizon area should come

from vanishing of a one-cycle on the horizon [29]. In all these various examples it has been

observed that the near horizon limit of EVH black holes leads to an AdS3 throat. This

AdS3 factor is, however, a pinching orbifold of AdS3 [30]. Moreover, one may consider

“excitations” of these EVH black holes to near-EVH black holes. As one may expect, in

the near horizon limit of the near-EVH black holes the (pinching) AdS3 is then excited to

(pinching) BTZ. This nice feature prompts the idea that one may be able to study the low

energy excitations of EVH black holes focusing on their near horizon geometry and their

excitations. This was actually what was proposed as EVH/CFT correspondence [19], that

low energy excitations around an EVH black hole is described by a 2d CFT dual to the

AdS3 factor appearing in its near horizon geometry.1

1Although the near horizon geometry, like the original EVH solution, has curvature singularity, this

singularity is of the “good type” in the terminology of [31]. That is, if we reduce the gravity theory on the

ansatz given by the near horizon EVH geometry (to obtain an AdS3 gravity), the reduced theory does not

involve any singularity. In other words, the low energy excitations appearing in near-EVH black holes do

not probe the singularity, they are completely captured in the excitations of the AdS3 throat.

– 2 –
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There are also EVH black rings, falling precisely into the definition of EVH black holes

given above [18]. As is expected and we will show explicitly in this work, for EVH rings

the vanishing of horizon area should come from vanishing of a circle on the topologically

S2 part of the geometry and the ring size remains finite. We will show that, like EVH

black holes, we get a (pinching) AdS3 in the near horizon limit of the EVH black rings.

As we will see this AdS3 throat consists of the radial r and time direction t of the original

ring and the vanishing circle on the topologically S2 part of the geometry, the ring circle

is transverse to the AdS3 throat. Moreover, in the near-EVH black rings this AdS3 factor

is excited to a BTZ black hole.

In this work we will give a full account of balanced and unbalanced doubly spinning

rings and doubly spinning dipole charge rings and where in their parameter space they

become EVH. As we will show for both balanced and unbalanced cases the near-EVH

excitations appear as generic BTZ black hole excitation on the AdS3 throat. We discuss

how the unbalancing factor and the dipole charge appear in the near horizon geometry and

its excitation. We discuss the EVH/CFT correspondence as the dual 2d CFT describing

low energy excitations of the EVH rings. Among other things, we also discuss how the EVH

Myers-Perry black hole and an EVH ring of similar mass and spin can be distinguished

from this dual CFT viewpoint.

The organization of the paper is as follows. In section 2, we revisit and extend the EVH

Pomeransky-Sen’kov black ring solution analyzed in [18] and study the most general region

in the parameter space which the EVH ring solutions exist. In section 3, we investigate

the parameter space of the unbalanced double rotating black ring [5, 8–10] and specify

the region corresponding to EVH unbalanced rings. We also discuss the near horizon

geometry of these EVH rings. The parameter space of the double rotating dipole black

ring solution [14], its EVH regions and the corresponding near horizon geometry is studied

in section 4. We find that in the EVH limit the dipole charge is irrelevant. We discuss

the EVH/CFT correspondence for the mentioned EVH rings in section 5. Last section is

devoted to concluding remarks.

2 Balanced EVH Pomeransky-Sen’kov black ring

Neutral double rotating black ring [3] (DRBR) is an asymptotically flat vacuum solution of

Einstein gravity with the horizon topology S1×S2. In [18] we studied the parameter space

of this solution, focusing on the Extremal Vanishing Horizon (EVH) limit. This is a limit

where the Hawking temperature TH and the horizon area AH of the solution vanishes:

AH → 0 , TH → 0 ,
TH
AH

→ finite . (2.1)

We showed that condition (2.1) can be satisfied in the parameter space of DRBR and

discussed a specific EVH point in this parameter space. In this section we study the

most general EVH region in the parameter space of DRBR, extending and generalizing

discussions in [18].

– 3 –
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Let us start with reviewing the solution. The DRBR line element is given by

ds2 = −H(y, x)

H(x, y)

(
dt+Ω(x, y)

)2 − F (x, y)

H(y, x)
dψ2 − 2

J(x, y)

H(y, x)
dφ dψ

+
F (y, x)

H(y, x)
dφ2 +

2k2H(x, y)

(x− y)2(1− ν)2

(
dx2

G(x)
− dy2

G(y)

)

, (2.2)

where −1 ≤ x ≤ 1 and −∞ < y < −1 and φ, ψ ∈ [0, 2π]. The functions F,G,H, J and Ω

are defined as follows

F (x, y) =
2k2

(x−y)2(1−ν)2
(

G(x)
(
1− y2

) ((
(1− ν)2 − λ2

)
(1 + ν) + yλ

(
1−λ2+2ν−3ν2

))

+G(y)
(
2λ2 + xλ

(
(1− ν)2 + λ2

)
+ x2

(
(1− ν)2 − λ2

)
(1 + ν)

+ x3λ
(
1− λ2 − 3ν2 + 2ν3

)
− x4(1− ν)ν

(
λ2 + ν2 − 1

)))

,

G(x) = (1− x2)(1 + λx+ νx2) ,

H(x, y) = 1 + λ2 − ν2 + 2λν
(
1− x2

)
y + 2xλ

(
1− y2ν2

)
+ x2y2ν

(
1− λ2 − ν2

)
, (2.3)

J(x, y) =
2k2

(
1− x2

) (
1− y2

)
λν

1

2

(x− y)(1− ν)2
(
1 + λ2 − ν2 + 2(x+ y)λν − xyν

(
1− λ2 − ν2

))
,

Ω(x, y) = −2kλ
(
(1 + ν)2 − λ2

) 1

2

H(y, x)

(
1 + y

1−λ+ν
(
1+λ−ν+ν(1− λ− ν)yx2 + 2νx(1− y)

)
dψ

+ ν
1

2 y
(
1− x2

)
dφ

)

.

In above solution k has dimension of length and is related to the radius of the ring circle

which is parameterized by ψ.2 On the other hand ν and λ are two dimensionless parameters

related to the rotations of the black ring around the φ and ψ directions with

0 ≤ ν < 1 , 2
√
ν ≤ λ < 1 + ν , k > 0 . (2.4)

ν controls the rotation around the φ direction, which parameterizes the circle on the topo-

logically S2 part of the horizon; in the ν = 0 we recover the single rotating black ring of

Emparan and Reall [2]. The parabola ν = λ2/4 is where the black ring becomes extremal.

The parameter space for solution (2.2) is depicted in figure 1(b).

In [18] we discussed that around the cusp at ν = 1, λ = 2 (the “collapsing region” [32])

Hawking temperature and Beckenstein-Hawking entropy of this solution which are given by

TH =

(
y−1
h − yh

)
(1− ν)

√
λ2 − 4ν

8π k λ(1 + ν + λ)
, SBH =

8π2k3 λ (1 + ν + λ)

G5(1− ν)2
(
y−1
h − yh

) , (2.5)

satisfy the EVH condition provided that we scale k appropriately. In the above

yh =
−λ+

√
λ2 − 4ν

2ν
, (2.6)

2We use the notation that coordinates φ and ψ are interchanged compared to the original paper [3].

This is the notation used in papers by Emparan et al. The metric also has written with the mostly plus

signature.
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is the outer horizon (larger root of G(y)) of the DRBR. One may then readily check that

the other physical quantities, the mass, angular momenta and angular velocities3

M =
3π k2λ

G5(1 + ν − λ)
, Jψ=

2πk3λ
√

(1+ν)2−λ2
(
ν2+(λ−6) ν+λ+1

)

G5 (1− ν)2 (1 + ν − λ)2
,

Jφ =
4π λ

√
ν k3

√

(1 + ν)2 − λ2

G5 (1− ν)2 (1 + ν − λ)
, Ωψ=

1

2k

√

1 + ν − λ

1 + ν + λ
,

Ωφ =
λ(1+ν)−(1−ν)

√
λ2−4ν

4k λ
√
ν

√

1+ν−λ
1+ν+λ

, (2.7)

remain finite at the ν = 1, λ = 2 EVH point with the prescribed k scaling [18]. In this

EVH point, Jφ vanishes while all the other thermodynamic quantities remain finite, and

3M = 2ΩψJψ.

