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    Abstract     Sexual reproduction of brown algae includes isogamy, anisogamy, and 
oogamy. The mechanisms of fertilization events remain largely unknown despite 
the diverse reproduction patterns. It is thought that the fl agella of brown algal repro-
duction cells play crucial roles in not only cellular motility but also signal transduc-
tion in the aquatic habitat. Flagella of brown algae are composed of 9 + 2 axonemes 
and several appendage structures, such as mastigonemes and a parafl agellar body, 
which have close associations with fl agellar function. We observed fl agellar activi-
ties during recognition and fusion of male and female gametes. We also investigated 
fl agellar proteins involved in phototaxis of brown algal motile cells.  
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29.1         Flagellar Structure of Brown Algal Swarmers 

 Stramenopiles, including heterokonts, comprise an independent group of eukary-
otes and are phylogenetically distinct from red and green algae, land plants, and 
animals (Baldauf  2003 ). One of the characteristic features of this group is that they 
have heterogeneous fl agella, one of which is decorated with mastigonemes, tripar-
tite fi ne hairs (van den Hoek et al.  1995 ). Brown algae, such as  Saccharina ,  Undaria , 
and  Sargassum , are a group of heterokonts and the only group in heterokonts having 
a complex multicellular organization. 

 In the life cycle of many brown algae, sporophyte and gametophyte generations 
exist independently, and sexual reproduction (male and female gametes, or sperm 
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and egg) and asexual reproduction (zoospore or tetraspore after meiosis) connect the 
two generations. Swarmers, namely fl agellated motile cells (gametes, sperm, and 
zoospores), have two heterogeneous fl agella (Fig.  29.1a–d ), a long anterior fl agel-
lum (AF) decorated with mastigonemes and a short posterior fl agellum (PF) with a 
basal swollen part called the parafl agellar body, which is composed of crystallized 
materials and electron-dense materials (Green et al.  1989 ; Andersen  2004 ; Fu et al. 
 2012 ). The acronema, which is composed of two central microtubules of axonemes, 
makes the tip of each fl agellum. The AF and PF are laterally inserted into the cell 
body in two opposite directions corresponding to the swimming orientation (O’Kelly 
 1989 ). Swimming force of motile cells of brown algae is produced by the AF, not 
the PF (Fig.  29.1e–r ), because motile sperm of the brown alga  Dictyota  only have an 

  Fig. 29.1    Two heterogeneous fl agella of brown algal motile cells.  (a)  Schematic representation of 
a motile cell.  AF  anterior fl agellum,  Ms  mastigonemes,  PF  posterior fl agellum,  Pfb  parafl agellar 
body.  Arrows  show the acronema, tip of the  AF , and  PF .  (b)  DIC image of a male gamete of 
 Scytosiphon lomentaria .  (c)  SEM image of a male gamete of  S. lomentaria . Note that mastigo-
nemes are only on the  AF .  (d)  TEM image of the AF and PF of  Ectocarpus siliculosus . Note that 
Ms is on the AF and Pfb is on the PF.  (e – r)  High-speed video images (600 frame/s) of free swim-
ming of a  S. lomentaria  male gamete       
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AF (Manton  1959 ), and it is thought that mastigonemes on the AF would be related 
to tractive force (Jahn et al.  1964 ). It has remained unclear how mastigonemes regu-
larly attach only to the AF during fl agellar elongation (Fu et al.  2012 ). The PF of 
brown algal motile cells functions as steering against signals of light (phototaxis) 
and chemicals (chemotaxis) (Geller and Müller  1981 ; Matsunaga et al.  2010 ).

