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Abstract The mechanism of the initial inflationary sce-
nario of the Universe and of its late-time acceleration can
be described by assuming the existence of some gravitation-
ally coupled scalar fields φ, with the inflaton field generat-
ing inflation and the quintessence field being responsible for
the late accelerated expansion. Various inflationary and late-
time accelerated scenarios are distinguished by the choice
of an effective self-interaction potential V (φ), which sim-
ulates a temporarily non-vanishing cosmological term. In
this work, we present a new formalism for the analysis of
scalar fields in flat isotropic and homogeneous cosmologi-
cal models. The basic evolution equation of the models can
be reduced to a first-order non-linear differential equation.
Approximate solutions of this equation can be constructed in
the limiting cases of the scalar-field kinetic energy and poten-
tial energy dominance, respectively, as well as in the inter-
mediate regime. Moreover, we present several new acceler-
ating and decelerating exact cosmological solutions, based
on the exact integration of the basic evolution equation for
scalar-field cosmologies. More specifically, exact solutions
are obtained for exponential, generalized cosine hyperbolic,
and power-law potentials, respectively. Cosmological mod-
els with power-law scalar field potentials are also analyzed
in detail.

1 Introduction

Scalar fields are assumed to play a fundamental role in cos-
mology, where one of the first major mechanisms for which
scalar fields are thought to be responsible is the inflation-
ary scenario [1,2]. Although originally inflationary mod-
els were proposed in cosmology to provide solutions to the
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issues of the singularity, flat space, horizon, homogeneity
problems and absence of magnetic monopoles, as well as
to the problem of large numbers of particles [3,4], by far
the most useful property of inflation is that it generates both
density perturbations and gravitational waves. These can be
measured in a variety of different ways including the anal-
ysis of microwave background anisotropies, velocity flows
in the Universe, clustering of galaxies and the abundance of
gravitationally bound objects of various types [4]. The pos-
sibility that a canonical scalar field with a potential, dubbed
quintessence, may be responsible for the late-time cosmic
acceleration, was also explored [5]. Contrary to the cosmo-
logical constant, the quintessence equation of state changes
dynamically with time [6]. In fact, a plethora of exotic fluids
have been proposed to explain the accelerated expansion of
the Universe, which include amongst many others k-essence
models, in which the late-time can be driven by the kinetic
energy of the scalar field [7–11]; coupled models where dark
energy interacts with dark matter [12–22]; and unified mod-
els of dark matter and dark energy [23–25].

In a wide range of inflationary models the underlying
dynamics is that of a single scalar field, with the inflaton
rolling in some underlying potential [1–4]. In order to study
the inflationary dynamics, the usual strategy is an expansion
in the deviation from the scale invariance, formally expressed
as the slow-roll approximation, which arises in two separate
contexts. The first is in simplifying the classical inflationary
dynamics of expansion and the lowest-order approximation
ignores the contribution of the kinetic energy of the infla-
tion to the expansion rate. The second is in the calculation
of the perturbation spectra, where the standard expressions
are valid to lower order in the slow roll approximation [26].
Exact inflationary solutions have also been found for a large
number of inflationary potentials, and the respective poten-
tials allowing a graceful exit have been classified [27]. In
fact, many quintessential potentials have been proposed in
the literature, which may be crudely classified as ‘freezing’
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models and ‘thawing’ models [28]. Note that in the former
class [29–32], the field rolls along the potential in the past,
and the movement is gradually slowing down as the system
enters the phase of cosmic acceleration. In the latter, ‘thaw-
ing’ models, the scalar field, possessing a mass of mφ , has
been frozen by the Hubble friction term H φ̇ until recently,
and eventually it starts to evolve as H drops below mφ [33–
37]. Another interesting model involves a double exponential
potential, which requires that the potential becomes shallow
or has a minimum in order to slow the movement of the scalar
field [38]; the latter behavior has also been exhibited by more
general potentials [39].

More recently, the released Planck data of the 2.7 full sky
survey [40,41] have shown a number of novel and unex-
pected features, whose explanation will certainly require
a deep change in our standard understanding of the Uni-
verse. These recent observations have measured the Cosmic
Microwave Background to an unprecedented precision. Even
though generally the Planck data confirm the foundations of
the�CDM model, the observational data show some tension
between the fundamental principle of the model and obser-
vations. For example, the Planck data combined with the
WMAP polarization data show that the index of the power
spectrum is given by ns = 0.9603±0.0073 [40], which rules
out the exact scale-invariance (ns = 1) at more than 5σ level.
Hence Planck data ‘severely limits the extensions of the sim-
plest paradigm’ [40]. On the other hand Planck data do not
require the consideration of inflationary models beyond the
simplest canonical single-field scenarios [42]. More specifi-
cally, a chaotic inflationary model, based on a quartic poten-
tial, is highly disfavored by the observations. The inflationary
model based on a quadratic potential is marginally consistent
with the observation at 2σ level, and models with a linear or
fractional power potential lie outside the 1σ , but within the
2σ allowed region [40,43].

The observations of high redshift supernovae and the
WMAP/Planck data, showing that the location of the first
acoustic peak in the power spectrum of the microwave back-
ground radiation is consistent with the inflationary predic-
tion � = 1, have provided us with compelling evidence
for a net equation of state of the cosmic fluid lying in the
range −1 ≤ w = p/ρ < −1/3 [44]. To explain these
observations, two dark components are invoked: pressure-
less cold dark matter (CDM) and dark energy (DE) with
negative pressure. CDM contributes �m ∼ 0.3 [41], and
it is mainly motivated by the theoretical interpretation of
the galactic rotation curves and large scale structure forma-
tion. DE is assumed to provide us with �DE ∼ 0.7, and
it is responsible for the acceleration of the distant type Ia
supernovae [44]. There are a huge number of proposed can-
didates for DE (see, for instance, [45,46]). One possibil-
ity is cosmologies based on a mixture of cold dark mat-
ter and quintessence, a slowly varying, spatially inhomo-

geneous component [47]. An example of implementation
of the idea of quintessence is the suggestion that it is the
energy associated with a scalar field Q, with a self-interaction
potential V (Q). If the potential energy density is greater
than the kinetic one, then the pressure p = Q̇2/2 − V (Q)
associated with the Q-field is negative. Quintessential cos-
mological models have been intensively investigated in the
physical literature (for a recent review see [48]). The inter-
action between dark energy and dark matter in the frame-
work of irreversible thermodynamics of open systems with
matter creation/annihilation has also recently been explored
[49], where dark energy and dark matter are considered as
an interacting two component (scalar-field and ‘ordinary’
dark matter) cosmological fluid in a homogeneous spatially
flat and isotropic Friedmann–Robertson–Walker (FRW) Uni-
verse. The possibility of cosmological anisotropy from non-
comoving dark matter and dark energy have also been pro-
posed [50].

Models with nonstandard scalar fields, such as phantom
scalar fields and Galileons, which can have bounce solutions
and dark energy solutions withw < −1 have also been exten-
sively investigated in the literature. In the Galileon theory one
imposes an internal Galilean invariance, under which the gra-
dient of the relativistic scalar field π , with peculiar deriva-
tive self-interactions, and universally coupled to matter, is
shifted by a constant term [51]. The Galilean symmetry con-
strains the structure of the Lagrangian of the scalar field so
that in four dimensions only five terms that can yield sizable
non-linearities without introducing ghosts do exist. Different
extensions of the Galileon models were considered in [52–
55]. In [56] a new class of inflationary models was proposed,
in which the standard model Higgs boson can act as an infla-
ton due to Galileon-like non-linear derivative interaction. The
generated primordial density perturbation is consistent with
the present observational data. Generalized Galileons as a
framework to develop the most general single-field inflation
models, i.e., Generalized G-inflation, were studied in [57].
As special cases this model contains k-inflation, extended
inflation, and new Higgs inflation. The background and per-
turbation evolution in this model were investigated, and the
most general quadratic actions for tensor and scalar cos-
mological perturbations was obtained. The stability criteria
and the power spectra of the primordial fluctuations were
also presented. For a recent review of scalar-field theories
with second-derivative Lagrangians, whose field equations
are second order, see [58]. Some of these theories admit solu-
tions violating the null energy condition and have no obvious
pathologies.