In the collapsing point λ = 2, ν = 1 there is the coordinate transformations which

transforms DRBR to a generic (extremal) Myers-Perry (MP) black hole [32]

x = −1 +
16
√
ak3 cos2 θ

(a+ b)3/2(r2 − a b)
, y = −1− 16

√
ak3 sin2 θ

(a+ b)3/2(r2 − a b)
, (2.8)

where a and b are the rotation parameters of the MP black hole and are given by a =
√

2M̃σ

and b =
√

2M̃(1− σ). In addition σ and M̃ are defined by

σ =
1 + ν − λ

(1− ν)2
, M̃ =

8k2

1 + ν − λ
. (2.9)

We note that (2.8) demonstrates two features of an EVH near horizon solution: for the

cusp at λ = 2, ν = 1, horizon is located at yh ∼ −1 and recalling that we need to take

k → 0 to keep the mass finite, (2.8) is essentially a near horizon expansion. Second, we

should obtain a vanishing horizon solution due to one shrinking cycle on the horizon. To

see this let us study behavior of the metric on the horizon in the λ = 2, ν = 1 limit. The

EVH condition (2.1) is satisfied if one scales the parameters as

ν = 1− ν̂ǫ , λ = 1 + ν − λ̂ǫ4, k = k̂ǫ2 .

Without inserting x ∼ y ∼ −1 as in (2.8), the metric components on the horizon (constant

t and y = yh), are

gxx =
−8 k̂2

ν̂(x− 1)(x+ 1)3
ǫ3 , gφφ =

8(1− x)k̂2

(x+ 1)ν̂
ǫ3 , gψψ =

16 k̂2

λ̂
. (2.10)

It is obvious that there are two vanishing components in the horizon metric unless

x ∼ −1 + ǫ. In other words, (2.8) insures two necessary properties of an EVH near horizon

solution.

3For general values of the parameters we have the Smarr relation M = 3

2
(THSBH + JφΩφ +ΩψJψ).

– 5 –
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2.1 The EVH and near-EVH near horizon limit

As pointed out in [18], one may formally check that for a generic point on the λ = 1 + ν

line (and not just the ν = 1 on it), both TH , AH → 0 and TH/AH = finite conditions

still hold. However, as depicted in figure 1(b) this line (shown as a dashed line) is not in

the DRBR parameter space and the solution becomes singular on this line. Despite of this

fact, given the “EVH-type” behavior of temperature and entropy, one can show that when

we approach this dashed line from the left we indeed get an EVH ring for generic values of

ν. This is what we will establish here. To this end, we consider λ = 1+ ν − λ̂ǫa expansion

with λ̂ > 0. The parameter a controls how fast we are approaching the λ = 1 + ν line. As

we show momentarily a ≥ 4 corresponds to sitting at the EVH point while with a = 2 we

find a near-EVH ring.

In order to find the near horizon of the EVH DRBR, we define the parameters of the

solution as follows

λ = 1 + ν − λ̂ǫ4 , k = k̂ǫ2 , (2.11)

together with transformations (2.8), accompanied by inserting the following scalings in the

coordinates

r = r̂ǫ , t =
t̂

ǫ
, ψ = ψ̂ +Ωψ t , φ =

φ̂

ǫ
. (2.12)

Using (2.11) the mass and spins of the solution behave as M ∼ M0 + δMǫ4 , Jφ ∼ δJφǫ
4

and Jψ ∼ Jψ0
+ δJψǫ

4 . The near horizon metric can be obtained by taking the limit ǫ→ 0

ds2 = cos2 θ

[

− r̂2

ℓ2
dt̂2 +

ℓ2

r̂2
dr̂2 + r̂2dφ̂2

]

+ ℓ2
(

cos2 θ dθ2 + tan2 θdψ̂2
)

, (2.13)

where ℓ2 = 8k̂2(1+ν)

λ̂
is the AdS3 radius which is related to the physical mass of the solution

as M0 =
3π
8 ℓ

2. In fact (2.13) is in the form of pinched AdS3 due to the infinitesimal period

of φ̂ ∈ [0, 2πǫ]. We also note that (2.13) is exactly the same geometry one find in the

near horizon of EVH 5d Myers-Perry black hole [18]. This is of course not a coincidence,

as there are uniqueness theorems for 5d Einstein vacuum solutions with local SO(2, 2)

invariance [33].

In order to find the near-EVH near horizon geometry, we should adjust how fast we

approach the λ = 1 + ν line. We choose

λ = 1 + ν − λ̂ǫ2 , k = k̂ǫ , (2.14)

where ǫ is the parameter defined in the near horizon scaling of the radial coordinate r,

r = r̂ǫ. We see that mass and Jφ appear in the form M = M0 + δMǫ2 , Jφ ∼ δJφǫ
2 and

Jψ ∼ Jψ0
+ δJψǫ

2, and

Jφ ∼ ǫ2 , M − M0

Jψ0

Jψ ∼ ǫ2 . (2.15)

These charge scalings are compatible with the general expectation for EVH black holes [29].

The value of leading terms for M,Jφ and Jψ in the near-EVH limit are given by (G5 = 1)

M0 =
3πk̂2(1 + ν)

λ̂
, δJφ =

4πk̂3
√
2ν(1 + ν)3/2

√

λ̂(ν − 1)2
, Jψ0

=
4πk̂3

√
2(1 + ν)3/2

λ̂3/2
. (2.16)

– 6 –
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After discussing the scaling of parameters we now consider the near horizon scaling of

coordinates. It is sufficient to use (2.14) and (2.8) together with the following rescalings

r =

√

2r̂ − 2k̂2 cos 2θ ǫ , t =
t̂

ǫ
, ψ = ψ̂ +Ωψ t , φ =

φ̂

ǫ
, ǫ→ 0 . (2.17)

The near horizon metric after a redefinition r̂ = ρ2(1−ν)+2k̂2(ν+7)
2(1−ν) can be written as

ds2 = cos2θ



−f(ρ)dt̂2+ dρ2

f(ρ)
+ρ2

(

dφ̂− 8k̂2(1+ν)
√
ν

ρ2ℓ(ν−1)2
dt̂

)2


+ℓ2
(

cos2 θdθ2+tan2 θdψ̂2
)

,

f(ρ) =
1

ℓ2ρ2

(

ρ2 − 4k̂2(ν + 1)2

(1− ν)2

)(

ρ2 − 16k̂2ν

(1− ν)2

)

, ℓ2 =
8k̂2(1 + ν)

λ̂
. (2.18)

As we expected the AdS3 throat of the geometry (2.13) is now replaced by a generic

(pinching) BTZ part which is a common feature for the near-EVH near horizon solutions.

One may show that the mass and angular momentum of the BTZ is exactly equal to the

near-EVH angular momentum and charges given in (2.15). To see this we need to reduce

the 5d gravity over the θψ̂ part of (2.13) to obtain the Newton constant of the 3d AdS3
gravity: G3 = 1

πℓ2
(see (5.2)). Then, we use the standard formulas for the BTZ mass and

spin

MBTZ=
ρ2++ρ

2
−

8ℓ2G3
=
πk̂2(ν2+6ν+1)

2(ν−1)2
, JBTZ=

ρ+ρ−
4ℓG3

=
4πk̂3

√
2ν(1+ν)3/2

√

λ̂(ν − 1)2
=δJφ . (2.19)

There seems to be an ǫ2 factor difference betweenMBTZ, JBTZ and the expression in (2.15)

which may be understood as follows [29]: one power of ǫ comes from the fact that we have

scaled t and φ by ǫ, cf. (2.17). The other factor comes from the pinching. (Recall that BTZ

mass and spin are obtained as integrals over the φ̂ direction which is ranging over [0, 2πǫ].)