29.2        Phototaxis of Brown Algae and a Putative 
Photoreceptor Protein 

 Phototaxis is widespread among motile cells of the major eukaryotic lineages, and 
a similar mechanism by which phototactic reorientation is complemented is shared 
despite the great diversity of cell types. When considering fertilization of algae liv-
ing in an aquatic environment, several processes, including phototaxis, chemotaxis, 
and recognition, would be critical. Swarmers including gametes and zoospores of 
algae show a strong response to direction of light from the sun. For example, male 
and female gametes of the green alga  Monostroma angicava , which have two equal- 
length fl agella, swim toward the seawater surface after liberation from gametangia, 
showing positive phototaxis (Togashi et al.  1999 ). On the other hand, just after fer-
tilization, motile zygotes having four fl agella derived from male and female gam-
etes show negative phototaxis and swim toward the bottom of the sea. The change 
of phototaxis before and after fertilization is necessary for continuous support of 
successful fertilization, because accumulation of unfertilized male and female gam-
etes at the surface of the sea ensures easy fusion of both gametes. Zygotes settle on 
boulders on the bottom and develop into the next generation by negative phototaxis 
(Togashi et al.  1999 ; Togashi and Cox  2004 ). In the case of brown algae, for exam-
ple, isogamous brown algae  Scyotosiphon lomentaria ,  Colpomenia bullosa , and 
 Ectocarpus siliculosus , freshly liberated male and female gametes show strong 
negative phototaxis, and female gametes settle on the substratum sooner than do 
male gametes and secrete a sexual pheromone that attracts male gametes. Therefore, 
in the case of algal fertilization in an aquatic environment, phototaxis reaction is 
important for dense accumulation of gametes. 

 In phototaxis reaction of motile cells, a specifi c photoreceptor senses the light 
source of restricted wavelength and transduces the signals to downstream molecular 
modules, which will eventually alter the fl agellar beating activity with changing the 
swimming direction (Jekely  2009 ). However, different organisms have evolved 
exclusive strategies in response to light stimuli, for example, employing diverse 
photoreceptors and the corresponding downstream signaling. In the green alga 
 Chlamydomonas reinhardtii , two light-gated cation-channel proteins, channelrho-
dopsin- 1 (ChR1) and ChR2, were identifi ed as photoreceptors regulating phototaxis 
through depolarizing photoelectric currents (Sineshchekov et al.  2002 ; Berthold 
et al.  2008 ). Similar to other types of rhodopsins, both proteins are 7-TM membrane 
proteins and bind retinal as a chromophore. An immunofl uorescence assay indi-
cated that ChR1 was localized near the eyespot, which is part of the chloroplast 
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(Suzuki et al.  2003 ). In the unicellular fl agellate  Euglena gracilis , photoactivated 
adenylyl cyclase (PAC), a fl avoprotein, was shown to be the blue light receptor, 
which binds fl avin adenine dinucleotide (FAD) as a chromophore and localizes to 
the parafl agellar body (Iseki et al.  2002 ; Ntefi dou et al.  2003 ). 

 As another independent eukaryotic group, it has been well known that the PF of 
swarmers of brown algae has the capability to emit green autofl uorescence when 
excited with blue light. Based on the results of spectral analysis, the substance that 
caused the green autofl uorescence was identifi ed as fl avin (Müller et al.  1987 ; 
Kawai  1988 ). Flavin in the PF is widely distributed among chlorophyll  c -containing 
algal species having an eyespot or parafl agellar body (Kawai and Inouye  1989 ; 
Kawai  1992 ). Close associations between the autofl uorescence substance and pres-
ence of an eyespot or parafl agellar body, as well as results of spectral action studies 
on phototaxis of brown algal swarmers (Kawai et al.  1990 ,  1991 ), have suggested 
that the blue light receptor is a fl avoprotein and is likely localized in the PF. However, 
the photoreceptor protein involved in phototaxis of brown algae has not yet been 
identifi ed, although a fl uorescent fl agellar protein homologous to Old Yellow 
enzyme was found in isolated fl agella of  S. lomentaria  (Fujita et al.  2005 ), which 
seems to play roles in general redox reactions rather than light-sensing activities. 

