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1 Introduction

Higher spin theories [2–6] in 3D, have been of great interest recently, and specifically, the

study of higher spin black holes in the Chern-Simons formulation has been one of the most

active lines of research [1, 7–18].

The 3D Chern-Simons (CS) is a theory of pure gauge degrees of freedom. However,

in backgrounds with conformal boundaries, like AdS3, it is not a trivial theory. To have a

well defined variational principle, boundary terms should be added to the original action.

These boundary terms are designed to make the total action stationary under motion in

a given region of the moduli space of flat connections. The selection of that region, a.k.a.

imposition of boundary conditions, defines the domain of the moduli space to work with:

the phase space. Motion outside of the phase space does not leave the action invariant and

it is incompatible with the variational principle. The corresponding gauge transformations

we will call from now on “non residual”. Motion inside the phase space instead, leaves

the total action invariant by construction, then it is admissible. The corresponding gauge

transformations we will call from now on “residual” and some of them (these are called

improper) emerge as global symmetry transformations [19]. It is very important to stress

that throughout this paper we will use the term phase space in the sense stated above, and

not to denote all possible initial data in a given Cauchy surface, as it is usually done.1

1We should stress that this classification (residual, non residual) should not be confused with the usual

(proper, improper) [19–21]. The latter being applied onto residual gauge transformations (those that
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In the last few years some families of phase spaces have been argued to contain gener-

alisations of the BTZ black hole [22]: they are called higher spin black holes. See [7, 18].

Each one of these families is labeled by a set of numbers µ, µ̄ usually called chemical po-

tentials. The name deriving from the fact that they can be identified with the chemical

potentials of conserved higher spin currents in a 2D CFT. Recently, attention has been

paid to the fixed time canonical bracket structure of these families [1, 18] (studies for the

highest weight boundary conditions can be found at [5, 6, 21]). One main point of interest

regards the classification of charges of generalised black hole solutions. In this note we will

address issues related to this last point. We will do it in a perturbative framework and for

the case in which the gauge algebra is sl(3,R), in order to be able to explicitly compute

Dirac brackets.

The outline of the paper is as follows. In section 2 we review the Regge-Teitelboim (RT)

formalism in the framework of CS theories in 3D spacetime with boundaries. In section 3.1

we compute explicitly the fixed time Dirac bracket algebra associated to a phase space [1],

that in order to avoid confusion afterwards, we denote as P -phase space. In section 3.2 we

compute the same algebra but by using the method of variation of generators. We have

checked that this algebra is not isomorphic to W3. In sections 3.3 and 3.3.1, we provide an

interpretation of a related result presented in [1]. Our interpretation is consistent with the

conclusions given in [18]. In section 3.4 we compute the fixed time Dirac bracket algebra

acting on a different phase space, that again to avoid confusion with the previous P -phase

space, we denote as D- phase space. This phase space contains black holes as well, and we

will show that its fixed time Dirac bracket structure is isomorphic to W
(2)
3 [18], up to first

order in perturbations of the inverse of the chemical potential ν3.

2 The Regge-Teitelboim formalism in 3D CS with boundaries

We start this section by reviewing the Regge-Teitelboim (RT) formalism in the context of

Chern Simons theory in a 3D space with boundaries. Firstly, we provide some tips that

the reader should keep in mind for the rest of the paper.

• Along our discussion we will use the λ = 3 truncation of hs(λ) to sl(3,R). However

many of the procedures to be reviewed in the next section do generalise straightfor-

wardly to any of the truncations gotten for positive integer λ.

• The super index (0) in a given quantity X stands for its restriction to the Cauchy

surface X(0). Or equivalently to its initial condition under a given flow equation.

• The symbol δ stands for an arbitrary functional variation whereas δΛ stands for a

variation due to a residual gauge transformation Λ.

Let us denote by (A, Ā) the left and right sl(3,R)-valued connections of interest. Let

us focus on the sector A and let us denote the space-time coordinates by (ρ, x1, x2). The

preserve the gauge fixing and boundary conditions). For example, improper, are those gauge transformations

that change the near boundary behaviour while being residual. We thank the referee for drawing our

attention to the importance of stressing this point.
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Chern Simons action supplemented by a boundary term is

SCS =

∫
tr

(
AdA+

2

3
A3

)
+ Ibdry. (2.1)

Part of the hs(λ)2 gauge freedom is fixed by the choice

Aρ = V 2
0 ,

(
Āρ = −V 2

0

)
. (2.2)

The (1, ρ) and (2, ρ) components of the equations of motion dA+A2 = 0 impose the form

Aa = bAab
−1, b = e−ρV

2
0

(
Āa = b̄Aab̄

−1, b̄ = eρV
2
0

)
, (2.3)

with a = 1, 2.3 The remaining (1, 2) components read

dA+A2 = 0, d ≡ dxa∂a. (2.4)

Up to this point we have twice as many variables than equations. Equation (2.4) can be

thought of as:

• x2 evolution equation for A1. (∂2A1 + . . . = 0).

where the . . . define quantities that do not involve derivatives with respect to x2.

From this point of view A2 is an arbitrary source and the Cauchy surface initial con-

dition is A1|x2=fixed. The arbitrariness of the source A2 represents an extra gauge freedom

that tunes the x2 evolution of a Cauchy data surface A1|x2=fixed. Should we make the

choice A2 = 0, evolution is trivial and all Cauchy surfaces have the same data A1(x1).

Data A1(x1) and A1(x1) + δΛA1(x1) are physically inequivalent as the gauge degeneracy

has been already fixed.

However, notice that one can map δΛA1(x1) to an “improper” hs(λ) residual gauge

transformation with parameter Λ(x1).4 In this way the gauge choice A2 = 0 is pre-

served and

δΛA1(x1) ≡ ∂1Λ(x1) + [A1,Λ]. (2.5)

The gauge parameters Λ carry thence some physical meaning, they will define global charges

Q(Λ) whose Poisson bracket with the initial data A1(x1) will generate the changes δA1(x1).

In fact, in virtue of what was said, it results that

Q(Λ) = G|Aρ=V 2
0 ,A1=bA1b−1(bΛ(x1)b−1). (2.6)

2See appendix A for notations, conventions and definitions concerning the hs(λ) algebra.
3From now on we will focus on the unbarred sector A. The results for the barred sector Ā can be

obtained in the same way.
4In terms of the calygraphic components A, the gauge parameter is bΛ(x1)b−1, in such a way that it

preserves the hs(λ) gauge choice (Aρ,A2) = (V 2
0 , 0) (and hence it represents a “residual” gauge transfor-

mation). The gauge transformation Λ, while preserving the gauge choice and hence being “residual”, is

usually called “improper” due to the fact that it changes the near boundary data, namely it defines motion

in the physical phase space. In a manner that will be explicitly shown below, these transformations define

global symmetries.
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Where G is the generator of gauge transformations in a given Cauchy surface before im-

posing any second class constraint. Even though we did not make it explicit in (2.6), we

have also imposed A2 = 0.