In order to explain the recent acceleration of the Universe,
in which w < −1, scalar fields φ that are minimally cou-
pled to gravity with a negative kinetic energy, and which
are known as ‘phantom fields’, have been introduced in [59].
The energy density and pressure of a phantom scalar field are
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given by ρφ = −φ̇2/2 + V (φ) and pφ = −φ̇2/2 − V (φ),
respectively. The properties of phantom cosmological mod-
els have been investigated in [60–65]. The phenomenon of
the phantom divide line crossing in the scalar-field models
with cusped potentials was considered in [66]. Cosmological
observations show that at some moment in the past the value
of the equation of state parameter w has crossed the value
w = −1, corresponding to the cosmological constant. Such
a phenomenon has received the name of phantom divide line
crossing [67]. A minimally coupled scalar field, describing
non-phantom dark energy, has a kinetic term with the posi-
tive sign. Therefore, in order to describe the phantom divide
line crossing, it seems natural to use two scalar fields, a phan-
tom field with the negative kinetic term, and a standard one
[66]. Another possible way of explaining the phantom divide
line crossing is to use a scalar field nonminimally coupled to
gravity [66].

The mathematical properties of the Friedmann–Robert-
son–Walker (FRW) cosmological models with a scalar field
as matter source have also been intensively investigated. In
[68,69] a simple way of reducing the system of the gravi-
tational field equations to one first-order equation was pro-
posed, namely, to the Hamilton–Jacobi-like equation for the
Hubble parameter Hconsidered as a function of the scalar
field φ, 3H2(φ) = V (φ) + 2(dH/dφ)2. The gravitational
collapse and the dynamical properties of scalar-field models
were considered in [70–73]. The solution of the field equa-
tions for a cosine hyperbolic type scalar field potential for
the case of an equation of state equivalent to the nonrela-
tivistic matter plus a cosmological term was derived in [74].
The relation between the inflationary potential and the spec-
tra of density (scalar) perturbations and gravitational waves
(tensor perturbations) produced during inflation, and the pos-
sibility of reconstructing the inflaton potential from observa-
tions, was considered in [75]. If inflation passes a consistency
test, one can use observational information to constrain the
inflationary potential. The key point in the reconstruction
procedure is that the Hubble parameter is considered as a
function of the scalar field, and this allows one to recon-
struct the scalar-field potential and determine the dynam-
ics of the field itself, without a priori knowing the Hubble
parameter as a function of time or of the scale factor [76,77].
General solutions for flat Friedmann Universes filled with
a scalar field in induced gravity models and models includ-
ing the Hilbert–Einstein curvature term plus a scalar field
conformally coupled to gravity were also derived in [78].
The corresponding models are connected with minimally
coupled solutions through the combination of a conformal
transformation and a transformation of the scalar field. The
explicit forms of the self-interaction potentials for six exactly
solvable models was also obtained. In [79], a phase-plane
analysis was performed of the complete dynamical system
corresponding to a flat FRW cosmological models with a

perfect fluid and a self-interacting scalar field and it was
shown that every positive and monotonous potential which
is asymptotically exponential yields a scaling solution as a
global attractor. The dynamics of models of warm inflation
with general dissipative effects was also extensively analyzed
[80,81], and a mechanism that generates the exact solutions
of scalar-field cosmologies in a unified way was also inves-
tigated.

The connections between the Korteweg–de Vries equa-
tion and inflationary cosmological models were explored
in [82]. The relation between the non-linear Schrödinger
equation and the cosmological Friedmann equations for a
spatially flat and isotropic Universe in the presence of a
self-interacting scalar field has been considered in [83]. A
Hamiltonian formalism for the study of scalar fields cou-
pled to gravity in a cosmological background was devel-
oped in [84]. A number of integrable one-scalar spatially
flat cosmologies, which play a natural role in the inflation-
ary scenarios, were studied in [85]. Systems with potentials
involving combinations of exponential functions and simi-
lar non-integrable cases were also studied in detail. It was
shown that the scalar field emerges from the initial singular-
ity while climbing up sufficiently steep exponential poten-
tials (‘climbing phenomenon’), and that it inevitably col-
lapses in a Big Crunch, whenever the scalar field tries to
settle at the negative extremals of the potential. The question
whether the integrable one scalar-field cosmologies can be
embedded as consistent one-field truncations into Extended
Gauged Supergravity or in N = 1 supergravity gauged by a
superpotential without the use of D-terms was considered in
[86].

Therefore, the theoretical investigation of scalar-field
models is an essential task in cosmology. It is the purpose
of the present paper to consider a systematic analysis of
scalar-field cosmologies, and to derive a basic evolution
equation describing flat, isotropic and homogeneous scalar-
field cosmological models. The evolution equation is a first-
order, strongly non-linear differential equation, which, how-
ever, allows the possibility of considering analytical solu-
tions in both the asymptotic limits of scalar-field kinetic or
potential energy dominance and in the intermediate domain,
respectively. Moreover, a large number of exact solutions
can also be obtained. The cases of the exponential, hyper-
bolic cosine, and power-law potentials are explicitly consid-
ered.

The present paper is organized as follows. The basic evo-
lution equation for scalar-field cosmologies with an arbitrary
self-interaction potential is derived in Sect. 2. Several classes
of exact scalar field solutions are considered in Sects. 3 and
4. The general formalism is used in Sect. 5 to obtain some
approximate solutions of the gravitational field equations. In
Sect. 6 we consider in detail the case of the simple power-law
potential. We discuss and conclude our results in Sect. 7.
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2 Scalar-field cosmologies with arbitrary
self-interaction potential

Let us consider a rather general class of scalar-field models,
minimally coupled to the gravitational field, for which the
Lagrangian density in the Einstein frame reads

L = 1

2κ

√|g| {R + κ
[
gμν

(
∂μφ

)
(∂νφ)− 2V (φ)

]}
, (1)

where R is the curvature scalar, φ is the scalar field, V (φ) is
the self-interaction potential and κ = 8πG/c4 is the gravi-
tational coupling constant, respectively. In the following, we
use natural units with c = 8πG = h̄ = 1, and we adopt as
our signature for the metric (+1,−1,−1,−1), as is common
in particle physics.

For a flat FRW scalar field dominated Universe with the
line element

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (2)

where a is the scale factor, the evolution of a cosmological
model is determined by the system of the field equations

3H2 = ρφ = φ̇2

2
+ V (φ), (3)

2Ḣ + 3H2 = −pφ = − φ̇
2

2
+ V (φ), (4)

and the evolution equation for the scalar field,

φ̈ + 3H φ̇ + V ′(φ) = 0, (5)

where H = ȧ/a > 0 is the Hubble expansion rate func-
tion, the overdot denotes the derivative with respect to the
time-coordinate t , while the prime denotes the derivative
with respect to the scalar field φ, respectively. In the follow-
ing we will restrict our study to expansionary cosmological
models, which satisfy the condition that the scale factor is
a monotonically increasing function of time. For expanding
cosmological models the condition H > 0 is always satis-
fied. Cosmological models with H < 0 correspond to col-
lapsing scalar-field configurations, in which the scale factor
is a monotonically decreasing function of time.