 In our recent fl agellar proteomics studies based on the whole-genome sequence 
of the model brown alga  E. siliculosus  (Cock et al.  2010 ), a putative blue-light 
receptor protein was found in the PF of brown algal swarmers and might have a 
close relationship to phototaxis. Flagella were isolated from swarmers of several 
brown algal species, including  C. bullosa  and  S. lomentaria , by vortexing in fl agel-
lar isolation buffer (30 mM HEPES, 5 mM MgSO 4 , 5 mM EGTA, 25 mM KCl, 1 M 
Sorbitol, pH 7.0). Flagellar proteins were further digested by trypsin and subjected 
to LC-MS/MS analysis, which yielded about 600 proteins of brown algal fl agella. 
Among PF-specifi c proteins that were identifi ed by proteomics analysis, an RGS/
LOV domain-containing protein was found to be a potential photoreceptor. This 
protein contained 1,522 amino-acid residues and the predicted molecular weight 
was 168 kDa. In contrast to known photoreceptors, the protein has a unique domain 
architecture of two RGS (regulator of G-protein signaling) domains and four LOV 
(light, oxygen, and voltage sensing) domains. It is well known that the LOV domain 
is a ubiquitous molecular module capable of binding FMN (fl avin mononucleotide) 
as a chromophore in diverse photoreceptors (Crosson et al.  2003 ; Losi and Gärtner 
 2012 ; Suetsugu and Wada  2013 ). The RGS domain has a key activity in accelerating 
GTP hydrolysis by the G α  subunit; therefore, it is likely that heterotrimeric G pro-
teins may be involved in the downstream signaling of blue-light sensing, which 
eventually modifi es the beating pattern of the PF of swarmers. 

 Although the interactions between inner- and interproteins during phototaxis are 
far from understood, an antibody against the RGS/LOV domain-containing protein 
revealed that this protein is widely distributed in brown algal species. An immuno-
fl uorescence assay confi rmed that this protein is localized throughout the PF with a 
stronger intensity at the parafl agellar body, corresponding to the distribution of 
green autofl uorescence when observed under blue light. In addition, immunoelec-
tron microscopy analysis revealed that the subcellular localization of this protein is 
in the compartment between the fl agellar membrane and axoneme.  
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29.3     Chemotaxis of Brown Algae 

 Regarding sexual pheromones in brown algae, since the fi rst discovery of the 
 pheromone “ectocarpen” in  E. siliculosus  by the German phycologist Dieter 
G. Müller (Müller  1967 ,  1968 ; Müller et al.  1971 ), eleven sexual pheromones, 
including lamoxirene, fucoserraten, and hormosirene, have been reported (Maier 
and Müller  1986 ; Boland  1995 ). These brown algal pheromones are volatile, lipo-
philic, and fragrant and have a low molecular mass with unsaturated C 8  and C 11  
hydrocarbons with biogenetically related structures. Male gametes actively sur-
round the sexual pheromone that female gametes secrete soon after their settlement 
on the substratum (Fig.  29.2 ). Motile female gametes never gather around a settled 
female one. Therefore, it is clear that the pheromone receptor must naturally exist in 
the male gamete, not in the female one. In the case of isogamous brown algae, such 
as  E. siliculosus  and  S. lomentaria , male gametes freely swim in a straight or 
slightly curved track with maximum velocity in seawater without a pheromone 
(Fig.  29.1e–r ), whereas the PF of male gametes has occasional beats and strong lat-
eral bias with the signal of a pheromone (Fig.  29.2h–k ) and, as a result, male gametes 
swim in a characteristic U-turn (Maier and Müller  1986 ). Those authors reported 
chemo-thigmo-klinokinesis, which means that the pheromone has two effects for 
attracting male gametes around settled female gametes: (1) reducing male gamete 
velocity by a thigmotactic response and (2) increasing beating frequency of the PF 
of male gametes in proportion to the pheromone concentration. Unfortunately, the 
pheromone receptor in male gametes has not yet been identifi ed.