The λ = 2, ν = 1 limit. It is quite natural to search for EVH black holes/rings among

extremal ones. This was what we did in [18] where we focused on the point C in figure 1(b),

(note that the λ = 1 + ν line is not within the parameter space of ring solutions, let alone

the extremal rings). One may then wonder if the λ = 2, ν = 1 point, which is also the end

point of λ = 1 + ν line, can be obtained as a limit of the general case discussed earlier.

As we discussed in [18], a well-defined solution around λ = 2 , ν = 1 can be found by

scaling the parameters as

ν = 1− ν̂ǫ , λ = 1 + ν − λ̂ǫ2(1+α) , k = k̂ǫ1+α . (2.20)

With this scaling, the entropy and temperature behave as S ∼ ǫα, T ∼ ǫ2+α, Jφ ∼ ǫ2α and

the other charges remain finite. In other words we find that T/S ∼ ǫ2 and moreover to get

the EVH solution one should take α > 0.

The near horizon metric for the EVH ring can be easily obtained by inserting (2.20),

(2.8) and (2.12) with (α > 1) and taking the limit ǫ → 0. The result will be a metric

like (2.13) solution with the AdS3 radius ℓ2 = 16k̂2

λ̂
.
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To find the near horizon of the near-EVH solution, it is enough to repeat all the steps

similar to EVH case but with α = 1. In this case taking the limit ǫ → 0 yields the

following metric

ds2 = cos2 θ



−f(r̂)dt̂2 + dr̂2

f(r̂)
+ r̂2

(

dφ̂− 16k̂2

ℓ r̂2ν̂2
dt̂

)2


+ ℓ2
(

cos2θ dθ2 + tan2θdψ̂2
)

,

f(r̂) =
1

ℓ2r̂2

(

r̂2 − 16k̂2

ν̂

)2

, ℓ2 =
16k̂2

λ̂
, (2.21)

which is a pinched extremal BTZ solution with radius ℓ2 = 16k̂2

λ̂
. The BTZ mass and spin

also can be found easily as

MBTZ =
r2+ + r2−
8ℓ2G3

= 4πk̂2 , JBTZ =
r+r−
4ℓG3

= 4πk̂2ℓ . (2.22)

The above expressions can be obtained as the ν → 1 limit of (2.19). In other words, the

near horizon of extremal near-EVH ring leads to an extremal BTZ, while for a generic

near-EVH ring around the λ = 1 + ν line we get a generic BTZ.

3 Unbalanced Pomeransky-Sen’kov black ring

As discussed there are unbalanced ring solutions with conical singularity in the space-

time [6, 7, 10]. This is an asymptotically flat solution which contains the balanced

Pomeransky-Sen’kov black ring as a special limit, where a “balancing condition” is satisfied.

A compact form of this metric is [10]

ds2 = −H(y, x)

H(x, y)

(

dt− ωψ dψ − ωφ dφ

)2

− F (x, y)

H(y, x)
dψ2 − 2

J(x, y)

H(y, x)
dψ dφ

+
F (y, x)

H(y, x)
dφ2 +

2k2(1− µ)2(1− σ)H(x, y)

(1− ξ)(1− µσ)ΦΨ(x− y)2

(
dx2

G(x)
− dy2

G(y)

)

,

ωψ =
k(µ+ σ)

H(y, x)

√

2ξ(ξ − µ)(1 + ξ)(1− ξµ)ΦΞ

(1− ξ)(1− µσ)Ψ
(1 + y)

×
{
Φ
(
1 + σx2y

)
+ σ(1− µ) [1 + ξx− xy(x+ ξ)]

}
,

ωφ =
k(µ+ σ)

H(y, x)

√

2σξ(1− ξ2)ΦΨΞ

1− µσ
(1− x2)y ,

Φ = 1− ξµ− ξσ + µσ , Ψ = µ− ξσ + µσ − ξµ2 , Ξ = µ+ ξσ − µσ − ξµ2 . (3.1)
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The functions G, H, J and F in the metric are given by

G(x) =
(
1− x2

)
(1 + µx)(1 + σx) ,

H(x, y) = ΦΨ+ σ(ξ − µ)(1 + ξ)Φ + σΨΞx2y2 + σ(µ+ σ)(ξ − µ)(1− ξµ)
(
1− ξµx2y2

)

+ ξ(µ+ σ)(1− ξµ− σ(ξ − µ)xy)((1− ξµ)x+ σ(ξ − µ)y) ,

J(x, y) =
2k2(µ+ σ)

√

σ(ξ − µ)(1− ξµ)
(
1− x2

) (
1− y2

)

(1− µσ)Φ(x− y)

{

ΦΨ+ σ(ξ − µ)(1 + ξ)Φ

− σΨΞxy + σ(µ+ σ)(ξ − µ)(1− ξµ)(1 + ξx+ ξy + ξµxy)
}

,

F (x, y) =
2k2

µσ(1− µσ)Φ(x− y)2

{

G(x)
(
y2 − 1

){

µ
(
1− ξ2

)
[Ψ + σ(ξ − µ)(1 + σ)]2

− (µ+ σ)(1− ξµ)(1 + σy)
[
ΨΞ− ξµ(ξ − µ)[Ψ + σ(ξ − µ)(1 + σ)]

]}

+ σG(y)
{

(ξ − µ)(1− ξµ)
[
ξ(µ+ σ)2(1− ξµ) + [Ψ + σ(ξ − µ)(1 + σ)]

× (µ+ σ − µσx)x
]
+ [ΨΞ + ξµΦ(Φ− 1)(Φ−Ψ+ Ξ)][1 + (µ+ σ)x]x2

+ µσΦ[ΨΞ− ξµ(µ+ σ)(ξ − µ)(1− ξµ)]x4
}}

. (3.2)

x and y coordinates are in the ranges −1 ≤ x ≤ 1 and −∞ < y < −1 where infinity located

at x = y = −1 and the azimuthal angles lie in the range 0 ≤ φ, ψ ≤ 2π. Because of the

unbalanced characteristic of the solution there are four independent parameters σ, µ, ξ, k

instead of the three ν, λ, k in the Pomeransky-Sen’kov (balanced) metric. The first three

parameters are dimensionless while k has dimension of length and determines the scale of

the solution. The unbalanced ring parameter space is subject to

0 ≤ σ ≤ µ ≤ ξ < 1 , k > 0 . (3.3)

The metric (3.1) has two horizons (roots of G(y)). The outer one is located at y = − 1
µ

and the inner is at y = − 1
σ . The entropy, temperature, angular velocities, mass and spins

of this solution are given by [10]

S =
4π2k3(µ+ σ)(1− µ)Ξ

(1− ξ)(1 + µ)(1− µσ)3/2

(
2ξ(1 + ξ)(1− σ)

ΦΨ

)1

2

,

T =
(µ− σ)(1− ξ)(1 + µ)

8πk(µ+ σ)(1− µ)Ξ

(
2(1− µσ)ΦΨ

ξ(1 + ξ)(1− σ)

)1

2

,

Ωψ =
1

k(1−µ)

(
(ξ−µ)(1−ξ)(1−ξµ)(1−µσ)Ψ

2ξ(1 + ξ)ΦΞ

)1

2

, Ωφ =
1 + µ

k(µ+σ)

(
σ(1−ξ)(1−µσ)Ψ

2ξ(1 + ξ)ΦΞ

)1

2

,

M =
3πk2ξ(µ+ σ)(1− µ)Φ

2(1− ξ)(1− µσ)Ψ
, Jφ =

2πk3(µ+ σ)(1− µ)

(1− µσ)3/2

(
2σξ(1 + ξ)Ξ

(1− ξ)ΦΨ

)1

2

,

Jψ =
πk3(µ+σ)(1−µ)[2σ(1−ξ)(1−µ) + (1−σ)Φ]

(1− ξ)3/2(1− µσ)3/2Ψ3/2

(
2ξ(ξ−µ)(1+ξ)(1−ξµ)Ξ

Φ

)1

2

, (3.4)

which satisfy the Smarr relation TS − ΩφJφ − ΩψJψ − 2
3 M = 0.
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To determine existence of a deficit angle in φ coordinate on the horizon one may expand

the φφ component of the horizon metric around x = x0 where they vanish. The x−φ part

of the metric takes the form

ds2H = A
dx2

x− x0
+B(x− x0)dφ

2 , (3.5)

where x0 = ±1. Using the transformation x−x0 = αr2, it is possible to rewrite this part as

ds2H = 4αA
(
dr2 + κ2Er

2dφ2
)
, κ2E =

B

4A
, (3.6)

which exhibits a deficit or excess angle due to the periodicity 2π/κE . For the metric (3.1)

at x = 1 (the north pole of S2 at the horizon) we find

κE =
1 + µ

1− µ

√

(1− ξ)(1 + σ)Ψ

(1 + ξ)(1− σ)Ξ
, (3.7)

while for x = −1 (the south pole of S2 at the horizon) we find κE = 1. This means that the

unbalanced ring has a “distorted S2” in its horizon which is a topologically S2 geometry

consisting of a conic space in its north pole joined to a round hemisphere at the south pole

(a pear-shape geometry). The conical singularity at the horizon of the unbalanced ring is

removed if we put κE = 1. This leads to a balancing condition between parameters as

ξ =
2µ

1 + µ2
. (3.8)

We note that value of ψψ component on the horizon is also different at x = ±1, but being

a topologically S1 direction, this means that the radius of the ring varies on the horizon of

unbalanced ring (ring is not geometrically a circle).