Before defining G let us stress that in the following paragraph we do not impose

neither (2.2) nor (2.3) which are not compatible (namely, there are second class constraints)

with the x2 = fixed Poisson bracket algebra

{A1,Aρ}PB = −{Aρ,A1}PB = V 1
0 δ

(2). (2.7)

Where by V 1
0 we mean the identity operator in the hs(λ) algebra (see appendix A). However

we are free to take A2 = 0 as it is compatible (first class) with (2.7). The quantity

G(Γ) ≡
∫
dx1tr(ΓA1)|ρ=∞ +

∫
dx1dρ tr(ΓF1ρ), (2.8)

is defined over each x2 = fixed Cauchy surface and obeys the following properties

{G(Γ),A1,ρ}PB = D1,ρΓ ≡ δΓA1,ρ,

δA1G(Γ) = −
∫
dx1dρ tr (DρΓδA1) , (2.9)

under the brackets (2.7). Namely, it generates the gauge transformations on a given Cauchy

surface under (2.7), and it is properly differentiable under off-shell variations δA1. By

computing the gauge variation of (2.8) and regrouping some terms one arrives to the

algebra

{G(Γ1), G(Γ2)}PB ≡ δΓ1G(Γ2) = G([Γ1,Γ2])−
∫
dx1 tr(Γ1∂1Γ2), (2.10)

which is inherited through (2.6) by the Q(Λ)’s.

In fact, after plugging (2.8) into (2.6) one gets

Q(Λ) =

∫
dx1tr(ΛA1). (2.11)

From the first line in (2.9) and after imposing the second class constraints (2.2) and (2.3)

we arrive to

{Q(Λ), A1}PB = D1Λ ≡ δΛA1(x1), (2.12)

which after taking Λ = δ2τa, A1 = Ab1τb reduces to the Kac-Moody algebra

{Aa1(x1), Ab1(y1)}PB = fabcA
c
1δ(x1 − y1)− gab∂x1δ(x1 − y1), (2.13)

where gab is the inverse of the Killing metric, gab = tr (τaτb), that is also used to raise in-

dices. To lower indices we use the Killing metric gab itself. For instance fabc = gaāgbb̄gcc̄f
c̄

āb̄
.

Where [τa, τb] = f c
ab τc. Notice that the same result (2.13) can be deduced from (2.10) and

the definition (2.6).

It is worth to notice that in the previous definition of G, the gauge parameter Γ

was supposed to be field independent. Should this not be the case, then (2.8) should be

replaced by

G(Γ) ≡ B(Γ,A) +

∫
dx1dρ tr(ΓF1ρ), (2.14)
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where the boundary term B is such that

δA1B(Γ) =

∫
dx1tr(ΓδA1)|ρ=∞. (2.15)

Is easy to check that (2.14) still obeys the properties (2.9), but in a weak sense, namely up

to terms that vanish when one imposes the equations of motion, F1ρ = 0. Clearly when

Γ is field independent both definitions (2.8) and (2.14) are equivalent. But (2.14) is more

general. So we will stick to (2.14).

For later use we impose (2.2), (2.3), and Γ = bΛb−1, onto (2.15) and rewrite it as

δQ(Λ) =

∫
dx1tr(ΛδA1). (2.16)

Where now we note that the ρ dependence has disappeared, and the non linearity of Γ is

inherited by Λ. The integration of (2.16), Q(Λ), generates the residual gauge transforma-

tions that preserve any further constraint, with Λ being the corresponding residual gauge

parameter. From (2.12) we have then a way to find out the Poisson brackets on a further

reduced phase space.

A shortcut to find out the algebra without integrating (2.15) is at hand. After use of

the equivalence relation in (2.10) inherited by the Q, together with (2.16) one gets

{Q(Λ1), Q(Λ2)}PB ≡ δΛ1Q(Λ2) = −
∫
dx1 tr(Λ1D1Λ2). (2.17)

In this way we just need to use A1 and the residual gauge parameter Λ to evaluate the

r.h.s. [1]. We will not resort to this way.

Notice also, that in the process we have been neglecting total derivative terms with

respect to x1 under integration. To take care of them, one imposes boundary conditions

on the field and gauge parameters, like for instance periodicity under x1 → x1 + 2π. In

the next section we will study a case in which such a periodicity is lost due to the use of

perturbation theory.

3 Two phase spaces of sl(3,R) black holes.

In this section we go on to analyse the phase space of sl(3,R) CS theories with modified

boundary condition. By modified we mean others than the highest weight condition used

in [5, 6]. With that goal in mind, we compute explicitly the Dirac bracket algebra with

the Dirichlet boundary conditions introduced in [7] and studied in [1]. In subsection 3.1

we compute the fixed time Dirac bracket algebra that comes from the imposition of 6

constraints onto the sl(3,R) Kac Moody algebra (2.13). In section 3.2 we recompute the

same bracket algebra by use of the method of variation of the generators that was used in

section 2 to compute the Kac Moody algebra (2.13). Let us be more precise in summarising

this last result. The bracket algebra obtained by the method of variation of generators will

depend on a set of integration constants that describe all possible field redefinitions of

the smearing gauge parameter. As will be checked in subsection 3.2, for a specific choice

– 5 –
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of these integration constants this algebra will coincide with the Dirac bracket algebra

reported in section 3.1.

Additionally, we must say, that there is another choice of the aforementioned integra-

tion constants that, as shown in section 3.3, define a W3 bracket algebra (up to redefinitions

of the generators). In subsection 3.3.1 we check that such a choice of integration constants

is equivalent to performing a non residual gauge transformation to the highest weight

choice [5, 6]. This is also the redefinition used by the authors in [1] to arrive to a W3

symmetry transformation. Let us be more specific before entering in details. As already

said and shown in subsections 3.3 and 3.3.1, this choice of integration constants consists of

both, a redefinition of the residual gauge transformation parameters and a redefinition of

the phase space parameters (the background connection). The field dependent redefinition

of the residual gauge parameters to be used in this case differs with the one used in the

case mentioned in the previous paragraph. This difference suggests, and we will check so,

that the Dirac bracket algebra we have referred to in the last sentence of the previous

paragraph is not isomorphic to W3 [18]. Accordingly, the W3 symmetry transformation,

that the authors in [1] arrive to, after performing the corresponding transformations, is

not acting onto the original phase space of parameters (up to coordinates redefinitions)

but onto a different phase space given by the highest weight gauge choice [5, 6]. This last

statement will be checked in section 3.3.

In subsection 3.4 we consider a different reduction of the sl(3,R) phase space. In this

case we classify the sl(3,R) generators according to a diagonally embedded gravitational

sl(2,R) and impose less amount of constraints, in total 4, onto the sl(3,R) Kac Moody

algebra (2.13). By explicit computation the fixed time Dirac bracket algebra in this new

phase space, is shown to be isomorphic to W
(2)
3 up to first order in perturbations of the

inverse of the chemical potential ν3.

3.1 Explicit computation of Dirac bracket algebra in P -phase space

We will impose 6 second class constraints (boundary conditions) onto the phase space

(2.13) of 3D CS theory with Lie algebra sl(3,R). The reduced phase space will be called

P -phase space. Specifically, we compute the Dirac bracket algebra on the reduced phase

space, in a Cauchy surface at fixed t0. The main point of this section is to show by explicit

computation that this algebra is not isomorphic to the W3 algebra.