   A male gamete attracted to a female gamete by the sexual pheromone shows a 
characteristic behavior in brown algal fertilization, fi rst making contact with the 
surface of the female gamete by using the tip of the long AF (Fig.  29.2a–f ) (Müller 
 1966 ), followed by fusion of both bodies. Therefore, initial recognition and contact 
between male and female gametes is carried out by using the AF of the male gam-
ete. As already mentioned, the AF of gametes and zoospores of brown algae char-
acteristically bears mastigonemes, which may be involved in the contact between 
male and female gametes. High-speed video and high-resolution scanning electron 
microscopy (SEM) reveal the the fusion process of both gametes (Fig.  29.2g–k ).  

29.4     Cytoplasmic Inheritance of Organelles 

 Finally, we briefl y introduce the cytoplasmic inheritance of mitochondria, chloro-
plasts, and centrioles during zygote development of brown algae. Three types of 
sexual reproduction—isogamy, anisogamy, and oogamy—can be observed in brown 
algae, similar to green algae. Cytoplasmic inheritance of mitochondria, chloro-
plasts, and centrioles is restrictively regulated in each pattern of sexual reproduction 
(Motomura et al.  2010 ). In oogamy, mitochondria and chloroplasts of sperm are 
selectively digested in the lysosome after fertilization (Motomura  1990 ). In the 
case of isogamy, chloroplasts are biparentally inherited, whereas mitochondria 
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(or mitochondrial DNA) derived from the female gamete only remain during zygote 
development (Nagasato and Motomura  2002 ; Peters et al.  2004 ; Kato et al.  2006 ; 
Kimura et al.  2010 ). Similar to the paternal inheritance of centrioles in animal fer-
tilization (Schatten  1994 ), centrioles in zygotes are defi nitely derived from the male 
gamete regardless of the sexual reproduction pattern (Nagasato  2005 ). In isogamous 
 S. lomentaria , degeneration of the maternal centrioles was found to start 1 h after 
fertilization with degradation of triplet MTs from the distal end, and in a 2-h-old 
zygote, there was no trace of the maternal centrioles ultrastructurally (Nagasato and 
Motomura  2004 ).  

  Fig. 29.2    Isogamous fertilization of  Scytosiphon lomentaria .  (a – f)  Process of fertilization 
between male ( M ) and female ( F ) gametes. Female gametes settle on the substratum and then 
release a pheromone, by which male gametes are attracted. The AF of the male gamete ( arrow  in 
 b ,  c ) attaches to the cell surface of the female gamete with the fl agellar tip. Cell fusion starts, and 
then the PF ( arrowheads  in  e ,  f ) of the male gamete is withdrawn. The zygote becomes a spherical 
shape within a few minutes.  (g)  SEM image. Three male gametes gather around two female gam-
etes.  (h – k)  High-speed video images. Note that the PF of male gamete bends       
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29.5     Perspectives 

 The fl agellar structure is the most important character for defi ning the stramenopile 
(Heterokontae) in the eukaryote groups. Brown algal swarmers have a long AF bear-
ing fi ne hairs, mastigonemes, and a short PF having the basal swelling, the parabasal 
body. With these morphological differences, their behaviors in gamete swimming 
are also characteristic. During the fertilization process, these heterogeneous fl agella 
play crucial roles in phototaxis, chemotaxis, and gamete recognition. Our pro-
teomics analysis on fl agella of the brown algae identifi ed fi rst about 600 fl agellar 
proteins, and AF-specifi c and PF-specifi c proteins were found. A candidate protein 
of the new blue-light receptor, RGS/LOV protein, working in phototaxis of gametes, 
could be also detected in PF-specifi c proteins. These molecular approaches will 
expand a new insight for understanding the function of fl agella of male and female 
gametes of the brown algae during fertilization, including the pheromone receptor 
that may exist in fl agella of male gametes and the molecular nature of the fl agellar 
tip of male gametes for the fi rst attachment to the surface of female gametes.     
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