By adding Eqs. (3) and (4), we obtain the Riccati type
equation satisfied by H of the form

Ḣ = V − 3H2. (6)

By substituting the Hubble function from Eq. (3) into Eq. (5),
we obtain the basic equation describing the scalar field evo-
lution as

φ̈ + √
3

√
φ̇2

2
+ V (φ) φ̇ + dV

dφ
= 0. (7)

Now, in order to deduce a basic equation describing the
dynamics of the scalar fields in the flat FRW Universe, which
will be useful throughout this work, we consider several

transformations. First, by defining a new function f (φ) so
that φ̇ = √

f (φ), and changing the independent variable
from t to φ, Eq. (7) becomes

1

2

d f (φ)

dφ
+ √

3

√
f (φ)

2
+ V (φ)

√
f (φ)+ V ′(φ) = 0, (8)

which may be reorganized into the following form:

1
2

d f (φ)
dφ + V ′(φ)

2
√

f (φ)
2 + V (φ)

+
√

3

2

√
f (φ) = 0. (9)

Next, by introducing a new function F(φ)=√
f (φ)/2+V (φ),

so that f (φ) = 2[F2(φ)− V (φ)], Eq. (9) takes the form

dF(φ)

dφ
+
√

3

2

√
V (φ)

√[
F(φ)√
V (φ)

]2

− 1 = 0. (10)

Thus, we now introduce the function u(φ) defined as F(φ) =
u(φ)

√
V (φ), which transforms Eq. (10) to

1√
u2 − 1

du

dφ
+ 1

2V

dV

dφ

u√
u2 − 1

+
√

3

2
= 0. (11)

With the help of the transformation u(φ) = cosh G(φ), we
obtain the basic equation describing the dynamics of the
scalar fields in the flat FRW Universe as

dG

dφ
+ 1

2V

dV

dφ
coth G +

√
3

2
= 0. (12)

For f we obtain f (φ) = 2V (φ) sinh2 G(φ), leading to φ̇ =√
2V (φ) sinh G(φ). As a function of time G satisfies the

equation

dG

dt
= −√2V (φ) sinh G

[√
3

2
+ 1

2V (φ)

dV

dφ
coth G

]

.

(13)

Note that the function G can be obtained from the scalar field
with the use of the equation

G(φ) = arccosh

√

1 + φ̇2

2V (φ)
. (14)

Furthermore, as a function of the scalar field, the scale factor
a is given by the equation

1

a(φ)

da(φ)

dφ
= 1√

6
coth G(φ). (15)

or alternatively, as a function of G, the latter scale factor can
be obtained from

1

a

da

dG
= − 1√

6

coth G
√

3
2 + 1

2V
dV
dφ coth G

. (16)
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An important observational quantity, the deceleration param-
eter q, can also be expressed in the form

q(φ) = d

dt

(
1

H

)
− 1

=
√

6
[
F2(φ)− V (φ)

] d

dφ
[F(φ)]−1 − 1. (17)

As a function of the potential V and of G, the deceleration
parameter is given by

q(φ) = √6V (φ) sinh G(φ)
d

dφ

[
1√

V (φ) cosh G(φ)

]
− 1.

(18)

By inserting Eq. (12) into Eq. (18), the latter yields the result

q(φ) = 3 tanh2 G(φ)− 1, (19)

and by substituting Eq. (14) into Eq. (19), yields the decel-
eration parameter in the following useful form:

q(φ) = 2 − 3

(
1 + φ̇2

2V (φ)

)−1

, (20)

respectively. If the potential energy dominates the kinetic
energy of the scalar field, V (φ) � φ̇2/2, from Eq. (20) it
follows that q → −1, and it is important to note that this
property is independent of the form of the scalar-field self-
interaction potential V (φ).

By using the new variable f (φ) and F(φ) from Eqs. (3)
and (4) we obtain

Ḣ = − φ̇
2

2
= − f (φ)

2
(21)

and

3H2 = F2(φ), (22)

respectively. Equations (21) and (22) show that the functions
f (φ) and F(φ) are related to the Hubble function and its
time derivative. A similar approach, in which the Hubble
function is assumed to be a function of the scalar field φ, was
considered in [69].

3 Exact scalar-field models

As mentioned in the Introduction, scalar fields play a cen-
tral role in current models of the early Universe. The self-
interaction potential energy density of such a field is undi-
luted by the expansion of the Universe, and hence it can
behave as an effective cosmological constant, driving a
period of inflation, or of a late-time acceleration. The evolu-
tion of the Universe is strongly dependent upon the specific
form of the scalar-field potential V (φ). A common form for
the self-interaction potential is the exponential type poten-
tial. Note that Eq. (12) can be integrated immediately in the

case of potentials satisfying the condition V ′/V = constant.
Therefore, for this class of potentials the general solution
of the gravitational field equations can be obtained in an
exact analytical form. Other classes of exact solutions can
be constructed by assuming that V ′/V is some function of
G, i.e., V ′/V = f (G). For a large number of choices of the
function f (G), the first-order evolution equation, given by
Eq. (12), can be solved exactly, and the solution correspond-
ing to a given potential can be obtained in an exact form. In
the following, we consider some exact analytical classes of
scalar-field cosmologies.

3.1 The exponential potential scalar field

If V ′/V is a constant, that is, V ′/V = √
6α0 = constant,

the scalar-field self-interaction potential is of the exponential
form,

V = V0 exp
(√

6α0φ
)
, (23)

where V0 is an arbitrary constant of integration. The cos-
mological behavior of the Universe filled with a scalar field,
with a Liouville-type exponential potential, has been exten-
sively investigated in the physical literature for both homo-
geneous and inhomogeneous scalar fields [87–94]. In par-
ticular, an exponential potential arises in four-dimensional
effective Kaluza–Klein type theories from compactification
of the higher-dimensional supergravity or superstring theo-
ries [95]. In string or Kaluza–Klein theories the moduli fields
associated with the geometry of the extra-dimensions may
have effective exponential potentials due to the curvature of
the internal spaces or to the interaction of the moduli with
form fields on the internal spaces. Exponential potentials can
also arise due to non-perturbative effects such as gaugino
condensation [96]. The integrability of the gravitational field
equations for exponential type scalar potentials was consid-
ered in [88,97–105].

Taking into account Eq. (23), Eq. (12) takes the form

dG

dφ
+
√

3

2
(α0 coth G + 1) = 0. (24)

We analyze below several cases of interest.

3.1.1 The case α0 �= ±1

For α0 �= ±1, Eq. (24) gives immediately
√

3

2
[φ(G)− φ0] = G − α0 ln |sinh G + α0 cosh G|

α2
0 − 1

, (25)

where φ0 is an arbitrary constant of integration. The time
dependence of the physical parameters can be obtained from
Eq. (13) as
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t (G)− t0 = − 1√
3V0

∫
dG

e
√

3/2α0φ (sinh G + α0 cosh G)
.