We start by defining what we call P -phase space. First we relax the condition A2 = 0

used in section 2. Besides (2.2) and (2.3), we impose the following constraints

A1 = V 2
1 + LV 2

−1 +WV 3
−2,

A2 = µ3

(
V 3

2 + lower components
)
, (3.1)

where the highest weight elements (L,W, . . .) are arbitrary functions of (x1, x2). From now

on to save some notation we denote the set of all of them (L,W, . . .) asM. The boundary

conditions that define the phase space of connections of the form (3.1), that we call from

now on P -phase space, were introduced in [1, 7] (There x1 and x2 are assumed light cone

coordinates).

– 6 –
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To completely precise (3.1), flatness conditions must be imposed. The flatness con-

ditions along the generators V s
ms≥−s+1 provide algebraic equations for the “lower compo-

nents” in terms of (M, ∂2M).

A2 = µ3

(
V 3

2 + 2LV 3
0 −

2

3
∂1LV 3

−1 +

(
L2 +

1

6
∂2

1L
)
V 3
−2 − 2WV 2

−1

)
. (3.2)

The remaining ones provide the x2-flow equations

∂2L = −2µ3∂1W, ∂2W = µ3

(
8

3
L∂1L+

1

6
∂3

1L
)
, (3.3)

which determine the M out of the initial conditions M(x1, 0). Solutions can be found in

terms of perturbations of the chemical potential µ3 and will have the generic form

M =M(0) + µ3

(
x2M(1) +M(0)

1

)
+O(µ2

3), (3.4)

where M(1), are local functionals of the initial conditions M(0), M(0)
1 . Notice that the

integration constants M(0)
1 are just shifts in M(0). In general we will take M(0)

1 as the

most general functional of x1 and M(0) consistent with dimensional analysis. The explicit

dependence in x1 will play an important role.

To make things easier we start by computing the brackets on a Cauchy surface at fixed

x2. In this case the phase space is given by the sl(3,R) valued function of x1 that defines

the x1 component A1 in (3.1).

Let a generic sl(3,R) valued function of x1 be

a(x1) = AsmsV
s
ms = AaVa,

Va =
(
V 2

1 , V
2

0 , V
2
−1, V

3
2 , V

3
1 , V

3
0 , V

3
−1, V

3
−2

)
. (3.5)

We start from the Kac-Moody algebra (2.13) and proceed to impose the following 6 second

class constraints

Ci =

(
A2

1 − 1, A2
0, A

3
2, A

3
1, A

3
0, A

3
−1

)
, (3.6)

onto a(x1), but first we choose the integration constants M(0)
1 to be

L(0)
1 = 2W(0) + 2x1∂1W(0),

W(0)
1 = −L(0)2 − 1

6
∂2

1L(0) − x1
1

6

(
16L(0)∂1L(0) + ∂3

1L(0)
)
, (3.7)

From now on, to save space we will not write down the explicit t0 dependence but the

reader should keep in mind that the full result is recovered by making the substitutions

L(0) → L(0) + µ3t0W(0) +O(µ2
3),

W(0) → W(0) + µ3t0
1

12

(
16L(0)∂1L(0) + ∂3

1L(0)
)

+O(µ2
3), (3.8)

at the very end.

– 7 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
1

The constraints (3.6) define the Dirac bracket

{Aa(x1), Ab(y1)}D = {Aa(x1), Ab(y1)}PB −
(
{Aa, Ci}PBMij{Cj , Ab}PB

)
(x1, y1), (3.9)

in the reduced phase space with configurations Aa = (L(0),W(0)).

The object Mij(x1, y1) is the inverse operator of {Ci(x1), Cj(x2)}PB, whose non trivial

components are computed to be

M12 =
1

2
δx1y1 , M21 = −M12, M22 =

1

2
∂x1δx1y1 , M36 = −1

4
δx1y1 ,

M45 =
1

12
δx1y1 , M46 = − 1

12
∂x1δx1y1 , M54 = −M45, M55 =

1

24
∂x1δx1y1 ,

M56 = −1

4
(L(0)δx1y1 +

1

6
∂2
x1
δx1y1), M63 = −M36, M64 = M46, M65 = −M56,

M66 = −1

4

(
∂x1L(0)δx1y1 + 2L(0)∂x1δx1y1 +

1

6
∂3
x1
δx1y1

)
. (3.10)

It is easy to check that Mij(x1, y1) = −Mji(y1, x1) as it should be. After some algebra (3.9)

takes the explicit form

{L(0)(y1),L(0)(x1)}D = ∂x1L(0)δx1y1 + 2L(0)∂x1δx1y1 +
1

2
∂3
x1
δx1y1 ,

{L(0)(y1),W(0)(x1)}D = 2∂x1W(0)δx1y1 + 3W(0)∂x1δx1y1 ,

{W(0)(y1),W(0)(x1)}D = −1

6

(
16L(0)∂x1L(0) + ∂3

x1
L(0)

)
δx1y1 −

1

12

(
9∂2

x1
L(0) + 32L(0)2

)
∂x1δx1y1 −

5

4
∂x1L(0)∂2

x1
δx1y1 −

5

6
L(0)∂3

x1
δx1y1 −

1

24
∂5
x1
δx1y1 , (3.11)

where all the L(0) andW(0) in the right hand side are evaluated on x1. The brackets (3.11),

define a W3 algebra at fixed light cone coordinate x2 slices5 for the phase space (3.1) [1,

23]. Notice that in this case, the µ3 dependence is implicit in the fields through the

redefinitions (3.8).

Now we go a step forward to compute the Dirac bracket on a Cauchy surface at fixed

time t0. This time the constraints will look like

Ci =

(
A2

1 − 1, A2
0, A

3
2 − µ3, A

3
1, A

3
0 − 2µ3L, A3

−1 +
2

3
µ3∂1L

)
, (3.12)

5This is, when evolution along x2 is considered.
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and the corresponding first order in µ3 corrections to (3.10) are

M1
14 =

1

6
δx1y1 , M

1
15 = −1

6
∂x1δx1y1 , M

1
16 = δx1y1L(0) +

1

4
∂2
x1
δx1y1 ,

M1
23 = −1

2
δx1y1 , M

1
24 =

1

3
∂x1δx1y1 , M

1
25 = −2

3
δx1y1L(0) − 1

4
∂2
x1
δx1y1 ,

M1
26 =

5

3
δx1y1∂x1L(0) +

7

3
∂x1δx1y1L(0) +

1

3
∂3
x1
δx1y1 , M

1
32 = −M1

23,M
1
41 = −M1

14,

M1
42 = M1

24, M
1
51 = M1

15, M
1
52 = −M1

25, M
1
56 = −1

6
δx1y1W(0), M1

61 = −M1
16,

M1
62 =

2

3
δx1y1∂x1L(0) +

7

3
∂x1δx1y1L(0) +

1

3
∂3
x1
δx1y1 , M

1
65 = −M1

56,

M1
66 = −1

3
δx1y1∂x1W(0) − 2

3
∂x1δx1y1W(0). (3.13)

Again it is easy to check that M1
ij(x1, y1) = −M1

ji(y1, x1). From (3.9), (3.10) and (3.13) we

compute the corresponding Dirac bracket. They can be checked to obey the compatibility

property {Ci, . . .}D = 0.

