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Abstract

Background: Although it has long been proposed that genetic factors contribute to adaptation to high altitude,
such factors remain largely unverified. Recent advances in high-throughput sequencing have made it feasible to
analyze genome-wide patterns of genetic variation in human populations. Since traditionally such studies surveyed
only a small fraction of the genome, interpretation of the results was limited.

Results: We report here the results of the first whole genome resequencing-based analysis identifying genes that
likely modulate high altitude adaptation in native Ethiopians residing at 3,500 m above sea level on Bale Plateau or
Chennek field in Ethiopia. Using cross-population tests of selection, we identify regions with a significant loss of
diversity, indicative of a selective sweep. We focus on a 208 kbp gene-rich region on chromosome 19, which is
significant in both of the Ethiopian subpopulations sampled. This region contains eight protein-coding genes and
spans 135 SNPs. To elucidate its potential role in hypoxia tolerance, we experimentally tested whether individual
genes from the region affect hypoxia tolerance in Drosophila. Three genes significantly impact survival rates in low
oxygen: cic, an ortholog of human CIC, Hsl, an ortholog of human LIPE, and Paf-AHα, an ortholog of human
PAFAH1B3.

Conclusions: Our study reveals evolutionarily conserved genes that modulate hypoxia tolerance. In addition, we show
that many of our results would likely be unattainable using data from exome sequencing or microarray studies. This
highlights the importance of whole genome sequencing for investigating adaptation by natural selection.
Background
Humans have occupied high altitude regions for thou-
sands of years [1]. It is estimated that currently more
than 140 million people live and work at altitudes above
2,500 m [2], where hypoxic conditions present a chal-
lenge for survival. Previous studies suggest that the
three large high altitude populations (that is, Andeans,
Himalayans, and Ethiopians) have each adapted uniquely
to cope with their inhospitable hypoxic environments
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[3,4]. It has also been suggested that the Ethiopians are
better adapted to these conditions, as they show the least
evidence of chronic mountain sickness (CMS), a high alti-
tude syndrome that exists in other populations, especially
the Andeans [5]. For instance, of the three highlander
populations, Ethiopians show arterial oxygen levels that
are most similar to sea level controls [4,6]. Although it has
long been proposed that genetic factors contribute to
adaptation to high altitude, these remain largely unproven
[7]. Recent advances in high-throughput sequencing tech-
nologies have made it feasible to analyze patterns of gen-
etic variation in human populations across the entire
genome. To date, several genomic scans for natural selec-
tion have been performed in high altitude populations (for
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instance, [8-15]); however, as these studies either focused
on a priori candidate genes, or assayed small portions of
the genome (exons or a subset of genotyped SNPs), there
is likely much yet to be deciphered.
We previously performed the first whole genome

resequencing-based analysis of genes contributing to hyp-
oxia adaptation in a tolerant Drosophila strain, generated
through laboratory evolution [16]. Examining the com-
plete genome of adapted populations, we were able to de-
tect fine changes in the allele frequency spectrum con-
sistent with natural selection. Extending the analytical
strategy from our previous study, we present here the
results of a whole genome resequencing-based analysis
identifying genes that likely contribute to high altitude
adaptation in humans. We focused our study on 13 high
altitude (approximately 3,500 m) native Ethiopian resi-
dents. Specifically, we analyzed the genomes of six individ-
uals of Oromo heritage living on Bale Plateau (labeled
'Oromos'), and seven individuals residing on the Chennek
field in the Simien Mountains (labeled 'Amhara').
While our study uses well-known statistical tests to

identify genomic regions undergoing a selective sweep,
we have made a number of novel design choices com-
pared with previous studies of human adaptation [8-15].
First, we use whole genome sequencing (WGS) rather
than genotyping arrays, allowing a much richer sampling
of the site frequency spectrum in a given region. Second,
in order to test whether particular genes highlighted by
our analysis play a role in hypoxia tolerance, we used RNA
interference (RNAi) to target their respective orthologs in
Drosophila melanogaster. Thus, in addition to reporting a
set of regions showing a strong signature of positive selec-
tion in high altitude populations (as in previous studies),
we also report on several genes that, apart from showing
such a signature, are shown experimentally to modulate
the adaptive phenotype.