(26)

With the use of Eq. (25), we obtain the following integral
representation for the time t :

t (G)− t0 = −e−√
3/2α0φ0

√
3V0

×
∫

e
[
α0/
(
1−α2

0

)]
G (sinh G + α0 cosh G)1/

(
α2

0−1
)

dG,

(27)

where t0 is an arbitrary constant of integration. Thus,
Eqs. (26) and (27) give a parametric representation of the
time evolution of the scalar field φ with an exponential type
self-interaction potential, with G taken as a parameter. For
the scale factor, we obtain

a(G) = a0e
[
α0/3

(
1−α2

0

)]
G (sinh G + α0 cosh G)1/3

(
α2

0−1
)
,

(28)

where a0 is an arbitrary constant of integration, while the
deceleration parameter is given by

q(G) = 3 tanh2 G − 1. (29)

The time integral given by Eq. (27) can be obtained in an exact
form for some particular values of α0. Thus, if α0 = ±√

2,
we have

t±(G)− t±0 = −e
∓
(√

2G+√
3φ0

)

√
3V0

[
3 cosh G ± 2

√
2 sinh G

]
.

(30)

For α0 = ±√
3/2 we obtain

t±(G)− t±0 = ± 1

24
√

V0
e
∓
(√

6G+ 3φ0
2

)

×
[√

2 + 27
√

2 cosh(2G)± 22
√

3 sinh(2G)
]
, (31)

while for α0 = ±2/
√

3 we find

t±(G)− t±0 = 1

396
√

3V0
e
∓
(

2
√

3G+√
2φ0

){
45 cosh G

+1067 cosh(3G)± 8
√

3 [3 sinh G + 77 sinh(3G)]
}
.

(32)

Therefore, in these cases the exact solution of the gravita-
tional field equations in the presence of a scalar field with
exponential potential can be obtained in an exact parametric
form, and there is no need to resort to numerical integration.

A particular solution of the field equations corresponds
to the case G(φ) = G0 = constant. In this case Eq. (24) is
identically satisfied, with G0 given by

G0 = arccoth

(
− 1

α0

)
= 1

2
ln

∣∣∣∣
1 − α0

1 + α0

∣∣∣∣ , 0 < |α0| < 1.

(33)

From Eq. (15) it follows that the scale factor can be obtained
as a function of the scalar field as

a = a0e−φ/√6α0 , (34)

while the time variation of the scalar field is determined from
Eq. (14) by the equation

φ̇ = ±√2V0 sinh (G0) e
√

3/2α0φ, (35)

with the general solution given by

e−√
3/2α0φ = ±√3V0α0 sinh (G0) (t0 − t), (36)

where t0 is an arbitrary integration constant. With the help of
Eq. (34) we obtain the scale factor in the form

a(t) = a0

[
±√3V0α0 sinh (G0) (t0 − t)

] 1
3α2

0 . (37)

The time variation of the scalar-field potential is given by

V (t) = V0

3V0α
2
0 sinh2 (G0)

1

(t − t0)2

=
(

1 − α2
0

3α4
0

)
1

(t − t0)2
= V0

(t − t0)2
, (38)

with the constants V0, α0 and G0 satisfying the consistency
condition

3V0α
2
0 sinh2 (G0) = 1, (39)

which follows immediately from the comparison of the sec-
ond and the last term in Eq. (38).

Simple power-law solutions for cosmological models with
scalar fields with exponential potentials have been obtained,
and studied, in [100].

The time variations of the scale factor, scalar field, scalar
field potential, and deceleration parameter for the exponential
potential scalar field filled Universe are represented, for dif-
ferent values of α0, in Figs. 1, 2. For the considered range of
the parameter α0, the scale factor is a monotonically increas-
ing function of time, and therefore the solution represents an
expanding Universe. The Universe starts its evolution from
a decelerating phase, with q > 0, but after a finite interval
it enters in an accelerated era, with q < 0. In the large time
limit t → ∞, as can be seen immediately from Eq. (25), for
the chosen values of the parameters, the scalar field φ is an
increasing function of time, becoming a constant in the large
time limit, as well as the scalar field potential. In the limit of
large times the Universe enters a de Sitter type accelerated
phase, with q = −1.
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Fig. 1 Depicted is the time variation of the scale factor (in arbitrary
units), in the left plot, and the time variation of the cosmological scalar
field, in the right plot, with an exponential potential for different values
of α0: α0 = 1.5 (solid curve), α0 = 2.5 (dotted curve), α0 = 3.5 (short

dashed curve), α0 = 4.5 (dashed curve), and α0 = 5.5 (long dashed
curve), respectively. The arbitrary integration constants φ0 and V0 have
been normalized so that exp(−√

3/2α0φ0) = √
3V0
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Fig. 2 Plots of the time variation of the exponential scalar-field poten-
tial, depicted in the left figure, and the time variation of the deceleration
parameter of the Universe filled with an exponential potential scalar
field, depicted in the right figure, for different values of α0: α0 = 1.5

(solid curve), α0 = 2.5 (dotted curve), α0 = 3.5 (short dashed curve),
α0 = 4.5 (dashed curve), and α0 = 5.5 (long dashed curve), respec-
tively. The arbitrary integration constants φ0 and V0 have been normal-
ized so that exp(−√

3/2α0φ0) = √
3V0

3.1.2 The case α0 = ±1

In the specific case of α0 = ±1, from Eq. (24) we obtain the
following dependence of the scalar field on G:

√
24
[
φ(G)− φ+

0

] = −e−2G − 2G, α0 = +1, (40)

and

√
24
[
φ(G)− φ−

0

]= ln

∣∣∣∣
coth G − 1

coth G + 1

∣∣∣∣+ e2G − 1, α0 =−1,

(41)

respectively, where φ+
0 and φ−

0 are arbitrary constants of
integration. For the time dependence of the cosmological
model we obtain the integral representations

t (G)− t+0 =− 1√
3V0

∫
e−√

3/2φ

sinh G+cosh G
dG, α0 =+1,

(42)

and

t (G)− t−0 =− 1√
3V0

∫
e
√

3/2φ

sinh G − cosh G
dG, α0 =−1,

(43)

respectively, where t+0 and t−0 are arbitrary constants of inte-
gration, giving the explicit dependence of the physical time
on the parameter G as

t (G)− t+0 =−e−√
3/2φ+

0√
3V0

∫
exp

[
(1/4)

(
e−2G +2G

)]

sinh G+cosh G
dG,

α0 = +1, (44)
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Fig. 3 Depicted is the variation of the generalized hyperbolic cosine
scalar-field potential as a function of φ, in the left plot, and as the varia-
tion in time, in the right plot, for different values of α1: α1 = 0.1 (solid

curve), α1 = 0.15 (dotted curve), α1 = 0.20 (short dashed curve),
α1 = 0.25 (dashed curve), and α1 = 0.30 (long dashed curve), respec-
tively

and

t (G)− t−0 = −e
√

3/2φ−
0√

3V0

×
∫

[(coth G−1)/(coth G+1)]1/4 exp
[
(1/4)

(
e2G −1

)]

sinh G − cosh G
dG,

α0 = −1, (45)

respectively. The parametric dependence of the scale factor
is given by

a(G) = a+
0 exp

[
1

12

(
2G − e−2G

)]
, α0 = +1, (46)

and

a(G) = a−
0 exp

[
1

12

(
e2G + 2G

)]
, α0 = −1, (47)

respectively, where a+
0 and a−

0 are arbitrary constants of inte-
gration. The deceleration parameter is given in parametric
form by Eq. (29).