The corrections to (3.11) are given by

{L(0)(y1),L(0)(x1)}D = . . .+ 2µ3∂x1W(0)δx1y1 + 4µ3W(0)∂x1δx1y1 ,

{L(0)(y1),W(0)(x1)}D = . . .− µ3

(
8

3
L(0)∂x1L(0)δx1y1 +

1

6
∂3
x1
L(0)δx1y1+

13

3
L2∂x1δx1y1 +

4

3
∂2
x1
L(0)∂x1δx1y1+

25

6
∂x1L(0)∂2

x1
δx1y1 +

11

3
L(0)∂3

x1
δx1y1 +

1

3
∂5
x1
δx1y1

)
,

{W(0)(y1),W(0)(x1)}D = . . .− µ3

(
22

3
∂x1(W(0)L(0))δx1y1 +

44

3
L(0)W(0)∂x1δx1y1+

∂3
x1
W(0)δx1y1 +

10

3
∂2
x1
W(0)∂x1δx1y1+

4∂x1W(0)∂2
x1
δx1y1 +

8

3
W(0)∂3

x1
δx1y1

)
,

(3.14)

and can not be reabsorbed by a general analytical redefinition at first order in µ3

L → L+ µ3L0
1hom, W →W + µ3W0

1 hom, (3.15)

where the (L(0)
1 hom,W

(0)
1 hom) are given in the first line of (A.9). So the fixed time Dirac

bracket algebra (3.14) on the phase space (3.1) is not isomorphic to W3. However as we

will see (3.1) can be embedded in a larger phase space whose constrained algebra at fixed

time slices will be shown to be isomorphic to W
(2)
3 .

3.2 Dirac bracket algebra in the P - phase space: the method of variation of

generators

For completeness we will recompute the Dirac bracket algebra (3.14) by use of the method

of smeared variation of generators used in the computation of (2.13) in section 2.
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We start by determining the set of residual (and improper) gauge transformations

that map the P -phase space onto itself, namely, that preserve the set of boundary condi-

tions defining the P -phase space. We ask now for the set of linear gauge transformations

preserving the boundary conditions (3.1)

δAa = ∂xaΛ + [Aa,Λ], 6 (3.16)

Λ = εV 2
1 + ηV 3

2 + higher components, (3.17)

where the lowest components {ε, η} are arbitrary functions of (x1, x2). We will denote the

set of lowest components {ε, η} by Θ. The projection along the generators V s
ms>−s+1 of

the x1 equation in (3.16) solves algebraically for the highest components in terms of the

lowest ones Θ:

Λ(ε, η) = εV 2
1 − ∂1εV

2
0 +

(
Lε− 2Wη +

1

2
∂2

1ε

)
V 2
−1 + ηV 3

2 − ∂1ηV
3

1 +(
2Lη +

1

2
∂2

1η

)
V 3

0 −
(

2

3
∂1Lη +

5

3
L∂1η +

1

6
∂3

1η

)
V 3
−1 +(

Wε+ L2η +
7

12
∂1L∂1η +

1

6
∂2

1Lη +
2

3
L∂2

1η +
1

4
∂4

1η

)
V 3
−2. (3.18)

Notice that the A2 component (3.2) can be viewed as a residual gauge parameter Λ(0, µ3)(as

the results of [24] suggests). This is of course a reminiscence of its spurious character.

The remaining x1 equations provide variations of the gauge field parametersM(x1, x2)

δΛL = ∂1Lε+ 2L∂1ε− 2∂1Wη − 3W∂1η +
1

2
∂3

1ε,

δΛW = ∂1Wε+ 3W∂1ε+
1

6

(
16L∂1L+ ∂3

1L
)
η +

1

12

(
9∂2

1L+ 32L2
)
∂1η +

5

4
∂1L∂2

1η +
5

6
L∂3

1η +
1

24
∂5

1η,

(3.19)

From flatness conditions and the Dirichlet boundary condition to impose, it is clear that any

other component variation of the gauge fields can be deduced out of these ones. Demanding

the lowest weight components (V 2
1 , V

3
2 ) of the final A2 connection to be fixed, determines

the x2-flow equations

∂2ε = −µ3

(
8

3
L∂1η +

1

6
∂3

1η

)
, ∂2η = 2µ3∂1ε, (3.20)

which allow to solve for the gauge parameter Θ(x1, x2) in terms of the initial conditions

Θ(x1, 0). Again, solutions can be found in perturbations of the chemical potential µ3

Θ = Θ(0) + µ3

(
x2Θ(1) + Θ

(0)
1

)
+O(µ2

3), (3.21)

where the Θ(1), are local functionals of the initial conditions Θ(0). The Θ
(0)
1 are shifts of

Θ(0) and we will define them as general functionals of x1, M(0) and Θ(0) consistent with

dimensional analysis, and linear in the Θ(0).
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Let us define our coordinates x1 = 1
2(t0 + φ), x2 = 1

2(−t0 + φ) and consider time

evolution. This choice of coordinates identify (3.1) with the first two lines in equation (3.1)

of [1] under our conventions.7

The Cauchy data at a fixed time slice and the corresponding residual gauge transfor-

mations are

Adφ̃ = 2Aφdφ̃ = A1dx1 +A2dx2, δΛA = 2δΛAφ = δΛA1 + δΛA2, (3.22)

where the effective angular variable is φ̃ = 1
2φ.

By convenience we should choose the redefinition of generators (3.7) that was used

during the explicit computation in section 3.1, namely

L(0)
1 = 2W(0) + 2x1∂1W(0),

W(0)
1 = −L(0)2 − 1

6
∂2

1L(0) − x1
1

6

(
16L(0)∂1L(0) + ∂3

1L(0)
)
.

By the following redefinition of residual gauge parameters

ε
(0)
1 = x1

(
8

3
L(0)∂1η

(0) +
1

6
∂3

1η
(0)

)
,

η
(0)
1 = −2x1∂1ε

(0), (3.23)

we get rid of all terms in the residual gauge transformation δΛA that break periodicity

under φ→ φ+ 2π.

With the choices above, the V 2
−1 and V 3

−2 components of A become L(0) + 1
2µ3t0L(1) +

O(µ2
3) and W(0) + 1

2µ3t0W(1) +O(µ2
3) respectively. The (L(1),W(1)) are determined by the

equations of motion (3.3) to be

L(1) = 2∂1W(0),

W(1) = −1

6

(
16L(0)∂1L(0) + ∂3

1L(0)
)
. (3.24)

Notice that explicit dependence in the Cauchy surface position t0 remains in both A and

δΛA. The contribution of this explicit dependence in t0 to the charge Q is a total deriva-

tive whose integration vanishes upon imposing our periodic boundary conditions. The

integrated charge, out of (2.16), for any t0

Q(t0) =

∫ π

0
dφ̃

(
ε(0)L(0) − η(0)

(
W(0) + µ3

(
1

3
∂2

1L(0) +
1

3
L(0)2

)))
+O(µ2

3), (3.25)

7Should we have chosen x1 = φ and x2 = t the fixed time Dirac bracket algebra of (3.1) is seen to be

W3 [18, 24].
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and the variations

δΛL(0) = . . .+ µ3

(
2∂1W(0)ε(0) + 4W(0)∂1ε

(0) + 4L(0)∂1L(0)η(0)

+ 3L(0)2
∂1η

(0) + 3∂1η
(0)∂2

1L(0) +
11

2
∂1L(0)∂2

1η
(0)