Results
We sequenced the genome of each individual using Illu-
mina’s Hiseq 2000 platform to a mean genome-wide
depth of approximately 18× per individual. We mapped
the reads to the hg19 human reference using BWA [17],
and performed variant calling using the GATK pipeline
[18,19]. See Additional file 1 for an overview of the com-
putational pipeline.
We then used ADMIXTURE [20] to identify the closest

populations from the 1000 Genomes Project [21], release
20100804. This showed that our Ethiopian highlanders
share common genetic ancestry, and are largely an admix-
ture of two ancestral groups (Additional file 2). The largest
ancestry component shows high similarity to African pop-
ulations, particularly the Luhya (LWK), located in neigh-
boring Kenya. The remainder is largely shared with
individuals of non-Finnish, European ancestry. As a result,
for lowlander controls, we used variant calls from low
coverage whole-genome sequencing of 67 Luhya (LWK) in-
dividuals. As an out-group we used 90 northern European
ancestry (CEU) individuals. We also performed principle
component analysis (Additional file 3) on our study popula-
tions jointly with the lowlander controls (LWK) and out-
group (CEU), further illustrating our study populations as
an admixture of these two ancestral groups. Due to differ-
ences in coverage between the control populations and our
Ethiopian sequence data, we filtered low coverage or poor
quality loci prior to testing for selection (see Materials and
methods).

Genome-wide scans of selection
Under environmental selective stress, such as hypoxia,
alleles that confer an adaptive advantage are likely to in-
crease in frequency, along with their linked neighbors.
This process is known as a 'selective sweep'. We sought
regions with evidence of such a sweep: a loss of genetic
diversity in the region and a corresponding decrease in
the scaled mutation rate, θ (=4Neμ where Ne is the ef-
fective population size and μ is the mutation rate). We
computed four cross-population test statistics (denoted
Sf, Sπ, Fst, and population branch statistic (PBS); see
Materials and methods) that measure this loss in diver-
sity. Cross-population tests provide a control for locus-
specific variability in scaled mutation rates, enabling a
direct comparison of the effective population size as a
measure of selection (Sf and Sπ). They also allow for an
estimation of branch lengths and bottlenecks relative to
the point of divergence between populations (Fst and
PBS). Through extensive simulations, we showed that
the power of these tests varies depending on the selec-
tion coefficient and time since selection, among other
things [22] (Materials and methods; Additional files 4
and 5). As these parameters are unknown, we considered
regions that were significant under any of these tests.
We assume that the genetic basis for the adaptation to

low oxygen influences relatively few loci genome-wide.
As a result, for a cross-population test, the null distribu-
tion of two neutrally evolving populations can be ap-
proximated by the observed distribution of highlanders
versus lowlander controls. We report regions exceeding
the top 0.1% genome-wide value for each test. For the
Amhara population, these values were 0.16 (PBS), 0.18
(Fst), 1.73 (Sπ), and 2.0 (Sf ). For the Oromos, these were
0.15 (PBS), 0.16 (Fst), 1.61 (Sπ), and 1.88 (Sf ).
We initially identified 420 regions spanning 36.8 Mbp

as significant in at least one test under the correspond-
ing 0.1% genome-wide false discovery rate (FDR; see
Additional file 6 for a summary, and Additional file 7 for
the complete set of regions identified by the four tests).
While genome-wide scans for selection are a powerful tool
for detecting genetic factors contributing to adaptation, it
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is also true that these scans make no guarantees on the
significance of the results [23,24]. Consequently, we pro-
vide experimental evidence to further support the role of
some of our highlighted genes in hypoxia adaptation. Due
to the infeasibility of doing this for all genes identified by
our tests, we were faced with the need to prioritize candi-
date regions that showed the strongest evidence of testable
selection, and that appeared unique to Ethiopian high-
landers. We thus implemented a series of automated
prioritization criteria.

Region prioritization
Frequency block differential relative to lowlander control
A region under strong positive selection is characterized
by changes in allele frequencies that cannot be explained
by a neutral model. These often manifest as blocks of
SNPs with increased minor allele frequency. We leverage
this fact by seeking regions with multiple SNPs present
in a block structure, at comparatively high frequencies
in the highlander populations. Given a population sam-
ple of size n, we iterate over all possible frequency values
f, where f = (1/n, 2/n, …, (n-1)/n). For each value of f, we
isolate the variants in the region of frequency within 1/n
from f. From these, we define a f-frequency block as a
subset of ≥10 consecutive SNPs. Then, for each such
block, we calculate the frequency differential, defined as
the absolute difference in mean frequency between the
study population and the closer of the LWK and CEU
lowlander controls. We focus on regions with large
block differential. Specifically, we consider only regions
with block differential exceeding the 95% confidence
interval (CI) of the sampling variance when sampling
n = 12 (for Oromos) or n = 14 (for Amhara) haplo-
types from a population (roughly 20%; see Discussion;
Additional file 8). Fifty-eight regions were prioritized
after this step.