3.2 Generalized hyperbolic cosine type scalar-field
potentials

As a second example of an exact integrability of the evolution
equation, given by Eq. (12), we consider the case in which
the scalar-field potential can be represented as a function of
G in the form

1

2V

dV

dφ
=
√

3

2
α1 tanh G, (48)

where α1 is an arbitrary constant. With this choice, the evo-
lution equation takes the simple form

dG

dφ
=
√

3

2
(1 + α1), (49)

with the general solution given by

G (φ) =
√

3

2
(1 + α1) (φ − φ0) , (50)

where φ0 is an arbitrary constant of integration. With the use
of this form of G, we immediately obtain the self-interaction
potential of the scalar field as

V (φ) = V0 cosh
2α1

1+α1

[√
3

2
(1 + α1) (φ − φ0)

]

. (51)

The time dependence of the scalar field can be obtained in a
parametric form as

t − t0 = 1√
2V0

×
∫

dφ

cosh
α1

1+α1

[√
3
2 (1 + α1) (φ − φ0)

]
sinh

[√
3
2 (1 + α1) (φ − φ0)

] .

(52)

Finally, the scale factor is given by

a = a0 sinh
1

3(1+α1)

[√
3

2
(1 + α1) (φ − φ0)

]

, (53)

while the deceleration parameter is expressed as

q = 3 tanh2

[√
3

2
(1 + α1) (φ − φ0)

]

− 1. (54)

Hence, the exact solution of the field equations for a hyper-
bolic cosine type scalar-field potential can be obtained in
an exact parametric form. The variations of the scalar-field
potential as a function of φ and t , respectively, of the scale
factor of the Universe, and of the deceleration parameter, are
represented, for different values of α1, in Figs. 3, 4, respec-
tively.
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Fig. 4 Depicted is the time variation of the scale factor, in the left plot,
and of the deceleration parameter, in the right plot, of the Universe filled
with a scalar field with a generalized hyperbolic cosine self-interaction

potential for different values of α1: α1 = 0.1 (solid curve), α1 = 0.15
(dotted curve), α1 = 0.20 (short dashed curve), α1 = 0.25 (dashed
curve), and α1 = 0.30 (long dashed curve), respectively

In all of the considered models the Universe shows an
expansionary, accelerated behavior, starting with an initial
value q = −1 of the deceleration parameter. The scalar-field
potential is increasing in time, leading, in the long time limit,
to accelerated expansions, with q > −1.

3.3 Power-law type scalar-field potential

A simple solution of the gravitational field equations for
a power-law type scalar-field potential can be obtained by
assuming for the function G the following form:

G = arccoth

(√
3

2

φ

α2

)

, α2 = constant. (55)

With this choice of G, then Eq. (12) immediately provides
us with a scalar-field potential given by

V (φ) = V0

(
φ

α2

)−2(α2+1)
[

3

2

(
φ

α2

)2

− 1

]

, (56)

where V0 is an arbitrary constant of integration. The time
dependence of the scalar field is given by a simple power
law,

φ(t)

α2
=
[√

2V0 (α2 + 2)

α2

] 1
α2+2

(t − t0)
1

α2+2 . (57)

The scale factor can be obtained from Eq. (15), da/dφ =
[(1/√6) coth G]a = (φ/2α2)a, and has an explicit expo-
nential dependence on the scalar field and the time, namely,

a = a0 exp

(
φ2

4α2

)

= a0 exp

⎧
⎨

⎩
1

4α2

[
(α2 + 2)

√
2V0

α2

] 2
α2+2

(t − t0)
2

α2+2

⎫
⎬

⎭
,

(58)

with a0 an arbitrary constant of integration. The deceleration
parameter is given by

q = 2

(
φ

α2

)−2

− 1

= 2

[√
2V0 (α2 + 2)

α2

]− 2
α2+2

(t − t0)
− 2
α2+2 − 1. (59)

4 Further integrability cases for scalar-field cosmologies

In the present section, we will consider several general inte-
grability cases of Eqs. (3) and (5), describing the dynamics of
a scalar field filled homogeneous and isotropic space-time.
By introducing a new set of variables, the basic equation
(12) can be separated into two ordinary first-order differen-
tial equations. The resulting compatibility condition can be
integrated exactly for two different forms of the scalar field
potential, thus leading to some exactly integrable classes of
the field equations.

4.1 The general integrability condition for the field
equations

We rewrite the hyperbolic function coth G = (1 + e−2G)/

(1−e−2G) in the form coth G = (1+w2)/(1−w2), where we
have introduced a new function w defined as w = e−G . By
substituting coth G = (1 +w2)/(1 −w2),−(1/w)(dw/dφ)
= dG/dφ into Eq. (12), and by denoting S(φ) = −d ln

∣∣∣
√

V
∣∣∣

/dφ and α3 = −√
3/2, then Eq. (12) takes the form

dw

dφ
+ [α3+S (φ)]w = 1

3

dw3

dφ
+[α3−S (φ)]w3 = M (φ),

(60)
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where we have introduced a new separation function M(φ).
Therefore, we have obtained two linear differential equations
for w and w3, given by

dw

dφ
+ [α3 + S (φ)]w = M (φ), (61)

and

dw3

dφ
+ 3 [α3 − S (φ)]w3 = 3M (φ), (62)

respectively. Equation (61) can be integrated to provide us
with

w = √
V e−α3φ

[
C0 +

∫
M (φ) eα3φ

√
V

dφ

]
, (63)

where C0 is an arbitrary constant of integration. Equation (62)
can be integrated to give

w = e−α3φ

√
V

[
C1 + 3

∫
M (φ) V 3/2e3α3φ dφ

]1/3

, (64)

where C1 is an arbitrary constant of integration. Using
Eqs. (63) and (64), we obtain a consistency integral rela-
tion between the separation function M(φ) and the self-
interaction potential V (φ), given by

C1+3
∫

M (φ) V 3/2e3α3φ dφ

= V 3
[
C0+

∫
M (φ) eα3φ

√
V

hφ

]3

. (65)

In the following, we shall solve the integral equation (65) for
two particular cases.

4.1.1 Specific case I: M (φ) = √
V

First we assume that the separation function M(φ) takes
the form M(φ) = √

V . By substituting M(φ) = √
V into

Eq. (65), the latter gives an integral equation for the potential
V (φ)

C1 + 3
∫

V 2e3α3φ dφ = V 3 A (φ), (66)

where we have denoted A(φ) = (C0 +eα3φ/α3)
3. In order to

solve the integral Eq. (66), we rewrite it as a linear first-order
differential equation for V (φ)

dV

dφ
+
[

d

dφ

(
ln A1/3

)]
V = e3α3φ

A (φ)
, (67)

with the general solution given by

V (φ) = A−1/3 (φ)

[
C2 +

∫
e3α3φ A−2/3 (φ) dφ

]
, (68)

where C2 is an arbitrary constant of integration. Now by
inserting A (φ) into Eq. (68) yields the expression of the
scalar-field potential as

V (φ) =
α2

3

{
e3α3φ + 2C0α3e2α3φ − C3

0α
3
3 + (C0α + eα3φ

)2 [C2
α3

− 2C0α3 ln
∣∣C0α3 + eα3φ

∣∣
]}

(
C0α3 + eα3φ

)3 . (69)

Therefore we have obtained the following.