+
1

3
∂3

1L(0)η(0) +
8

3
L(0)∂3

1η
(0) +

1

6
∂5

1η

)
+O(µ2

3), (3.26)

δΛW(0) = . . .+ µ3

(
−8

3
L(0)∂1L(0)ε(0) − 13

3
L(0)2

∂1ε
(0) − 4

3
∂2

1L(0)∂1ε
(0)

− 25

6
∂1L(0)∂2

1ε
(0) − 1

6
∂3

1L(0)ε(0) − 11

3
L(0)∂3

1ε
(0) − 1

3
∂5

1ε
(0)

+
16

3
W(0)∂1L(0)η(0) +

20

3
L(0)∂1W(0)η(0) +

38

3
L(0)W(0)∂1η

(0)

10

3
∂2

1W(0)∂1η
(0) +

11

3
∂1W(0)∂2

1η
(0) +

5

3
W(0)∂3

1η
(0) + ∂3

1W(0)η(0)

)
+O(µ2

3),

δΛL(1) =
(
δL(1)

)
|δ→δΛ ,

δΛW(1) =
(
δW(1)

)
|δ→δΛ , (3.27)

determine, after long but straightforward computation, the fixed time t0 Dirac bracket

algebra (3.14) by means of (2.12).8

The . . . in (3.26) stand for the zeroeth order in µ3 contribution, which is given by the

r.h.s. of (3.19) after substituting (L,W, ε, η) by (L(0),W(0), ε(0), η(0)) respectively. Remem-

ber that δ stands for arbitrary functional differential and so by (δ . . .)|δ→δΛ we mean to

take the functional differential of . . . in terms of (δL(0), δW(0)) and after substitute δ by δΛ.

As we already said at the end of section 3.1, and stress again, the µ3 deformation

of (3.14) can not be absorbed by a field redefinition. In other words the fixed time Dirac

bracket algebra (3.14) is not isomorphic to W3.

Notice that, and we must insist on this point, a different choice of field dependent

redefinition of gauge parameter than (3.23) would define a different (up to redefinition of

generators) bracket algebra than the Dirac one (3.14). This is, the new bracket algebra

will not correspond to the P -phase space (up to coordinate redefinitions, of course) but to

a different phase space. This is what the authors in [1] have done. We will review in our

way their computations and will provide our interpretation of their results.

3.3 The change to W3 of [1]

In this subsection we illustrate the issue mentioned in the previous paragraph. We will

explicitly see that by using a field dependent redefinition of the gauge parameter different

than (3.23) one alters the fixed time Dirac bracket algebra (of the original P -phase space)

to an algebra isomorphic to W3. This result could confuse the reader as one could naively

think that with such a field dependent redefinition of the residual gauge parameter the

8. . . with the substitution (x1, ∂1)→ ( t0
2

+ φ̃, ∂φ̃) always implicitly intended.
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initial phase space remains the same up to coordinate redefinitions. In fact, to complete

this analysis, during the next subsection we will explicitly show that such a redefinition is

nothing else but a non residual gauge transformation that maps the P -phase space (3.1)

onto the highest weight gauge phase space used in [6].

The new choice

L(0)
1 = . . .+W(0), W(0)

1 = . . .− 5

3
L(0)2 − 7

12
∂2

1L(0),

ε
(0)
1 = . . .−

(
8

3
η(0)L(0) +

1

4
∂2

1η
(0)

)
, η

(0)
1 = . . .+ ε(0), (3.28)

instead of the previous ones (3.7) and (3.23), with the . . . denoting the r.h.s. of the respec-

tive (3.7) and (3.23) expressions, defines the integrated charge

Q(t0) =

∫ π

0
dφ̃
(
ε(0)L(0) − η(0)W(0)

)
+O(µ2

3), (3.29)

with variations (δΛL(0), δΛW(0)) given precisely as in (3.19) with (L,W, ε, η) substituted

by the initial conditions (L(0),W(0), ε(0), η(0)).

The variations (δΛL(1), δΛW(1)) are given in terms of (δΛL(0), δΛW(0)), as presented in

the last two lines in (3.27). Thence from (2.12) one derives (3.11) which is W3. As already

stated this Poisson structure is not equivalent to the Dirac structure (3.14) mentioned

before. The technical reason being the presence of the field dependent redefinition of gauge

parameters (3.28) that is not equivalent to a redefinition of (L(0),W(0)). As we will show

this procedure is somehow violating the Dirichlet boundary conditions (3.1).

But before going on let us write down the expression for the original (V 2
−1, V

3
−2)

components of the projection A1 of A and the corresponding residual gauge parameters,

(L,W, ε, η), in terms of the (L(0),W(0), ε(0), η(0)) for the choice (3.28)

L = L(0) + 3µ3W(0) + µ3t0∂1W(0) +O(µ2
3),

W = W(0) − µ3

(
8

3
L(0)2

+
3

4
∂2
x1
L(0)

)
− 1

12
µ3t0

(
16L(0)∂1L(0) + ∂3

1L(0)
)

+O(µ2
3),

ε = ε(0) − µ3

(
8

3
η(0)L(0) +

1

4
∂2
x1
η(0)

)
+

1

12
µ3t0

(
16L(0)∂1η

(0) + ∂3
1η

(0)
)

+O(µ2
3),

η = η(0) + µ3ε
(0) − µ3t0∂1ε

(0) +O(µ2
3). (3.30)

The (V 2
−1, V

3
−2) components of A are recovered by dropping the terms linear in µ3 without

t0 dependence in the first two lines in (3.30).

3.3.1 The change to W3 of [1] as a non residual transformation to the highest

weight gauge

As promised, we will show that the process that follows the choice (3.28) in defining a W3

algebra, is equivalent to the process of performing a non residual gauge transformation9

9This argument has been already presented by the authors in [18, 24]. Here we provide this instance

from our own perspective.
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that maps the P -phase space (3.1) to the highest weight gauge phase space used in [6]. In

other words it is equivalent to perform a gauge transformation that changes the original

boundary conditions and thence the new W3 bracket algebra, corresponds to a different

phase space, not to (3.1).

Firstly, let us discuss some facts that will be useful in reaching our purpose. Let A be

the space of flat connections with residual gauge transformation condition δA = DAΛA.

Let g be an arbitrary field dependent gauge group element which is not a residual

transformation of A. By performing the similarity transformation by g on both sides of

(δA) = DAΛA we get

gδAg−1 = δAg −DAg(gδg
−1),

gDA(ΛA)g−1 = DAg(gΛAg
−1), (3.31)

where Ag ≡ gAg−1 + g∂g−1. From (3.31) we read out the transformation law for the

residual gauge parameter Λ

ΛAg = gΛAg
−1 + gδg−1, (3.32)

where at this point, we are free to substitute the arbitrary differential δ by δΛA , the initial

residual gauge transformation.