3.1 The parameter space

As it has been studied in [10], the unbalanced ring in different limits contains different

solutions such as the balanced Pomeransky-Senkov’s black ring, the Emparan-Reall single

rotating black ring [2], Figueras single rotating black ring [34], boosted Kerr string and

the Myers-Perry black hole. In the following we will discuss the parameter space from a

different point of view. Remembering the condition (3.3), the parameter space is looking

like a triangular pyramid, depicted in figure 1(a). Because of ranges in (3.3), the ξ = 1

face does not belong to the parameter space. We now concentrate on some special regions.

The balanced solution. By imposing the balance condition (3.8), solution (3.1) reduces

to the Pomeransky-Sen’kov black ring with three parameters (λ, ν, k). To see this explicitly,

one should use the relation between parameters of the balanced and unbalanced solutions as

λ = µ+ σ , ν = µσ , k = k . (3.9)

We have shown the location of balanced solutions, computing from the balanced

condition (3.8), with a blue curved plane in figure 1(a).
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(a) (b)

Figure 1. (a) The parameter space of the unbalanced black ring is located inside the (ABCO)

pyramid. The ξ = 1 face (the ABC triangle) does not belong to the parameter space. There

are different known solutions which can be viewed as different limits of the unbalanced ring. The

Pomeransky-Sen’kov (balanced) black rings are located on the blue curved plane surrounded by the

pyramid; the σ = 0 or the (OAB) face represents the (unbalanced) Emparan-Reall single rotating

black rings; the ξ = µ or the (OBC) face recovers the Figueras black ring. On the (OB) line both

Jφ and Jψ vanishes and it is depicted by a dashed line. The extremal unbalanced rings lie on the

µ = σ (OAC) face . In this case on the ξ = 1 plane the solution becomes massless. The boosted

Kerr strings are located around the origin (O), and the Myers-Perry black holes are around the

ξ = µ = 1 (BC) edge. (b) The parameter space of Pomeransky-Sen’kov (balanced) black ring.

Points O, B and C in this figure are corresponding to the same points in figure 1(a).

The extremal face µ = σ. Inserting µ = σ unifies the roots of G(y) in (3.1) and the

temperature in (3.4) vanishes so this condition corresponds to the extremal unbalanced

rings (OAC triangle in figure 1(a)).

The σ, µ, ξ → 0 corner. Upon the following transformations [10]

σ =
m−

√
m2−a2√
2k

, µ =
m+

√
m2−a2√
2k

, ξ =
m+

√
m2−a2√
2k

coshσ ,

x = cos θ , y = −
√
2k

r
, ψ = − z√

2k
, (3.10)

while taking the k → ∞ limit keeping the new variables fixed, (3.1) transforms to the

boosted Kerr string. The k → ∞ limit takes σ, µ, ξ to zero. Therefore, the boosted Kerr

string solution is obtained from the unbalanced ring around the origin O.

The σ = 0 face. Inserting σ = 0 (OAB face), the solution (3.1) recovers the known

Emparan-Reall single spin black ring [2].

The µ = ξ face. By considering µ = ξ the solution goes to the Figueras black ring [34]

which has only one rotation in the φ direction (the coordinate normal to the circle S1 of

the ring).
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The ξ = µ = 1 edge. Although the ξ = 1 face does not belong to the parameter space,

the solution shows interesting properties in the limit ξ, µ→ 1. By inserting

ξ = 1− c(1− µ) , (3.11)

where 0 < c ≤ 1 and the following coordinate transformations

x = −1+
8k2 cos2 θ (1− µ)

2r2+ a2+ b2−m− 4k2 cos 2θ
, y = −1− 8k2 sin2 θ (1− µ)

2r2+ a2+ b2−m− 4k2 cos 2θ
, (3.12)

and taking the µ → 1 limit, the solution (3.1) goes over to the MP black hole. Here the

mass and rotation parameters are given by

m=
4k2 (1+σ)

c (1− σ)
, a=

2k
√

(1−c2)(1−σ)(1+σ+c−cσ)√
c (1− σ + c+ cσ)

, b=
4k
√

cσ(1+σ+c−cσ)√
1−σ (1−σ+c+cσ)

. (3.13)

Note that in the special case c = 1, the rotation parameter a is vanishing and solution

reduces to the single rotating MP solution.

3.2 The EVH limit

In this section we investigate whether the EVH condition (2.1) can be satisfied in the

parameter space of the unbalanced ring. We find that near the (ABC) triangle in the

upper plane ξ = 1, the unbalanced ring solution becomes EVH. In fact by approaching the

ξ = 1 plane as

ξ = 1− ξ̂ǫa , k = k̂ǫ
a
2 , (3.14)

(scaling of k is needed to keep the mass finite) leads to the following expressions for the

charges of the solution

T =
(1 + µ)ξ̂

√

(1− µσ)(µ− σ)3

8π(−1 + µ)(µ+ σ)2k̂
ǫ
a
2 , AH =

32π2k̂3(µ+ σ)2(−1 + µ)
√

(µ− σ)(1− µσ)3 (1 + µ) ξ̂
ǫ
a
2 ,

M =
3πk̂2(µ+ σ)(1− µ)(1− σ)

2ξ̂(1− µσ)(µ− σ)
+O(ǫa) , Jφ =

4πk̂3(µ+ σ)
√

σ(1−µ)(µ2 − σ2)

(µ− σ)

√

ξ̂(1− σ)(1− µσ)3
ǫa ,

Jψ =
2πk̂3(1−µ)2(1−σ)3/2(µ+σ)3/2
√

ξ̂3(1−µ)(µ−σ)3(1−µσ)3
+O(ǫa) , (3.15)

Ωφ ,Ωψ also remain finite. If we denote the leading term in the expansion of charge Q by

Q0 then we find the following relation

M − M0

Jψ0

Jψ ∼ ǫa . (3.16)

As we will show this quantity can be related to the mass of the BTZ solution which appears

in the deviation from the EVH point.
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In the ξ → 1 limit, to obtain the near horizon metric, one should take ǫ → 0 limit

while inserting (3.14) and (2.12) together with the following coordinate transformations4

x = −1+
8k2 cos2 θ(1− µ)

2r2 − 4k2 cos 2θ
, y = −1− 8k2 sin2 θ(1− µ)

2r2 − 4k2 cos 2θ
, (3.17)

in the metric. By choosing a > 2 in (3.14), we will approach to the EVH regime. Taking

the limit ǫ→ 0 the near horizon of the EVH unbalanced ring can be found as

ds2 = ℓ2 cos2 θ

(

−r̂2dt̂2 + dr̂2

r̂2

)

+
1− σ

1− µσ
r̂2 cos2 θdφ̂2 + ℓ2

(

cos2 θdθ2 + tan2 θdψ̂2
)

,

where ℓ2 = 4k̂2(1−σ)(1−µ)(µ+σ)
λ̂(µ−σ)(1−µσ)

and it can be related to the physical mass of the solu-

tion (3.15) as M = 3πℓ2

8 . We can rewrite the near horizon metric by scaling t̂ = t̃
ℓ2

and

φ̂ =
√

1−µσ
1−σ φ̃ into the usual pinching AdS3 form

ds2 = cos2 θ

[

− r̂
2

ℓ2
dt̃2 + ℓ2

dr̂2

r̂2
+ r̂2dφ̃2

]

+ ℓ2
(

cos2 θdθ2 + tan2 θdψ̂2
)

. (3.18)

The unbalanced characteristic of the original solution appears (only) through the range

of pinched coordinate φ̃ ∈
[

0, 2π
√

1−µσ
1−σ ǫ

]

. Note that the AdS3 radius and the value of

pinching are different for each point on the (ABC) triangle. When we are close to the (BC)

line (µ = 1), which is the balanced limit, the range of the pinching coordinate reduces to

[0, 2πǫ], where the AdS3 radius also matches with the balanced case as we will see in the

next subsection.