Frequency block differential relative to HapMap control
populations
To ensure that the prioritized regions represent positive
selection only in Amhara or Oromos highlanders, we ex-
panded our controls to include additional lowlander
populations. Specifically, we prioritized regions with
block differential exceeding the 95% CI of the sampling
variance (see above) compared to all HapMap popula-
tions [25]. This ensures we do not consider regions
where the dominant haplotype block exists at similar
frequency in lowlander populations. Specifically, this
helps to avoid spurious signal of selection due to non-
African admixture, but also signal that is common be-
tween the highlanders and other lowlander populations.
Apart from admixture, such common regions may come
about independently (due to similar selective con-
straints), or may be the remnants of selection in an
ancestral population. Twenty-seven regions remained
prioritized after this step.

Frequency block differential after integrating existing
genotype data
We also used variant calls from a previous study by
Alkorta-Aranburu et al. [14] on the same highlander
populations. In this study, the authors performed geno-
typing on 102 Amhara highlanders, and 63 Oromos
highlanders. By incorporating the allele frequencies ob-
served in genotyping these larger cohorts, we were able
to refine our sample frequencies and identify any false
signals that were caused by sampling. For a given region,
we extracted all variants from the (previously identified)
f-frequency block, which were also covered by Alkorta-
Aranburu et al. We then refined our highlander (Am-
hara or Oromos) block frequency by taking a weighted
average (by sample size) over the observed frequencies
in the corresponding population from both studies. For
instance, if the observed mean frequency for a haplotype
block was 0.8 in our Oromo sample (n = 12), and 0.85 in
the Oromo sample from Alkorta-Aranburu et al. (n =
126), the revised block frequency would be set to 0.846.
Due to the increased sample size, the 95% CI of sampling
error was reduced substantially. Consequently, we priori-
tized regions where the revised block frequency differen-
tial was greater than 10% for all controls. We note that
regions that contained no variants sampled by Alkorta-
Aranburu et al. were unaffected by this criterion. Nineteen
regions remained prioritized after this step.

RefSeq genes in region
Finally, we prioritized candidate regions that overlap at least
one transcript, as defined by RefSeq (release 45, down-
loaded 14 January 2011). This collection includes protein
coding genes, microRNAs, and non-coding RNAs (39,173
transcripts overall). Other regions may contain important
regulatory variations; however, for an initial pass, we fo-
cused our efforts on regions for which there are more read-
ily accessible methods to identify and validate causal effects.

Prioritized regions
At the end of this process, only eight regions remained
in our list of prioritized regions (see Table 1 for a sum-
mary; see Additional file 9 for Manhattan plots). Of
these, two were significant in both the Amhara and the
Oromos populations. However, due to a lack of overlap-
ping sites from HapMap [25] or from the Alkorta-
Aranburu et al. study, we were unable to subject one of
these loci (chr14:106.32-106.39 M) to the complete bat-
tery of prioritization criteria. As a result, we focused on
the remaining shared region.
This 208 kbp gene-rich region on chromosome 19 con-