Theorem 1 If the scalar-field self-interaction potential is
given by Eq. (69), then the general solution of Eq. (12) is
given by

G = arccoth

(
1 + w2

1 − w2

)
= ln

∣∣∣∣
1

w

∣∣∣∣ , (70)

where

w(φ) = √V (φ)e−α3φ

(
C0 + eα3φ

α3

)
. (71)

4.1.2 Specific case II: M (φ) = V −3/2

Now we assume that the separation function M(φ) takes the
form M(φ) = V −3/2. By substituting M(φ) = V −3/2 into
Eq. (65), the latter gives an integral equation for the potential
V (φ),

C0 +
∫

eα3φ

V 2 dφ =
(

C1 + 1
α3

e3α3φ
)1/3

V
. (72)

In order to solve Eq. (72), we rewrite it as a linear first-order
differential equation for V (φ)

dV

dφ
+
⎡

⎢
⎣

d

dφ
ln

∣∣∣∣∣∣∣

1
(

C1 + 1
α3

e3α3φ
)1/3

∣∣∣∣∣∣∣

⎤

⎥
⎦ V

= − eα3φ

(
C1 + 1

α3
e3α3φ

)1/3 . (73)

Equation (73) can easily be integrated, and it yields the
following solution:

V (φ) =
(

C1 + 1

α3
e3α3φ

)1/3

×
⎡

⎢
⎣C3 −

∫
eα3φ

(
C1 + 1

α3
e3α3φ

)2/3 dφ

⎤

⎥
⎦ . (74)

where C3 is an arbitrary constant of integration.
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Therefore we have obtained the following:

Theorem 2 If the scalar-field self-interaction potential is
given by Eq. (74), then the general solution of Eq. (12) is
given by

G = arccoth

(
1 + w2

1 − w2

)
= ln

∣∣∣∣
1

w

∣∣∣∣ , (75)

where

w(φ) =
[

e−α3φ

√
V (φ)

](
C1 + e3α3φ

α3

)1/3

. (76)

5 Approximate solutions for scalar fields with arbitrary
self-interaction potentials

Generally, for a given scalar-field potential V = V (φ),
Eq. (12) cannot be solved exactly. However, there are several
limiting cases in which approximate general solutions can be
obtained for arbitrary potentials. These cases correspond to
the approximation of the function

coth G(φ) =
√

1 + 2V

φ̇2
, (77)

in the asymptotic limits of small and large G by some simple
analytical expressions.

5.1 The limit of large G

One such important case is the limit of large G, G → ∞,
when coth G = 1. From Eq. (77) it follows that this case
corresponds to scalar fields satisfying the condition φ̇2/2 �
V . Therefore, Eq. (12) takes the form

dG

dφ
+ 1

2V

dV

dφ
+
√

3

2
= 0, (78)

with the general solution given by

G (φ) = C4 −
√

3

2
φ − 1

2
ln |V (φ)| , (79)

where C4 is an arbitrary constant of integration. Then we
obtain the following solutions:

u(φ) = cosh

[

C4 −
√

3

2
φ − 1

2
ln |V (φ)|

]

, (80)

F(φ) = √
V (φ) cosh

[

C4 −
√

3

2
φ − 1

2
ln |V (φ)|

]

, (81)

respectively.
By using the relation between φ̇ and F , φ̇ =√

2
[
F2(φ)− V (φ)

] = √
2V (φ) sinh G(φ), we obtain

t − t0 = 1√
2

∫
dφ

√
V (φ) sinh

[
C4 −

√
3
2φ − 1

2 ln |V (φ)|
] .

(82)

The scale factor a can be obtained as

ln

∣∣∣∣
a

a0

∣∣∣∣ =
1√
6

∫
coth

[

C4 −
√

3

2
φ − 1

2
ln |V (φ)|

]

dφ,

(83)

where a0 is an arbitrary constant of integration. As one can

see from Eq. (83), in the limit of large G, coth[C4 −
√

3
2φ−

1
2 ln |V (φ)|] → 1, the scale factor can be represented as an
exponential function of the scalar field,

a = a0 exp

(
φ√
6

)
. (84)

Equations (82) and (83) give a parametric representation of
the time variation of the scale factor, with the scalar field φ
taken as parameter. The deceleration parameter q is given in
this limit by

q = 3 tanh2

[

C4 −
√

3

2
φ − 1

2
ln |V (φ)|

]

− 1. (85)

In the limit of large G, corresponding to the limit of

tanh2
[
C4 −

√
3
2φ − 1

2 ln |V (φ)| ]→ 1, we have q ≈ 2.

5.2 The limit of small G

A second case in which an approximate general solution of
Eq. (12) can be found for arbitrary potentials corresponds
to the limit of small G, G → 0, when coth G → ∞. This
condition is satisfied for potential dominated scalar fields,
with φ̇2/2 � V . In this case, one can neglect the small term
of the order of unity

√
3/2 in the equation (12), thus obtaining

dG

dφ
+ 1

2V

dV

dφ
coth G = 0. (86)

The general solution of Eq. (86) is

G = arccosh

(
C5√

V

)
, (87)

where C5 > 0 is an arbitrary constant of integration.
As in the previous case we obtain

u = C5√
V
, F = C5. (88)

This gives immediately

t − t0 = 1√
2

∫
dφ

√
C2

5 − V
, (89)
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and

a = a0 exp

[
C5√

3
(t − t0)

]
. (90)

The deceleration parameter is obtained as

q = 2 − 3V

C2
5

. (91)

5.3 Power series solution of the field equations

The hyperbolic function coth G is given by

coth G = 1

G
+ G

3
− G3

45
+ 2G5

945
· · ·

= 1

G
+

∞∑

n=1

22n B2nG2n−1

(2n)! , 0 < |G| < π, (92)

where we have introduced the nth Bernoulli number B2n ,
defined in terms of the Riemann zeta function, and given by
[111]

B2n = (−1)n+1 2 (2n)!
(2π)2n

(
1 + 1

22n
+ 1

32n
+ 1

42n
+ · · ·

)
.

(93)

Now, we consider the limit of small G in this series expan-
sion, and restrict the series expansion to the first two terms,
so that coth G ≈ 1/G + G/3. Then Eq. (12) takes the form

G
dG

dφ
+ 1

6V

dV

dφ
G2 +

√
3

2
G + 1

2V

dV

dφ
= 0. (94)

By means of the transformation h = 1/G, Eq. (94) becomes
a first-order Abel equation given by

dh

dφ
− 1

2V

dV

dφ
h3 −

√
3

2
h2 − 1

6V

dV

dφ
h = 0. (95)

Then, by introducing a new variable η by means of the trans-
formation h = V 1/6(φ)η(φ), we obtain the equation

dη

dφ
− 1

2V 2/3

dV

dφ
η3 −

√
3

2
V 1/6η2 = 0. (96)

A change of the independent variable φ to ξ=√
3/2

∫
V 1/6

dφ leads to

dη

dξ
− 1

2V 2/3

dV

dξ
η3 − η2 = 0. (97)

By taking η = −(1/ψ)(dψ/dξ), with the use of the math-
ematical identity d2ξ/dψ2 = −(d2ψ/dξ2)/(dψ/dξ)3, we
obtain the following second-order equation for ψ :

ψ2 d2ξ

dψ2 + 1

2V 2/3

dV

dξ
= 0. (98)

In the following we denote 2−1V −2/3dV/dξ=(3/2)d (V 1/3
)

/dξ = χ (ξ). By introducing the transformations ξ = ψσ

and τ = 1/ψ , we obtain for Eq. (98) the form

τ
d2σ

dτ 2 + χ
(σ
τ

)
= 0. (99)

5.4 Exact integrable scalar-field potentials

Equation (98) can be integrated exactly in several cases. In
the first case

1

2V 2/3

dV

dξ
= 3

2
m0 (100)

where m0 is an arbitrary constant, Eq. (100) can easily be
integrated to give

V 1/3 = m0ξ. (101)

Taking into account the definition of ξ , we obtain immedi-
ately for V the functional form V (φ) ∼ φ6. Another case of
integrability of Eq. (98) corresponds to

1

2V 2/3

dV

dξ
= 3m0ξ, (102)

giving the case of the exponential potential, V (φ) ∼
exp(

√
3m0/2φ).