3.2.1 EVH solutions on the BC line

The BC line (ξ ∼ µ ∼ 1) is the intersection of the balanced curved plane with the EVH

solutions on ABC triangle, so one expects to find the balanced EVH solutions on it. In

this subsection we study these solutions and their near horizons in the EVH and near

EVH regimes. We will show the equivalence of the BC line in figure 1(a) with the BC line

in figure 1(b). In this limit to find a well-defined EVH solutions with finite charges, one

should define the parameters as

ξ = 1− ξ̂ǫ2a , µ = 1− µ̂ǫa , k = k̂ǫ
a
2 , (3.19)

which leads to the following results for charges of the solution

T =
ξ̂(1− σ)2

4πk̂µ̂(1 + σ)2
ǫ
a
2 , A =

16π2µ̂k̂3(1+ν)2

ξ̂(1− σ)2
ǫ
a
2 , M =

3πµ̂k̂2(1 + σ)

2ξ̂(1−σ)
+O(ǫa) ,

Jφ =
4πk̂3

√

µ̂σ(1+σ)3
√

ξ̂(1−σ)5
ǫa , Jψ =

2πk̂3µ̂
3

2 (1+σ)
3

2

(1−σ) 3

2 ξ̂
3

2

+O(ǫa) . (3.20)

4These transformations obtained by inserting c = 0 in (3.12) and (3.13).
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Again we find the same behavior as (3.16) between the leading terms in the expansion

of charges around the EVH point. As in the previous sections, in order to find the near

horizon we should insert (3.19), (2.12) and (3.17) into metric and take ǫ→ 0 limit.

By considering a > 2 we approach to the EVH regime and the near horizon metric

takes the following form

ds2 = ℓ2 cos2 θ

[

−r̂2dt̂2 + dr̂2

r̂2
+
r̂2

ℓ2
dφ̂2
]

+ ℓ2
(

cos2 θdθ2 + tan2 θdψ̂2
)

, (3.21)

where the AdS3 radius is ℓ2 = 8M
3π = 4k̂2µ̂(1+σ)

ξ̂(1−σ)
and the period of φ̂ is reduced to 2πǫ,

so (3.21) is a balanced solution. After another rescaling t̃ = ℓ2t̂ one can find a pinching

AdS3 geometry as

ds2 = cos2 θ

[

− r̂
2

ℓ2
dt̃2 + ℓ2

dr̂2

r̂2
+ r̂2dφ̂2

]

+ ℓ2
(

cos2 θdθ2 + tan2 θdψ̂2
)

. (3.22)

If we consider a = 2 we will then approach to the near-EVH regime. Note also

that (3.16) will be proportional to ǫ2 which is a signature of a BTZ solution. In this

case, upon the redefinition r̂ =

√
ρ2(σ−1)2−2k̂(σ2+6σ+1)

1−σ , the near horizon metric takes to the

following form

ds2 = cos2 θ



−f(ρ)dt̂2+ dρ2

f(ρ)
+ρ2

(

dφ̂2+
8k̂2

√
σ(1+σ)

ρ2ℓ (σ−1)2
dt̂

)2


+ℓ2
(

cos2 θdθ2+tan2 θdψ̂2
)

,

f(ρ) =
1

ℓ2ρ2

(

ρ2 − 4k̂2(σ + 1)2

(σ − 1)2

)(

ρ2 − 16k̂2σ

(σ − 1)2

)

, ℓ2 =
4k̂2µ̂(1 + σ)

ξ̂(1− σ)
, (3.23)

which is a (pinching) BTZ with the mass and spin

MBTZ =
πk̂2

(
σ2 + 6σ + 1

)

2(1− σ)2
, JBTZ =

4πk̂3
√

µ̂σ(1 + σ)3
√

ξ̂(1− σ)5
= Jφ0 . (3.24)

We can see the agreement of these charges with the mass and spin (2.19) on the BC line in

the parameter space of the balanced ring in figure 1(b). Using (3.9) and (3.19) the balanced

condition takes the form of ξ̂ = µ̂2/2. It can be easily checked that the BTZ masses are

exactly equal and the BTZ spins are equal when λ̂ = µ̂(1− ν). We can verify this relation

in a geometrical approach: using the relations (3.19) or (2.14) we approach to the BC line

from different directions but λ̂ = µ̂(1− ν), unifies both directions into one.

3.2.2 The extremal line AC

As mentioned, the extremal unbalanced ring is located on the µ = σ plane in the parameter

space. On the other hand the AC line is the intersection of the extremal plane with the

EVH face ξ = 1, so we can study the EVH solutions in this limit. To find a well-defined

solution one should scale the parameters as follows

µ = σ + µ̂ǫa , ξ = 1− ξ̂ǫ
a
2 , k = k̂ǫ

a
2 . (3.25)
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Again the near horizon limit can be found by inserting (3.25) and (2.12) together with (3.17)

and taking the ǫ → 0 limit. For EVH solutions (a > 2), the near horizon metric can be

found by an additional rescaling t̃ = t̂√
1+σ

as

ds2 = cos2 θ

[

− r̂
2

ℓ2
dt̃2 + ℓ2

dr̂2

r̂2
+ r̂2dφ̃2

]

+ ℓ2
(

cos2 θdθ2 + tan2 θdψ̂2
)

, (3.26)

with ℓ2 = 8k̂2(σ−1)2

ξ̂2(σ+1)2
. Due to the range of pinched coordinate φ̃ ∈

[

0, 2π√
1+σ

ǫ
]

, the above

metric is describing an unbalanced pinched AdS3 geometry.

4 Double rotating dipole ring

A generalization of the double rotating black ring [3] containing dipole charges was intro-

duced in [14] (see also [11–13]). This is a solution of Einstein-Maxwell-dilaton theory

I =
1

16πG5

∫

d5x
√−g

[

R− 1

2
∂µϕ∂

µϕ− 1

4
e−αϕFµνF

µν

]

. (4.1)

For particular values of parameter α, α2 = 4/N − 4/3, N = 1, 2, 3 the above action may

be embedded in string theory compactification [11]. For the N = 1, α =
√

8/3 case the

dipole ring solution is [14]

ds25 = −
[

H(y, x)3

K(x, y)2H(x, y)

]1/3

(dt+ ω1 dψ + ω2 dφ)
2 +

2R2

(x− y)2
[
K(x, y)H(x, y)2

]1/3

×
{
F (x, y) (dψ + ω3 dφ)

2

H(x, y)H(y, x)
− G(x)G(y) dφ2

F (x, y)
+

1

ΦΨ

[
dx2

G(x)
− dy2

G(y)

]}

. (4.2)

Coordinates lie in the ranges 0 ≤ φ, ψ ≤ 2π , −1 ≤ x ≤ 1 and −∞ < y < −1; also functions

of the metric are as followings

G(x) =
(
1− x2

)
(1 + cx) ,

K(x, y) = −a2(1 + b)
[
bx2(1 + cy)2 + (c+ x)2

]
+
[
b(1 + cy)− 1− cx

]2
+ bc2(1− xy)2,

H(x, y) = −a2(1 + b) [b(1 + cx)(1 + cy)xy + (c+ x)(c+ y)]− a(1 + b)(x− y)
[
c2 − 1