Now we notice that equations (3.3) and (3.20) are integrable at any order in µ3 as it

follows from gauge invariance [1, 12]. One way to solve them is to express the solution in

terms of a gauge group element g = g(L̃, W̃, µ3x2) that takes the highest weight connection

Ã1 = V 2
1 + L̃V 2

−1 + W̃V 3
−2, Ã2 = 0, (3.33)

to (3.1), via the gauge transformation law Ã → Ãg ≡ A. The element g that trans-

forms (3.33) into (3.1) is generated at the first order in µ3 and linear order in the algebra

element by:

Λg = Λ(ε̃g, η̃g)− x2A2 +O(µ2
3)

= Λ(ε̃g, η̃g) + Λ(0,−µ3x2) +O(µ2
3), (3.34)

with Λ, as a function of (ε̃, η̃), given by (3.18) with background fields (L̃, W̃) instead of

(L,W). From the second line in (3.34) it follows that Λg generates transformations of the

kind (3.19) on the (L̃, W̃) and relate them with the new parameters (L,W) by

L = L̃ − 2µ3x2∂1W̃ +O(µ2
3), W = W̃ + µ3x2

(
8

3
L̃2 +

1

6
∂2

1L̃
)

+O(µ2
3), (3.35)

where we have hidden the arbitrariness Λ(ε̃g, η̃g) in (3.34), inside of the (L̃, W̃). From the

x2 flow equations (3.3) and (3.35) one is able to identify the parameters (L̃, W̃) with the

initial conditions

L̃ ≡ L(0) + µ3L(0)
1 +O(µ2

3), W̃ ≡ W(0) + µ3W(0)
1 +O(µ2

3). (3.36)
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The gauge transformation induced by g is then identified with the Hamiltonian evolution

along x2 that recovers (L,W) out of the initial conditions (3.36).

Now we can apply (3.32) to this specific case

Λ = gΛ̃g−1 + gδg−1

= Λ̃ + x2 (δA2 − [A2,Λ]) +O(µ2
3) = Λ̃ + x2∂2Λ|x2=0 +O(µ2

3)

= Λ̃ + x2

(
−µ3

(
8

3
L̃∂1η̃ +

1

6
∂3

1 η̃

)
V 2

1 + 2µ3∂1ε̃V
3

2 + . . .

)
+O(µ2

3).

(3.37)

Where by δ we mean the analog of the variations (3.19), and again we have hidden the

arbitrariness Λ(ε̃g, η̃g) inside the parameters Λ̃ ≡ Λ(ε̃, η̃). The last line in (3.37), together

with the x2 flow equations (3.20), allows us to identify the parameters (ε̃, η̃) with the initial

conditions (ε(0) + µ3ε
(0)
1 +O(µ2

3), η(0) + µ3η
(0)
1 +O(µ2

3)). For later reference

ε̃ ≡ ε(0) + µ3ε
(0)
1 +O(µ2

3), η̃ ≡ η(0) + µ3η
(0)
1 +O(µ2

3). (3.38)

After imposing (3.28), the explicit form of Λ (3.18), (3.36), (3.38) on (3.35)

and (3.37), one finds the same expressions (3.28) gotten from the previous procedure for

(L(0)
1 ,W(0)

1 , ε
(0)
1 , η

(0)
1 ).

We have thence proven that the process that follows the choice (3.28) in defining a

W3 algebra, is equivalent to the process of performing the non residual gauge transforma-

tion (3.34) that maps the P -phase space (3.1) to the highest weight gauge phase space (3.33)

used in [6].

Finally, let us provide a different perspective to understand the significance of the

choice of µ3 dependence, (L(0)
1 ,W(0)

1 , ε
(0)
1 , η

(0)
1 ), in the integration constants (L̃, W̃, ε̃, η̃).

From (3.32) it follows that the differential of charge δQ ≡
∫ π

0 dφ̃ tr(Λ̃δA) is not invariant

under a generic gauge transformation. In particular, the differential of charge for (3.33)

previous to the gauge transformation g encoding the x2 evolution, is:

δQ(ε̃, η̃) ≡
∫ π

0
dφ̃ tr(Λ̃δÃ1) =

∫ π

0
dφ̃
(
ε̃δL̃ − η̃δW̃

)
, (3.39)

and picks up an extra µ3 dependence after a generic µ3 dependent non residual gauge trans-

formation is performed. The choice (3.28) is the one that cancels, up to trivial integrations

of total derivatives, the extra µ3 dependence contribution to the final differential of charge.

The final result for the transformed charge, after functional integration is performed, co-

incides with (3.29). This result is a consequence of the fact that the transformation g to

the highest weight gauge is equivalent to perform the field dependent redefinition (3.28).

Notice that in consequence, the non residual gauge transformation g takes to a phase

space (3.33) different than the P -phase space (3.1). As this non residual gauge transfor-

mation g is equivalent to the choice (3.28) we have thence proven that the field dependent

redefinition of residual gauge parameter (3.28) does not preserve the form of the P -phase

space. So, the W3 algebra obtained after performing (3.28) does not act onto the P -phase

space (3.1). In consequence, the existence of the change (3.28) to a W3 algebra [1], is not
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in contradiction at all, with the fact that the fixed time Dirac bracket algebra, aka fixed

time asymptotic symmetry algebra, computed for the P -phase space (3.1) is not isomorphic

to W3.

3.4 Explicit computation of Dirac bracket algebra in D-phase space

In this section we try to identify a W
(2)
3 Dirac bracket structure of another phase space

that contains black holes [18].

Firstly, we review how to embed the P -phase space (3.1) into a larger phase space.

We call it D-phase space after the fact we use the diagonal (D) embedding classification of

generators to describe it.10 Finally we compute the corresponding fixed time Dirac bracket

algebra and show that it is isomorphic to W
(2)
3 .

First we redefine our generators as

J0 =
1

2
V 2

0 , J± = ±1

2
V 3
±2, Φ0 = V 3

0 ,

G
(±)
1
2

=
1√
8

(
V 2

1 ∓ 2V 3
1

)
, G

(±)

− 1
2

= − 1√
8

(
V 2
−1 ± 2V 3

−1

)
, (3.40)

with the non trivial commutation relations being:

[Ji, Jj ] = (i− j)Ji+j , [Ji,Φ0] = 0, [Ji, G
(a)
m ] = (

i

2
−m)G

(a)
i+m,

[Φ0, G
(a)
m ] = aG(a)

m , [G(+)
m , G(−)

n ] = Jm+n −
3

2
(m− n)Φ0, (3.41)

with i = −1, 0, 1, m = −1
2 ,

1
2 and a = ±. The J ’s denoting the sl(2,R) generators in the

diagonal embedding. After the shift ρ→ ρ− 1
2 log(µ3), the space of flat connections (3.1)

can be embedded into

A1 = ν3

(√
2

(
G

(+)
1
2

+G
(−)
1
2

)
− 1√

2

(
G+ + G−

)
J− −

√
3J
(
G

(+)

− 1
2

+G
(−)

− 1
2

))
,

A2 = 2J+ + 2G+G
(+)

− 1
2

+ 2G−G(−)

− 1
2

+
√

6JΦ0 + 2T ′J−, (3.42)

where ν3 ≡ µ
− 1

2
3 and

G+ =

√
2

6
µ

3
2
3 (∂1L+ 6W) , G− = −

√
2

6
µ

3
2
3 (∂1L − 6W) ,

J =

√
2

3
µ3L, T ′ = −

1

6
µ2

3(∂2
1L+ 6L2). (3.43)

To obtain the previous phase space (3.1) out of (3.42), one must impose restrictions

on the latter. This is, relations (3.43) imply the constraints

G+ − G− − 1√
3 ν3

∂1J = 0, T ′ + 1

2
√

6 ν2
3

(
∂2

1J + ν2
3

√
3

2
J 2

)
= 0, (3.44)

10We use these P, D prefixes to stress the difference between both phase spaces.
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which are not compatible with the equations of motion

∂1G± = ∓ ν3

2
√

2

(
6J 2 ±

√
6∂2J + 4T ′

)
, ∂1J =

√
3ν3

(
G+ − G−

)
,

∂1T ′ = −ν3

(√
3
(
G− − G+

)
J +

1

2
√

2

(
∂2G− + ∂2G+

))
, (3.45)

and hence define second class constraints on the corresponding phase space of solutions.