As a last case of exactly integrable scalar-field models, we
consider a scalar-field potential of the form

V (φ) =
(√

2

3

)6

V 6
0 cosh6 (φ − φ0) , (103)

where V0 and φ0 are constants. Then we obtain first

ξ = V0 sinh (φ − φ0), (104)

and

V (ξ) =
(√

2

3

)6

V 6
0

(

1 + ξ2

V 2
0

)3

. (105)

Equation (98) becomes

ψ2 d2ξ

dψ2 + 2ξ = 0, (106)

with the general solution given by

ξ(ψ) = √ψ
[

ξ1 sin

(√
7

2
ln |ψ |

)

+ ξ2 cos

(√
7

2
ln |ψ |

)]

,

(107)

where ξ1 and ξ2 are arbitrary constants of integration. For η
we obtain
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η = − 1

ψ (dξ/dψ)
= − 2

√
ψ
[(
ξ1 − √

7ξ2

)
sin
(√

7
2 log |ψ |

)
+
(√

7ξ1 + ξ2

)
cos
(√

7
2 log |ψ |

)] , (108)

giving

G = 1

h
= 1

V 1/6(ψ)η(ψ)
= −

√
3
2

√
ψ
[(
ξ1 − √

7ξ2

)
sin
(√

7
2 ln |ψ |

)
+
(√

7ξ1 + ξ2

)
cos
(√

7
2 ln |ψ |

)]

2

√

ψ
[
ξ1 sin

(√
7

2 ln |ψ |
)

+ ξ2 cos
(√

7
2 ln |ψ |

)]2 + V 2
0

. (109)

With this expression of G, the solution of the field equations
for the cosh6(φ−φ0) scalar-field potential in the intermediate
regime can be obtained in an exact parametric form, with ψ
taken as parameter.

6 The simple power-law scalar-field potential

A class of scalar-field potentials which have been extensively
considered in the physical literature as a possible potential
for the inflaton field is the simple power-law potential [106–
110],

V = V0φ
√

6λ, (110)

with V0 and λ constants. This class of potentials includes the
simplest chaotic models, in which inflation starts from large
values for the inflaton, with inflation ending by violating the
slow-roll regime [40]. The model with a quadratic potential,
λ = 2/

√
6, is considered the simplest example of inflation.

For this class of potentials, Eq. (12) takes the form

dG

dφ
+
√

3

2

λ

φ
coth G +

√
3

2
= 0. (111)

We consider below several cases of interest.

6.1 The solution of the field equations in the large and
small limit of G

The solution of Eq. (111) can be immediately obtained in
the asymptotic limit of large and small G, respectively. For
G → ∞, coth G → 1, we obtain

G (φ) =
√

3

2
(C6 − φ − λ ln |φ|), (112)

where C6 is an arbitrary constant of integration. Thus, in
this limit the general solutions of the field equations are the
following:

t − t0 = 1√
2V0

∫
φ

−
√

3
2λdφ

sinh

[√
3
2 (C6 − φ − λ ln |φ|)

] , (113)

ln

∣∣∣∣
a

a0

∣∣∣∣ =
1√
6

∫
coth

[√
3

2
(C6 − φ − λ ln |φ|)

]

dφ,

(114)

and

q = 3 tanh2

[√
3

2
(C6 − φ − λ ln |φ|)

]

− 1, (115)

respectively.
In the opposite limit G → 0, we obtain the equation

dG

dφ
+
√

3

2

λ

φ
coth G = 0, (116)

which provides us with

cosh G = C6φ
−
√

3
2λ. (117)

Therefore the general solutions of the field equations are
given by

t − t0 = 1√
2V0

∫
dφ

√

C2
6 − φ

2
√

3
2λ

, (118)

ln

∣∣∣∣
a

a0

∣∣∣∣ = C6√
6

∫
dφ

√

C2
6 − φ

2
√

3
2λ

, (119)

and

q = 2 − 3

C2
6

φ
2
√

3
2λ, (120)

respectively.

6.2 The intermediate regime

In the intermediate regime the dynamics of the power-law
potential scalar field filled Universe is described by Eq. (99).
In the following it is more convenient to re-scale the potential
so that

√
6λ → λ. Hence the potential can be written as

V = V0φ
λ.

To obtain the actual form of Eq. (99) we find

ξ =
√

3

2

∫
V 1/6 dφ =

√
3

2
V 1/6

0
φ(λ+6)/6

(λ/6 + 1)
, (121)

giving

φ =
[√

2

3

(
λ

6
+ 1

)]6/(λ+6)

V −1/(λ+6)
0 ξ6/(λ+6), (122)
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and

V (ξ) = V0ξ ξ
6λ/(λ+6), (123)

where

V0ξ =
[√

2

3

(
λ

6
+ 1

)]6λ/(λ+6)

V 6/(λ+6)
0 . (124)

For the function χ(ξ) we find

χ (ξ)=
(

3V 1/3
0ξ /2

)
dξ2λ/(λ+6)/dξ=χ0ξ

(λ−6)/(λ+6), (125)

with χ0 = [3λ/ (λ+ 6)] V 1/3
0ξ . Therefore for the simple

power-law potential, Eq. (99) takes the form

d2σ

dτ 2 + χ0τ
− 2λ
λ+6 σ

λ−6
λ+6 = 0. (126)

Equation (126) can be immediately integrated for the case
λ = 6, that is, for a scalar-field self-interaction potential of
the form V = V0φ

6. In this case Eq. (126) becomes

d2σ

dτ 2 + χ0

τ
= 0, (127)

with the general solution given by

σ (τ) = −χ0τ ln |τ | + C7τ + C8, (128)

where C7 and C8 are arbitrary constants of integration.
The successive transformations

σ (ψ) = χ0 ln |ψ | /ψ + C7/ψ + C8,

ξ = ψσ = χ0 ln |ψ | + C8ψ + C7

η = (1/ψ) (1/dξ/dψ) = 1/ (C8ψ + χ0) (129)

and G = ψ(dξ/dψ)V −1/6 yield

G = V −1/6
0ξ

C8ψ + χ0

(χ0 ln |ψ | + C8ψ + C7)
1/2 , (130)

where for λ = 6, V0ξ = (2√
2/3
)3

V 1/2
0 .

The knowledge of G allows us to obtain immediately the
general solution of the field equations in the intermediary
regime in the following parametric form, with ψ taken as
parameter:

t − t0 =
√

3

8
V −1/3

0

∫
1

sinh
[
V −1/6

0ξ
C8ψ+χ0

(χ0 ln|ψ |+C8ψ+C7)
1/2

]

×
(
χ0
ψ

+ C8

)

(χ0 ln |ψ | + C8ψ + C7)
2 dψ, (131)

φ = 2

61/4

1

V 1/12
0

(χ0 ln |ψ | + C8ψ + C7)
1/2 , (132)

ln

∣∣∣∣
a

a0

∣∣∣∣ = − 1

63/4V 1/12
0

×
∫

coth

[
V −1/6

0ξ
C8ψ + χ0

(χ0 ln |ψ | + C8ψ + C7)
1/2

]

×
(
χ0
ψ

+ C8

)

(χ0 ln |ψ | + C8ψ + C7)
1/2 dψ, (133)

and

q = 3 tanh2
[

V −1/6
0ξ

C8ψ + χ0

(χ0 ln |ψ | + C8ψ + C7)
1/2

]
− 1,

(134)

respectively.