+ b(1 + cx)(1 + cy)
]
+ [b(1 + cy)− 1− cx] [b(1 + cx)− 1− cy] + bc2(1− xy)2,

F (x, y) =
1− y2

ΦΨ

(

bcG(x)
{

c
(
y2 − 1

) [
a2(1 + b)− b+ 1

]2 − 4a2y
(
1− b2

)
(1 + cy)

}

− (1 + cy)
{

a2(1 + b)2
[

a2
(
c+ x+ bx+ bcx2

)2 −
(
c+ x− bx− bcx2

)2
]

− (1− b)2(1 + cx)2
[
a2(1 + b)2 − (1− b)2

] })

,

J±(x, y) = a2(1 + b) [bx(1 + cx)(1 + cy) + (1 + c)(c+ x)]− bc2(1− x)(1− xy)

± a {(1− x) [b(1 + cx) + c− 1] [b(1 + cy) + c+ 1]− 2bc(1− y)(1 + cx)}
− [b(1 + cx)− c− 1] [b(1 + cy)− cx− 1] ,

L(x, y) = a2(1 + b)
[
bx(1 + cy)2 + (1 + c)(c+ x)

]
− a(1− x)

[
b2(1 + cy)2 + c2 − 1

]

−
[
b(1 + cy)− c− 1

][
b(1 + cy)− cx− 1

]
− bc2(1− y)(1− xy) , (4.3)
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together with

ω1 =

√

2a(a+ c)

ΦΨ

R(1 + b)(1 + y)J+(x, y)

H(y, x)
,

ω2 =

√

2ab(a+ c) (1− a2)

ΦΨ

Rc(1 + b)
(
1− x2

) [
(1 + cy)(a+ ab+ by)− c− y

]

H(y, x)
,

ω3 =

√

b (1− a2)

ΦΨ

ac(1 + b)(x− y)
(
1− x2

) (
1− y2

)

F (x, y)

×
[
b(1 + cx)(1 + cy)

(
1− b− a2 − a2b

)
−
(
1− c2

) (
1− b+ a2 + a2b

)]
, (4.4)

where

Φ = 1 + a− b+ ab, Ψ = 1− a− b− ab . (4.5)

This solution has four independent parameters a, b, c and R. The parameter a controls the

dipole charge, b introduces the rotation on the S2, size of the black ring is characterizes by

c and R represents the scale of the solution. These parameters are satisfying the following

constraints

0 ≤ c ≤ a < 1 , 0 ≤ b <
1− a

1 + a
, R > 0 . (4.6)

The gauge field A and dilaton field ϕ are given by

A = Atdt+Aφdφ+Aψdψ , e−ϕ =

(
K(x, y)

H(x, y)

)
√

2/3

, (4.7)

where

At = −
√

b(a2 − c2)(1− a2)
c(1 + b)(1− xy)(x− y)

K(x, y)
, (4.8)

Aφ = −
√

2a(a− c)

ΦΨ

R(1 + b)(1 + x)L(x, y)

K(x, y)
,

Aψ = −
√

2ab(a−c)(1−a2)
ΦΨ

Rc(1+b)(1+y)

K(x, y)

(
x(1−y)(1+c)Φ + (1−x)2(a+ ab+ bcy + c)

)
.

The metric (4.2) is an asymptotically flat solution with infinity located at x = −1,

y = −1 [14]. The ADM mass and angular momenta of the solution are given by

M =
πR2(1 + b)[(a+ c)Φ + a(1− b+ c+ bc)]

ΦΨ
,

Jψ =
2πR3(1 + b)[(1 + c)Φ + 2bc(1− a)]

Ψ3/2

√

a(a+ c)

2Φ
,

Jφ =
2πR3c(1 + b)

Ψ3/2

√

2ab(a+ c)(1− a2)

Φ
.

(4.9)
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Figure 2. The parameter space of the dipole rings. All double rotating dipole rings are inside the

deformed pyramid (OMNP). Single rotating dipole rings are located on the OMN face. The ONP

face is the location of the neutral double rotating rings. This face is equivalent to the blue plane

OBC in figure 1(a). The extremal double rotating MP black holes lie near the MNP plane. The

EVH condition is satisfied for black rings/holes on the MN edge. This edge is equal to the BC edge

in figure 1(a).

The entropy, temperature, horizon angular velocities, magnetic dipole charge and potential

are given by

S = 4π2R3c(1 + b)

√

2a(a+ c)(1− a2)

ΦΨ3
, T =

1

8π(1 + b)R

√

2ΦΨ3

a(a+ c)(1− a2)
,

Ωφ =
1−b+a2+ a2b

R (1 + b)

√

bΨ

2a(a+c)(1−a2)Φ , Ωψ =
1

R

√

aΨ

2(a+ c)Φ
,

Q =
(1 + b)R

√

2a(a− c)√
ΨΦ

, Φm =
πR
√

2(a− c)Ψ

2
√
aΦ

, (4.10)

which satisfy the Smarr formula 2
3M = TS + ΩφJφ + ΩψJψ + 1

3QΦm and the first law of

thermodynamics with the dipole charge and its potential also included [14].

4.1 Parameter space and extremal limit

Under the conditions in (4.6), the parameter space of the solutions, is a “pyramid like”

space (OMNP) as depicted in figure 2. Note that the blue face (MNP) does not belong to

the parameter space but we can study its neighborhood. All double rotating dipole rings

lie inside this pyramid. Also the neutral double rotating black rings, single rotating dipole

rings and MP black holes can be studied as different limits of this solution.

The ONP face. As (4.8) shows, by inserting a = c one eliminates the dipole charge so

the ONP face represents the neutral double rotating black rings [3].
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The OMN face. The parameter b tunes the rotation on S2. By choosing b = 0, two

parameters ω2 and ω3 (4.3) become zero and this turns off rotation in the φ direction. In

other words, the single rotating dipole rings [11] are located at b = 0 plane.

The MNP plane. At this surface Ψ = 0 or by b = 1−a
1+a . As one can see from (4.9), in

order to keep the mass and spins finite one is forced to take R to zero. This is hence a

collapsing ring limit where the ring collapses into a black hole. This is somehow similar

to the BC line in figure 1(b). Finite mass can be guaranteed if we take R → 0 limit

introducing a new parameter η defined through

b =
1− a− ηR2

1 + a
. (4.11)

Defining the following parameters

m =
4(a+ c)

η(1 + a)
, a1 =

√
2(a2c+ 2a+ c)

√

η(1 + a)(a+ c)
, a2 =

√
2c(1− a2)

√

η(1 + a)(a+ c)
, (4.12)

and performing the following coordinate transformations [14]

x = −1 +
4R2(1− c) cos2 θ

r2 − a1a2
, y = −1− 4R2(1− c) sin2 θ

r2 − a1a2
, (4.13)

one can explicitly find the 5D MP black hole rotating in both φ and ψ directions

ds2 = −∆

ρ2
[
dt− a1 sin

2 θdφ− a2 cos
2 θdψ

]2
+ ρ2

(
dr2

∆
+ dθ2

)

+
sin2 θ

ρ2
[
a1dt−

(
r2 + a1

2
)
dφ
]2

+
cos2 θ

ρ2
[
a2dt−

(
r2 + a2

2
)
dψ
]2

+
1

r2ρ2
[
a1a2 dt− a2

(
r2 + a1

2
)
sin2 θdφ− a1

(
r2 + a2

2
)
cos2 θdψ

]2
, (4.14)

where ∆ = 1
r2

(
r2 + a21

) (
r2 + a22

)
− 2m, and ρ2 = r2 + a21 cos

2 θ + a22 sin
2 θ .

As we will see below, in the collapsing limit the temperature of the black ring tends

to zero and it becomes extremal. The resulting MP black hole, too, will have a vanishing

temperature, as one can readily check from (4.12), the parameters a1 and a2 of the MP

black hole satisfy extremality condition m = 1
2(a1 + a2)

2.