tains a block of 135 'differential' SNPs showing significant



Table 1 Significant genomic regions in the Amhara and/or the Oromos populations

Chromosomal region A O Tests Genes located in the region

1 Chr6:29796452-29896452 ✓ Sπ, Sf HLA-G, HLA-H, HCG2P7, HCG4P6

2 Chr9:33915871-34021871 ✓ Sπ, Sf UBE2R2, UBAP2, SNORD121A/B

3 Chr11:84676260-84910260 ✓ Sπ, Sf DLG2

4 Chr13:78496785-78606785 ✓ Sπ EDNRB

5 Chr14:106322845-106396845 ✓ ✓ Fst KIAA0125

6 Chr19:42741726-42973726 ✓ ✓ PBS GSK3A, ERF, CIC*, PAFAH1B3*, PRR19,
TMEM145, MEGF8, CNFN, LIPE*, CXCL17

7 ChrX:44982060-45036060 ✓ Sπ, Sf CXorf36

8 ChrX:130614060-130752060 ✓ Sπ, Sf OR13H1

*Genes experimentally validated as affecting hypoxia tolerance in Drosophila.
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change in frequency relative to the control populations
(Figure 1). Specifically, the mean variant frequencies are
48% (Oromos), 42% (Amhara), 16% (LWK), and 1%
(CEU). We computed the local linkage disequilibrium
(LD) structure in the region, and found a strong, and very
large, LD block surrounding the region in the Oromos
(Additional file 10). A corresponding, but smaller, block
was also visible in the Amhara. This is consistent with the
longer timespan spent at high altitudes by the Amhara
[26], during which recombination may have broken local
LD structure.
Figure 1 Population branch statistic (PBS) across chromosome 19 in t
European (CEU) populations. The red line represents a genome-wide 0.1
the centromere and were thus not prioritized. The bottom panel shows th
LWK (brown, inverted). Genes with Drosophila orthologs (on which RNAi ex
profiles. As can be seen, variant frequencies in this region are considerably
Of the 10 genes in the region (Table 1), 8 lie in the pri-
oritized region shared across the Oromos and the Am-
hara. These genes point to many intriguing candidates.
For example, the differential SNPs include two missense
mutations in the LIPE gene (rs7246232 and rs16975750;
Additional file 11). While these mutations have not pre-
viously been linked to a known phenotype, LIPE is asso-
ciated with gestational hypertension (and consequent
placental ischemia) [27]. It belongs to the lipase family,
which is known to play a role in hypoxia via lipolysis, tri-
glyceride metabolism, and energy storage [28]. Other
he Oromos population compared to both the Luhya (LWK) and
% FDR. Three distinct regions exceed this cutoff, two of which are near
e SNP frequency profile in the prioritized region for Oromos (blue) and
periments were conducted) are shown in black below the frequency
higher in the highlanders than in a nearby lowlander population.



Figure 2 RNAi-mediated knockdown of candidate human gene
orthologs enhanced hypoxia tolerance in D. melanogaster. The
available UAS-RNAi lines for cic (ortholog of human CIC), Hsl (ortholog
of human LIPE) and Paf-AHα (ortholog of human PAFAH1B3) were
crossed with the daughterless (da)-GAL4, a driver strain that expresses
GAL4 ubiquitously. The level of hypoxia tolerance was determined by
measuring eclosion rate in an atmosphere chamber containing 5% O2.
The UAS-RNAi stocks without cross were used as a negative control
(open bars). Two different UAS-RNAi lines targeting each candidate
gene were used in each experiment to minimize off-target effects. Each
bar represents the mean ± standard error of the mean value of three
separate tests; *P < 0.05.
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genes in this region include CIC, which is a transcriptional
suppressor involved in early organ development, CNFN
(involved in hematopoiesis [29]), CXCL17 (involved in
angiogenesis [30]), and PAFAH1B3 (related to coronary ar-
tery disease [31] and organ development [32]). Thus, our
results point to a cluster of putative hypoxia response
genes. As these genes are associated with phenotypes such
as lipid metabolism, transcription regulation, or angiogen-
esis, they illustrate the potential for a variety of adaptive
mechanisms to high altitude in humans.
The remaining seven regions (Table 1) contained several

other intriguing gene candidates. For instance, the 110
kbp region on chromosome 13 that is significant for the
Amhara population under the Sπ test contains Endothelin
receptor B (EDNRB; Additional file 12). This gene encodes
a receptor for endothelin, a potent vasoactive peptide,
which activates signaling cascades that promote blood ves-
sel constriction [33]. EDNRB is also tied into the HIF
pathway. Specifically, it is a receptor for Endothelin 1,
which is directly activated by HIF. In addition, it is a
known target for drugs (for example, bosentan) prescribed
for altitude sickness [34]. In the Amhara population, this
gene has 52 fixed, or near-fixed, SNPs (spanning approxi-
mately 170 kbp) upstream of the promoter region, 20
of which are in a 10 kbp region containing several
transcription-factor binding sites (Additional file 7). As a
result, and due to the lack of nonsynonymous coding mu-
tations, we hypothesize that adaptive effects in this region
are likely due to regulatory variation. Further study will be
needed to determine the mechanism by which this may
have occurred. Additionally, we note that the dominant
haplotype block is present in the controls, at 36% fre-
quency in LWK and 66% frequency in CEU. Such inter-
mediate frequencies in lowlander controls are consistent
with selection acting on standing variation, rather than a
de novo mutation [35].