7 Discussions and final remarks

In the present paper, we have considered a systematic
approach for the study of scalar-field cosmological models in
a flat, homogeneous and isotropic space-time. With the help
of some simple transformations and the use of the gravita-
tional field equations, the Klein–Gordon equation describing
the dynamics of the scalar field can be transformed to a first-
order non-linear differential equation for the new unknown
function G. This equation immediately leads to the identifi-
cation of some classes of scalar field potentials for which the
field equations can be solved exactly, and it allows the for-
mulation of general integrability conditions. In this context,
we have obtained the general solutions of the gravitational
field equations for the cases of the exponential, generalized
hyperbolic cosine, and the generalized power-law potentials.
Moreover, it can be used to obtain some simple analytical
solutions in the limits of small and large values of the cos-
mological parameters, as well as in the intermediate regime.

As a first application of the developed method, we have
analyzed the problem of the exponential potential, which has
been previously intensively investigated in the literature, with
several methods being used to obtain the solution of the cos-
mological field equations. A Hamilton–Jacobi approach was
proposed in [69], by using a spatial gradient expansion based
on the Arnowitt–Deser–Misner (ADM) formulation of Ein-
stein and scalar-field equations. By neglecting the second-
order spatial gradients, the ADM and scalar-field equations
reduce to the simple collection of background-field equations

H = H(φ), (135)

H2(φ) = m2
P

12π

(
∂H

∂φ

)2

+ 8π

3m2
P

V (φ), (136)

φ̇

N
= −m2

P

4π

∂H

∂φ
, (137)
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and α̇/N = H , respectively, where H is the Hubble func-
tion, mP is the Planck mass, N is the lapse function, and α
is related to the scale factor a by a

(
t, x j

) = exp
[
α
(
t, x j

)]
.

For the case of an exponential potential of the form V (φ) =
V0 exp

(−√
16π/pφ/mP

)
, where p is a constant, by intro-

ducing a new dependent variable f (φ) so that

H(φ) =
√

8πV0

3m2
P

exp

(

−
√

16π

p

φ

mP

)

f (φ), (138)

it turns out that the function f satisfies the differential equa-
tion

mP

12π

d f

dφ
= f√

3p
±
(

f 2 − 1
)
, (139)

which can be solved by introducing the change of variables
f = cosh u. Therefore, the general solution of the field
equations for the exponential scalar-field potential is obtained
in a parametric form as

H(u) =
√

8πV0

3m2
P

exp

(

−
√

16π

p

φ

mP

)

cosh u, (140)

and

φ(u) = φm −
(

mP√
12π

)(
1 − 1

3p

)−1 [
u + (3p)−1/2

× ln
∣∣∣cosh u −√3p sinh u

∣∣∣
]
. (141)

The parametric representation for φ obtained in [69] is the
same as the one given by Eq. (25). However, the time depen-
dence of the cosmological parameters for the exponential
potential case is not discussed in [69].

Recently, in [92] and [93] the cosmological evolution of
the scalar field with an exponential potential of the form
V = V0 exp(λφ), V0, λ = constants, was investigated by
considering a new time variable. As a starting point two
new variables u and v are introduced via the transformations
a3 = ev+u and φ = A (v − u), where A is a constant. The
Friedmann and the Klein–Gordon equations take the form

1

9
(u̇2 + v̇2 + 2u̇v̇) = A2

2
(u̇2 + v̇2 − 2u̇v̇)+ V0eλA(u−v),

(142)

and

A(v̈ − ü)+ A(v̇2 − u̇2)+ λV0eλA(v−u) = 0, (143)

respectively. By taking A = √
2/3, the Friedmann equation

becomes

u̇v̇ = 9V0

4
e(

√
2/3)λ(u−v). (144)

In order to further simplify the formalism, a new time vari-
able τ is introduced, so that the previous equation becomes

u′v′τ̇ 2 = 9V0

4
e(

√
2/3)λ(u−v), (145)

where prime denotes the derivative with respect to τ . The
new time parameter is chosen so that

τ̇ = 3

2

√
V0eλφ/2 = 3

2

√
V0eλ(u−v)/√6, (146)

a choice that simplifies the Friedmann equation to u′v′ = 1.
By introducing a new variable x = v′, the Klein–Gordon
equation can be transformed to a Riccati type equation,

x ′ +
(

1 +
√

2λ

6

)

x2 +
(√

2λ

6
− 1

)

= 0, (147)

which by means of the transformation x = [(1/1+√
2λ/6

)]

y′/y is transformed to a second-order linear differential equa-
tion of the form

y′′ +
(
λ2

18
− 1

)
y = 0. (148)

Two cases are considered in detail: the hyperbolic cosine,
when the constant |λ|< 3

√
2, and the ‘trigonometric’ case,

with |λ|>3
√

2, and the corresponding cosmological dynam-
ics is studied in detail in the new time variable τ .

As compared to the previous studies, the method intro-
duced in the present paper for the exponential potential scalar
field allows for the direct study of the time dependence of the
physical parameters of the cosmological models, without the
need of introducing a new time variable. A number of exact
analytical solutions can be obtained in a parametric form
from the general integral representation of the time variable
for some specific values of the coefficient α0. Moreover, by
using the exact solutions the limiting behaviors of the solu-
tions, corresponding to the long time behavior, and near t = 0
can easily be obtained. It is also a simpler method, since the
gravitational field equations can be reduced to a first-order
differential equation. Once the solution of this basic differen-
tial equation is known, all the physical/cosmological param-
eters can be obtained in a straightforward way.

As a second exactly integrable case that can easily be
studied with the present formalism we have considered the
generalized cosine hyperbolic potential given by Eq. (51),
V (φ) = V0 cosh2α1/(1+α1)

[√
3/2 (1 + α1) (φ − φ0)

]
. Inte-

grable scalar-field models with potential

V (φ) = C1
[
cosh(γ φ)

]2/γ−2 + C2
[
sinh(γ φ)

]2/γ−2
,

(149)

were discussed in [85], where mechanical systems for the
(A, φ) variables, whose equations of motion follow from the
class of Lagrangians of the form

L = eA−B
[
− Ȧ2

2
+ φ̇2

2
− e2B V (φ)

]
, (150)
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were analyzed. By using the formalism introduced in the
present paper the general solution of the gravitational field
equations can easily be obtained.

As a third case of exactly integrable scalar-field mod-
els we have analyzed in detail the cosmological dynamics
for a Universe filled with a generalized power-law scalar-
field potential of the form given by Eq. (56) V (φ) =
V0

(
φ
α2

)−2(α2+1)
[

3
2

(
φ
α2

)2 − 1

]
, which consists of the sum

of two simple power-law potentials, and which represents
the generalization of the simple power-law potential exten-
sively discussed in [106–110]. We have also analyzed in
detail potentials of the form V = V0φ

√
6λ. In this case, the

general solution of the field equations cannot be obtained in
an exact form, but the limiting small and large time behav-
ior, as well as the study of the intermediate phases, can be
performed relatively easily. Two general integrability condi-
tions for the basic first-order differential equation have also
been obtained, corresponding to a given form of the scalar-
field potential, given by Eqs. (69) and (74). Such potentials
have not been previously considered in the study of cosmo-
logical scalar field models. However, despite their apparent
complexity, the corresponding gravitational field equations
can be solved exactly.

In concluding, we have obtained several exact solutions
of the gravitational field equations whose background cos-
mological evolutions can reproduce the results of the stan-
dard�CDM cosmological model. In order to obtain a deeper
physical understanding of the solutions a comparison with
the supernovae data is necessary [44]. In addition to this, in
order to compare the obtained models with the data on the
microwave background cosmic radiation and the large scale
structure of the Universe, the study of the cosmological per-
turbations of the solutions is necessary in the obtained theo-
retical framework. Work along these lines is presently under
way, and the results will be presented in a future publication.
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