The extremal corner P. In addition to the collapsing limit R→ 0, there is another way

to get an extremal solution. If we settle in the region a, c→ 0 and b→ 1 in the parameter

space, then the temperature will vanish and the geometry of (4.2) becomes extremal.

4.2 The EVH limit

As in the other black ring solutions studied here and in [18], the EVH condition is satisfied

in the collapsing limit. Using (4.11), defining R = R̂ ǫδ, a = 1 − ǫγ and taking the limit

ǫ → 0, the temperature and entropy in (4.9) of the solution behave as T ∼ R̂2ǫ2δ−γ/2 and
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S ∼ ǫγ/2. In fact the double rotating dipole ring becomes EVH if 0 < γ < 4δ but for

simplicity we will consider γ = δ

b =
1− a− ηR2

1 + a
, R = R̂ ǫδ , a = 1− ǫδ . (4.15)

In the EVH point the entropy, temperature and charges of the solution are as follows

S =
4π2c

√

2â(1 + c)

η
3

2

ǫ
δ
2 , T =

√

2η3 R̂2

4
√

â(1 + c)
ǫ
3δ
2 , M =

3π(1 + c)

2η
+O(ǫδ) ,

Jφ =
2πcâ

√
1 + c

η3/2
ǫδ , Jψ =

2π(1 + c)3/2

η3/2
+O(ǫδ) , (4.16)

and angular velocities also remain non-vanishing. Note that in the collapsing limit, even

without sending a → 1, the black ring solution will be extremal. In fact for the MP

solution, the parameters in (4.12) satisfy the extremality condition m = 1
2(a1 + a2)

2 and

when we send a→ 1 the MP black hole becomes single rotating, and hence EVH MP black

hole [18].

Another interesting fact is that in the EVH limit, the gauge field components (4.8)

vanish and the resulting solution becomes uncharged

At =
8âc

√
1− c2 R̂2(1− 2 cos2θ)

4r2(1 + c) cos2θ + r4η
ǫ6, Aφ =

4âc
√
1− c R̂2 cos2θ

r2
√
η

ǫ6 ,

Aψ = −4câ
√
1− c R̂2 sin2θ

[
r2η + 4(1 + c) sin2 θ

]

r2
√
η
[
r2η + 4(1 + c) cos2 θ

] ǫ6 . (4.17)

This has a simple physical explanation: the EVH condition occurs when (x, y) coordinates

are computed around the (−1,−1) point, which corresponds to the asymptotic region of the

ring. On the other hand the dipole ring is a distribution of the magnetic monopoles [11] and

the electromagnetic fields of the dipole ring outside the horizon is produced by a circular

array of magnetic monopoles such that, despite of having a local distribution of charge,

the total magnetic charge is zero. Therefore, the dipole ring can not be distinguished from

a neutral ring from the asymptotic infinity and electromagnetic fields are vanishing in the

EVH limit.

In order to discuss the near horizon of EVH solutions, one should insert (4.15)

and (2.12) together with (4.13) in the original solution (4.2) and take the ǫ → 0 limit.

Considering δ > 2, one can settle in the EVH regime. In this case by an extra rescaling

t̃ = ℓ2t̂, the near horizon metric takes the following form

ds2 = cos2 θ

[

− r̂
2

ℓ2
dt̃2 + ℓ2

dr̂2

r̂2
+ r̂2dφ̂2

]

+ ℓ2
(

cos2 θdθ2 + tan2 θdψ̂2
)

, (4.18)

which is the familiar pinched AdS3 with radius ℓ2 = 8M
3π = 4(1+c)

η .
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The near-EVH solution is obtained for δ = 2. In this case we find that the near horizon

of the near-EVH ring takes the form of extremal pinching BTZ solution

ds2 = cos2 θ

[

−f(r̂)dt̂2 + dr̂2

f(r̂)
+ r̂2

(

dφ̂− 4η âc

ℓr2
dt̂

)2
]

+ ℓ2
(

cos2 θdθ2 + tan2 θdψ̂2
)

,

f(r̂) =

(

r̂2 − 4âc
η

)2

ℓ2r̂2
, ℓ2 =

4(1 + c)

η
. (4.19)

5 The EVH/CFT and black rings

As we discussed in the near horizon geometry of EVH black rings we find a (pinching)

AdS3 throat which turns into a BTZ for near-EVH solutions. One may then use this AdS3
to extend the EVH/CFT proposal [19] for these rings too. The dual 2d CFT proposed here

would hence govern the low energy excitations or perturbations around the original EVH

black ring. Below we briefly discuss this dual CFT for different EVH rings we discussed in

previous sections.

5.1 The unbalanced ring

As we saw in the previous sections for unbalanced ring the EVH conditions are satisfied at

ξ = 1. Besides the EVH point, the unbalanced ring becomes extremal at σ = µ, where as

we will discuss there is also a Kerr/CFT type chiral 2d CFT [35, 36] to these geometries.

5.1.1 The EVH solution near ξ = 1, (ABC triangle)

In the previous sections we showed the explicit form of the near horizon metrics in the EVH

limits (3.18). Since this metric contains an AdS3 part we can find the Brown-Hennueax [37]

central charge cB.H. =
3ℓ
2G3

of the 2d CFT associated with this AdS3 factor. To find the 3d

Newton constant G3 in terms of the G5 we use the reduction ansatz

ds2 = cos2 θ gαβdx
αdxβ

︸ ︷︷ ︸

AdS3

+ℓ2
(
cos2 θdθ2 + tan2 θdψ2

)
, (5.1)

where by considering G5 = 1 the result is

G3 =
1

πℓ2
. (5.2)

One should note that due to the pinching the above Brown-Henneaux central charge is

for the 2d CFT on a pinching orbifold cylinder, which can be equivalent to a 2d CFT at

central charge cB.H.ǫ on a cylinder (without pinching) [30].

The region inside the ABC triangle. The Brown-Hennueax central charge in this

case can be read from the near horizon metric (3.18)

cB.H. =
3ℓ

2G3
=

3πℓ3

2
= 12πk̂3

[

(1− σ)(1− µ)(µ+ σ)

λ̂(µ− σ)(1− µσ)

] 3

2

. (5.3)
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The BC line (µ = ξ = 1 edge). We can find the Brown-Hennueax central charge for

this case from (3.22) as

cB.H. =
3ℓ

2G3
=

3πℓ3

2
= 12πk̂3

[

µ̂(1 + σ)

ξ̂(1− σ)

] 3

2

. (5.4)

On the other hand on ξ = 1 plane the value of c in (3.11) vanishes and hence the rotation

parameter b in (3.13) is also vanishing. To keep the mass m and rotation parameter a

finite, we need to rescale k and c in (3.13) as k = k̂ ǫ, c = ĉ ǫ2 and the geometry becomes

that of a single rotating extremal MP black hole with 2m = a2 = 4k̂2(1+σ)
1−σ . It was discussed

in [18] that the central charge for this EVH MP black hole is given by cCFT = 3π
2 a

3 =

12πk̂3
[

1+σ
ĉ(1−σ)

]3/2
. Recalling (3.11) and the definitions of ξ and µ in (3.19), this central

charge as expected matches with the value in (5.4).