We will not impose them, in fact they are non perturbative in ν3. As already mentioned,

we will denote the phase space (3.42) with the prefix D.

The gauge parameter of residual gauge transformations for (3.42)

Λ = 2ΛJ+J+ + 2ΛG+
1
2

G+
1
2

+ 2ΛG−1
2

G−1
2

+
√

6ΛΦ0Φ0

+

(
−1

2
∂2ΛJ+

)
J0 +

(
−G+Λ

G
(−)
1
2

− G−Λ
G

(+)
1
2

+ 2T ′ΛJ+ +
1

4
∂2

2ΛJ+

)
J−

+

(
−
√

6JΛG+
1
2

+ 2G(+)ΛJ+ − ∂2Λ
G

(+)
1
2

)
G+
− 1

2

+

(
−
√

6JΛG−1
2

+ 2G(−)ΛJ+ + ∂2Λ
G

(−)
1
2

)
G−− 1

2

,

(3.46)

defines the variations

δΛJ+
T ′ = ΛJ+∂2T ′ + 2∂2ΛJ+T ′ +

1

8
∂3

2ΛJ+ ,

δΛΦ0
J = ∂2ΛΦ0 , δΛ

G
(+)
1
2

J = −
√

6Λ
G

(+)
1
2

G−, δΛ
G

(−)
1
2

J =
√

6Λ
G

(−)
1
2

G+,

δΛJ+
G(±) = ∂2ΛJ+G+

3

2
ΛJ+∂2G(±) ±

√
6ΛJ+JG±,

δΛ
G+

1
2

G− =

(
2T ′ + 3J 2 −

√
3

2
∂2J

)
ΛG+

1
2

−
√

6J ∂2ΛG+
1
2

+
1

2
∂2ΛG+

1
2

, (3.47)

and the following differential of charge in the case of x1 evolution

δQ =

∫
dx2tr (ΛδA2) =

∫
dx2

(
ΛJ+dT − ΛΦ0dJ − Λ

G
(−)
1
2

dG+ − Λ
G

(+)
1
2

dG−
)
. (3.48)

We could now repeat the method of variation of generators done for the case of the principal

embedding to this case, but instead we choose to work out the explicit computation of Dirac

bracket algebra.

For the sake of brevity we will work at t0 = 0, but the conclusion of this computation

remains unchanged at any other fixed time slice. The difference being that the charges will

carry an explicit t0 dependence as in the previous case. At t0 = 0 the Cauchy data at first
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order in ν3 can be written in the form

A = 2Aφdφ̃ = (Ax1dx1 +Ax2dx2)

=

(
2J+ +

√
2ν3

(
G

(+)

− 1
2

+G
(−)

− 1
2

)
+ 2G̃+(0)G

(+)

− 1
2

+ 2G̃−(0)G
(−)

− 1
2

+
√

6J (0)Φ0 + 2T̃ ′(0)J−

)
dφ̃+O(ν2

3), (3.49)

by a choice of integration constants. Where

G̃±(0) = G±(0) −
√

3

2
ν3J (0), T̃ ′(0) = T ′(0) − 1

2
√

2
ν3

(
G+(0) + G−(0)

)
. (3.50)

Again, we remind that by the super index (0) we refer to the initial conditions of the

system of x1 evolution equations (3.45). Some comments on notation are in order. Let the

components of A in the W
(2)
3 basis (3.40), be denoted again by Aa with a = 1, . . . , 8 and

the ordering corresponding to

(
J0, J+, J−,Φ0, G

(+)

− 1
2

, G
(−)

− 1
2

, G
(−)

− 1
2

, G
(+)

− 1
2

)
. (3.51)

At this point, we impose the four second class constraints

Ci =
(
A1, A2 − 2, A7 −

√
2ν3, A8 −

√
2ν3

)
, (3.52)

on the phase space (3.49) endowed with the algebra (2.13) written in the basis (3.51).

Notice that we shall not impose the second class constraints coming from (3.44). As

already mentioned they are non perturbative in ν3.

Next, is straightforward to compute the Dirac bracket (3.9). For completeness we write

down the non vanishing elements of Mij in this case

M11 =
1

8
∂x2δx2y2 , M12 = −M21 = − 1

2
√

2
δx2y2 , M34 = −M43 =

1

2
δx2y2 ,

M13 = −M31 = M41 = −M14 =
ν3

4
√

2
δx2y2 , (3.53)

from where we can check explicitly by using (3.9) that {Ci, . . .}D = 0.

The algebra in the reduced phase space will depend on ν3 explicitly, but after imple-

menting the change

G±(0)
ν3

= G̃±(0) −
√

3

2
ν3J (0), T ′ν3

= T̃ ′ − 1√
2
ν3(G̃+(0) + G̃−(0)), (3.54)
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we obtain the undeformed W
(2)
3 algebra:

{T ′(0)
ν3

(y2), T ′(0)
ν3

(x2)}D = T ′(0)
ν3

δx2y2 + 2∂x2T ′(0)
ν3

δx2y2 +
1

8
∂x2δx2y2 ,

{J (0)
ν3

(y2),J (0)
ν3

(x2)}D = δx2y2 ,

{J (0)
ν3

(y2),G±(0)
ν3

(x2)}D = ±
√

6G±(0)
ν3

δx2y2 ,

{T ′(0)
ν3

(y2),G±(0)
ν3

(x2)}D = ∂x2G±(0)
ν3

δx2y2 +
3

2
G±(0)
ν3

∂x2δx2y2 ±
√

6J (0)
ν3
G±(0)
ν3

δx2y2 ,

{G+(0)
ν3

(y2),G−(0)
ν3

(x2)}D = −

(
2T ′0ν3

+ 3J (0)
ν3

2 −
√

3

2
∂x2J (0)

ν3

)
δx2y2

+
√

6J (0)
ν3
∂x2δx2y2 − ∂2

x2
δx2y2 ,

(3.55)

that agrees precisely with the signature of charges in (3.48) and the transformation

laws (3.47). The most canonical form can be achieved by the usual redefinition of en-

ergy momentum tensor T ′(0)
ν3 → T ′(0)

ν3 + 1
2J

(0)
ν3

2
that makes G

±(0)
ν3 and J (0)

ν3 primaries of

weight 3
2 and 1 respectively. It is then proven that the fixed time asymptotic symmetry

algebra of the space of solutions (3.42) is W
(2)
3 at first order in the parameter ν3.11

Notice that (3.42) does contain the (µ3, µ̄3) black hole solutions [7] (of course, after

performing the shift ρ→ ρ− 1
2 log(µ3) on them), as zero modes. Thence, both families (3.1)

and (3.42) can be used to define the charges of these black holes. However, the two

possibilities are not equivalent as we have already shown that (3.42) is larger than (3.1) and

thence the corresponding algebras are not isomorphic. The family (3.42) is the preferred

one, as for (3.1) it is impossible to define a basis of primary operators.12

We make a last comment before concluding. Notice that should we have worked with

the following coordinates

x1 =
t+ φ

2
, x2 =

φ

2
, (3.56)

all previously done remains valid, up to dependence on t0. This dependence only af-

fects implicitly the W
(2)
3 algebra through field redefinitions. The hs(λ) ansätze introduced

in [25], belong to (3.42) under (3.56) for the truncation to sl(3,R) via the limit λ = 313.