The AC line σ = µ ; ξ = 1. Noting (3.26) and that ℓ2 = 8k̂2(σ−1)2

ξ̂2(σ+1)2
, it is possible to

read the central charge as

cB.H. = 24
√
2π k̂3

(σ − 1)3

ξ̂3(σ + 1)3
. (5.5)

5.1.2 The extremal plane σ = µ

For completeness, here we briefly discuss the extremal, but non-EVH, (unbalanced) ring

and its chiral dual 2d CFT via Kerr/CFT [35, 36]. To this end, we need to read the near

horizon metric of the extremal ring:

ds2 = α(x)

(

−y2dt2 + dy2

y2

)

+ β(x)dx2 + γ dψ2 + δ(x)(dφ+ ρ dψ + fφydt) , (5.6)

where fφ = 1 and the other functions and parameters are given by

α(x) = − 2µ2(µ− 1)2k2(1 + ξ)
(
x2 + 2ξx+ 1

)

(1− 2ξµ+ µ2) (1 + µx)2(ξ − 1)(1 + µ)2
,

β(x) = − 2k2(µ− 1)3µ2(1 + ξ)
(
x2 + 2ξx+ 1

)

(1− 2ξµ+ µ2) (1 + µx)4(1 + µ)(ξ − 1)(x− 1)(x+ 1)
,

δ(x) = − 8k2µ2
(
−1 + ξ2

) (
x2 − 1

)

(−1 + µ2)(x2 + 2ξx+ 1)(1− 2ξµ+ µ2)
,

γ = −2k2λ (1 + λ) (µ− 1)2
(
1− 2λµ+ µ2

)

(λ− 1)3 (1 + µ)2 µ
,

ρ = −
√

(1− λµ) (λ− µ)
(
1 + µ2 + (−4λ+ 2)µ

)
(µ− 1)

2 (1 + µ)µ3/2 (λ− 1)2
. (5.7)

According to [38] one can read the central charge of the dual CFT of the near horizon of

the extremal geometry

cφ =
3

2π
fφ
∫

dxdφdψ
√

β(x)γδ(x) =
48π µ3/2k3

√

1− ξ2 (1− µ)
√
2 ξ (1 + ξ)

(1 + µ)3 (ξ − 1)2
√

1− 2 ξ µ+ µ2
. (5.8)
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The Frolov-Thorne temperature is equal to TFT
φ = 1

2π , hence the microscopic Cardy entropy

can be computed as

Smicro =
π2

3
cφT

FT
φ =

8π2 µ3/2k3
√

1− ξ2 (1− µ)
√
2 ξ (1 + ξ)

(1 + µ)3 (ξ − 1)2
√

1− 2 ξ µ+ µ2
, (5.9)

which this is equal to the macroscopic entropy when the value of the entropy in equa-

tion (3.4) evaluated at the extremal limit µ = σ.

The central charge (5.8) vanishes when we approach to ξ = 1 plane (AC line) as (3.14).

In fact this is an expected result due to the fact that on ξ = 1 the entropy vanishes while

TFT
φ has a constant value. By inserting the balance condition (3.8) and µ = λ/2, which is

the relation between parameters of unbalanced and balanced rings in the extremal limit,

one exactly recovers the central charge and entropy (2.5) of the Pomeransky-Sen’kov black

ring [18, 36].

5.2 The double rotating dipole ring

As in the previous case, we discuss the 2d CFT dual to the EVH cases and then analyze

the extremal, but non-EVH case.

5.2.1 The EVH dipole ring

As discussed on the MNP plane we have a collapsing ring which is mapped onto an extremal

MP black hole (4.14) with mass and spins (4.12). In the a1 = 0 this black hole becomes

EVH [18]. It has been shown in [39] that there is a chiral 2d CFT associated with the near

horizon geometry of this extremal solution with the following central charge

cCFT =
3πa31
2

= 12π
(1 + c)3/2

η3/2
. (5.10)

On the other hand the near horizon metric in the EVH limit is given in (4.18). So the

Brown-Hennueax central charge is equal to

cBH =
3ℓ

2G3
= 12π

(1 + c)3/2

η3/2
, (5.11)

which is equal to (5.10), supporting the EVH/CFT proposal.

5.2.2 The extremal solution at corner P

In this case it is possible to find the central charge of the dual 2d CFT as well. To this

end, we note that the extremal solution (defined at a, c→ 0, b→ 1) is parameterized by

α =
c

2a
, β =

c

1− b
.

Sparing the straightforward but tedious algebra, the near horizon geometry is obtained to be

ds2 = A(x)

(

−r2dt2 + dr2

r2

)

+B(x)dx2 + C(x)dψ2 +D(x)[(dφ+ rdt) + ρ dψ]2 , (5.12)
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where

A(x) =
2
(
x2 + 1

)1/3 (
1− α+ αx2

)2/3
k2α4/3β2

(α2 − β2)
,

B(x) =
k2α4/3β2

(
αx4 − α+ 1 + x2

)

(α2 − β2) (x2 − 1) (x2 + 1)2/3 (1− α+ αx2)1/3
,

C(x) =
(2α+ 1) k2 (α+ β)

(
x2 + 1

)1/3

α2/3 (1− α+ αx2)1/3 (α− β)
,

D(x) =
4
(
1− x2

)
k2α4/3β2

(x2 + 1)2/3 (1− α+ αx2)1/3 (α2 − β2)
,

ρ =
(2α+ 1)β + α

2αβ
. (5.13)

The central charge can be read from the near horizon geometry (5.12) as

cφ =
3

2π

∫

dxdφdψ
√

B(x)C(x)D(x) =
24
√
2π αk3β2

√
1 + 2α

(α− β)
√

α2 − β2
, cψ = 0 . (5.14)

The microscopic Cardy entropy of the dual CFT can be calculated using the fact that the

Frolov-Thorne temperature is given by TFT
φ = 1

2π so the entropy will be

S =
π2

3
cφTφ =

4
√
2π2 αk3β2

√
1 + 2α

(α− β)
√

α2 − β2
. (5.15)

This is in complete agreement with the Bekenstein-Hawking entropy in (4.10) when it is

written in terms of new parameters α and β

SBH =
4
√
2π2 αk3β2

√
1 + 2α

(α− β)
√

α2 − β2
. (5.16)

6 Discussion

In this work we extended our analysis of [18] to a larger class of black rings. We carefully

analyzed parameter space of three type of rings, the balanced and unbalanced double

rotating black rings and the double rotating dipole black ring, and explored where in their

parameter space they become extremal and EVH.

We found that generically the ring size parameter (denoted by k or R, respectively for

unbalanced rings and dipole rings) goes to zero in the EVH case. Nonetheless, one can

scale the other parameters to keep the mass and one spin along the ring direction finite,

while the other spin (on the topologically S2 part of the horizon) vanishes. Vanishing of

the horizon area then comes from the vanishing of a one-cycle along the S2 part. This

direction parameterized by φ joins time and radial direction to form a (pinching) AdS3
factor in the near horizon limit. As we explicitly showed the near horizon geometry of all

EVH rings, balanced, unbalanced or dipole-charged, becomes precisely the same geometry,

the one which is also obtained as the near horizon limit of EVH MP black hole with the

same mass as the EVH rings. The AdS3 radius for all these cases becomes ℓ2 = 8M
3π ,

where M is the mass of the EVH black ring/hole.5 This result is of course understandable

5In the unbalanced case there remains a trace of the unbalance factor in the range of coordinate param-

eterizing the pinching direction φ.
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because all these near horizon geometries are 5d vacuum Einstein solutions. (Note that in

the dipole ring case, the dipole charge goes to zero in the near horizon limit of EVH ring.)

And there is a uniqueness theorem for such solutions with SO(2, 2) isometry [33].

For the near-EVH rings, in the near horizon limit the AdS3 factor turns into a BTZ

black hole. The mass and angular momentum of the BTZ exactly captures the deviations

of the mass and angular momenta of the near-EVH black ring from the EVH point. In

other words, these near-EVH excitations survive the near horizon limit. One may view this

fact as the zeroth order evidence in support of the EVH/CFT proposal which states that

all excitations or perturbations around an EVH black hole/ring is governed by a 2d CFT

dual to the AdS3 throat appearing in the near horizon geometry, or dual to the 3d gravity

obtained from reducing the 5d theory over the θψ̂ part of the near horizon geometry.

As is discussed in the literature and we reviewed here, near the collapsing regions of

the black ring parameter space one may always find a new coordinate system where the

ring solution is mapped onto a MP black hole. Moreover, this collapsing region generically

intersects the extremal surface in the parameter space (for example see figure 1(a) and

figure 2). The ring-hole map at these intersections, as expected, then relates an extremal

ring to an extremal hole. On the other hand, we showed that the EVH rings appear around

this collapsing regions. In general near-EVH ring we get a BTZ metric in the near horizon

limit, while around these intersection points/lines we get an extremal BTZ in the near

horizon. Given this picture, EVH rings provide the window that ring-hole transition may

occur. This transition may be traced from the 2d CFT which is proposed to capture the low

energy dynamics of the EVH rings. We hope to study this point further in future works.
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