Thenceforth, in this case, the corresponding charges are not of higher spin character.

In our study we did not attempt to meddle with the issue of asymptotic symmetry

algebras coming from generalised boundary conditions in the context of hs(λ). We hope

to report on that point in the near future.

11However, this should be the case at any order in ν3. As suggested by the non perturbative analysis

reported in appendix B.2 of [18]. Notice that to compute explicitly Dirac brackets we were forced to the

use of perturbation theory. For an alternative non perturbative analysis, the reader can refer to [18].
12One can define a quasi-primary field of dimension 2, as a Virasoro subalgebra can be identified in (3.14),

but the remaining generator can not be redefined in order to form a primary with respect to the Virasoro one.
13However one should keep in mind the extra shift in the coordinate ρ→ ρ− 1

2
log(µ3).
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4 Final remarks

We started by analysing the Dirac bracket algebra on the phase space of sl(3,R) CS in prin-

cipal embedding (3.1) after imposing the set of 6 constraints (3.12) onto the corresponding

Kac Moody algebra (2.13) with x1 = t+φ
2 and x2 = −t+φ

2 . Apart from the explicit compu-

tation, we used the method of variation of generators to cross check our result. The fixed

time Dirac bracket algebra is not isomorphic to W3.

To complete our study, and try to elucidate the apparent contradiction, we have shown

that the W3 algebra that one can arrive to after a given field dependent redefinition of the

smearing gauge parameter, as shown in [1] and here verified, does not act onto the original

P -phase space (3.1), but onto a phase space defined by a highest weight choice [5, 6, 21].

Finally, we computed the fixed time Dirac bracket algebra in phase space (3.42), con-

taining black holes, and as expected it turned out to be isomorphic to W
(2)
3 [1, 18].

It would be necessary to address similar questions for a generic value of the deformation

parameter λ. For that, analysis in perturbations of the generalised boundary conditions in

the corresponding phase spaces, like the expansion in (µ, µ̄) in the P -phase space, or (ν, ν̄) in

the D-phase space of the λ = 3 truncation here reviewed, could result helpful. Nevertheless

we believe that an alternative and more general path to follow can be developed.
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A Conventions

The construction of the hs(λ) algebra can be seen for example in [26]. The algebra is

spanned by the set of generators V s
t with s = 2, . . . ,∞ and 1− s ≤ t ≤ s− 1. The element

V 1
0 denotes the identity operator. To define the algebra we use the ?-product representation

constructed in [27]:

V s
m ? V t

n =
1

2

s+t−Max[|m+n|,|s−t|]−1∑
i=1,2,3,...

gsti (m,n;λ)V s+n−i
m+n (A.1)

With the constants:

gsti (m,n;λ) ≡ qi−2

2(i− 1)!
4F3

[
1
2 + λ 1

2 − λ
2−i

2
1−i

2
3
2 − s

3
2 − t

1
2 + s+ t− i

∣∣∣∣1
]
N st
i (m,n), (A.2)

q = 1
4 and:

N st
i (m,n) =

∑i−1
k=0(−1)k

i− 1

k

(s−1+m+1
)
k−i+1

(
s−1−m+1

)
−k

(
t−1+n+1

)
−k

(
t−1−n+1

)
k−i+1

.

(A.3)

Where the (n)k are the ascending Pochhammer symbols.
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Be our definition of trace

tr
(
V s
msV

s
−ms

)
≡ 6

1− λ2

(−1)ms23−2sΓ(s+ms)Γ(s−ms)

(2s− 1)!!(2s− 3)!!

s−1∏
σ=1

(
λ2 − σ2

)
(A.4)

In this paper we take λ = 3 and remain with the ideal part, 2 ≤ s ≤ 3.

The Killing metric on the principal embedding for the ordering given in (3.5)

gab = tr(VaVb) =



0 0 1 0 0 0 0 0

0 −1
2 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1
4 0

0 0 0 0 0 −1
6 0 0

0 0 0 0 1
4 0 0 0

0 0 0 −1 0 0 0 0


(A.5)

The Killing metric in diagonal embedding for the ordering given in (3.51)

gab = tr(VaVb) =



−1
8 0 0 0 0 0 0 0

0 0 1
4 0 0 0 0 0

0 1
4 0 0 0 0 0 0

0 0 0 −1
6 0 0 0 0

0 0 0 0 0 0 −1
4 0

0 0 0 0 0 0 0 −1
4

0 0 0 0 −1
4 0 0 0

0 0 0 0 0 −1
4 0 0


(A.6)

Useful results. Here we report some results that were useful during the computations

in section 3.2. In particular, the solution to the conditions

(δL(0)
1 )δ→(δΛ)|µ3→0

= (δΛL)

∣∣∣∣
At µ3 & x2→0

,

(δW(0)
1 )δ→(δΛ)|µ3→0

= (δΛW)

∣∣∣∣
At µ3 & x2→0

, (A.7)

where we remind the reader that by (δ . . .)|δ→δΛ we mean:

• Take the functional differential of . . . in terms of (δL(0), δW(0)) and therafter sub-

stitute δ by δΛ. The expressions for (δΛL(0), δΛW(0)) are reported in (3.26). The

expressions for (δΛL, δΛW) are reported in (3.19).

The most general solution to (A.7) read out

L(0)
1 = 3c1W(0) + c2∂1L(0) + 2c1x1∂1W(0)

W(0)
1 = −c1

(
8

3
L(0)2

+
3

4
∂2

1L(0)

)
+ c2∂1W(0) − c1x1

(
8

3
∂1L(0) +

1

6
∂3

1L(0)

)
ε
(0)
1 = −c1

(
8

3
η(0)L(0) +

1

4
∂2

1η
(0)

)
+ c2∂1ε

(0) + c1x1

(
8

3
∂1η

(0)L(0) +
1

6
∂3

1η
(0)

)
η

(0)
1 = c1ε

(0) + c2∂1η
(0) − 2c1x1∂1ε

(0). (A.8)
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It is straightforward to check that (A.8) coincides with (3.28) for c1 = 1 and c2 = 0. In

fact this is the unique choice out of (A.8) that allows to integrate the differential of charge

to (3.29).

It is also useful to write down the most general choice of (L(0)
1 ,W(0)

1 , ε
(0)
1 , η

(0)
1 ) that is

consistent without explicit dependence on φ and dimensional analysis. It is given by

L(0)
1hom = c3W + c4∂1L, W(0)

1hom = c5L2 + c6∂
2
1L+ c7∂1W,

ε
(0)
1 hom = c8∂1ε+ c9∂

2
1η + 2c10Lη, η

(0)
1 hom = c11ε+ c12∂1η. (A.9)

We use (A.9) to show that (3.14) is not isomorphic to W3.
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