Experimental validation using a model system
To provide further evidence of the role of these genes in
hypoxia, we used D. melanogaster as a model system to
test the hypothesis that differential regulation of their
orthologs in flies affects tolerance or susceptibility to low
O2. Potentially causal variants in the candidate genes may
represent either gain- or loss-of-function changes. Due to
a lack of nonsynonymous coding variants in most of the
genes (with the exception of LIPE), we hypothesize that
adaptive traits are likely the result of regulatory effects.
Because up-regulating a gene may be problematic if it

is unexpressed in a particular tissue, we first used the
UAS-RNAi/GAL4 system (see Materials and methods)
to investigate whether down-regulating the fly orthologs
of the candidate genes in the chromosome 19 region has
any effect on hypoxia tolerance. Of the eight genes in
the region, we tested four (CIC, LIPE, PAFAH1B3, and
MEGF8) that had Drosophila orthologs. Remarkably,
three of the four genes, when knocked down, led to
markedly improved tolerance to low oxygen. These
genes were cic (ortholog of human CIC), Hsl (ortholog
of human LIPE), and Paf-AHα (ortholog of human
PAFAH1B3). We observed an increase in survival rates
that varied from about 40% to 80%, constituting a two-
to four-fold increase over controls in the same hypoxic
environment (Figure 2).
In contrast, we recently tested 2,187 P-elements fly

lines covering 1,870 genes [36] and obtained only 44
lines (approximately 1.5%) showing evidence of tolerance
to low O2. Assuming this roughly represents the null
distribution of random genes affecting hypoxia tolerance,
our observation of three of the four tested genes with this
effect is statistically significant (P = 3.7 × 10-4, Fisher’s
exact test).
We note that CIC has been shown to function as a re-

pressor of receptor tyrosine kinase (RTK) responsive
genes. Following activation of RTK signaling, CIC re-
pression is removed, enabling expression of targeted
genes downstream. CIC is well conserved from Drosoph-
ila to humans, and is mostly known in determining cell
fate and cell proliferation [37,38]. Of interest is the
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cross-talk between the RTK and Notch pathways, in-
cluding core components of the RTK pathway and other
major pathways such as transforming growth factor beta,
Jak/Stat and Wnt [39]. This is remarkable, as we have
previously shown the Notch pathway to be crucial for
hypoxia tolerance in Drosophila [16]. LIPE, a hormone-
sensitive lipase, is important in lipolysis and in mobilization
of fatty acids and glycerol from fat cells. PAF, a platelet-
activating factor, is a potent lipid mediator and is involved
in a variety of physiological events. Its deacetylation induces
a loss of activity that is catalyzed by PAF-AH, a platelet-
activating factor acetyl hydrolase. Type I PAF-AH has two
subunits (α and β) and plays a role in cellular functions
such as induction of nuclear movement and control of
microtubule organization. Further study will be required in
order to determine how exactly reduced expression of these
transcripts contributes to improved hypoxia tolerance.
Despite other phenotypic differences (see 'Sample de-

scription' in Materials and methods), the Amhara and
Oromos are both well adapted to high altitudes. Neverthe-
less, as evident from the chronic mountain sickness scores
(Additional file 13), the Amhara appear to be somewhat
better adapted. This is consistent with the longer time
spent in high altitudes, allowing more opportunity for
adaptation to occur. The comparatively shorter time of the
Oromos at altitude (600 to 700 years [26]) implies rapid
adaptation. One possible explanation for this is selection
acting on standing variation, rather than on de novo muta-
tions [35]. If true, this may also explain commonalities in
adaptation between the populations, as in the chromosome
19 region. An alternative explanation is that a beneficial al-
lele arose in one of the populations, and early migration/
admixture carried the haplotype block to the other.
We emphasize that despite this shared region, the ma-

jority of the signal for selection is not shared between the
two populations (Table 1; Additional file 7). As hypoxia re-
sistance is likely a systematic, complex, and multi-genic
trait, we believe that the genes uncovered here explain
only part of the adaptive trait, and that further studies in
both populations will be required to fully elucidate the
adaptive mechanism.

Discussion
Although the notion that hypoxia tolerance is heritable
has dominated high altitude medicine for some time, it
was only in recent years that attempts to identify the
genetic basis of this adaptation have been made. These
studies used genotyping or exome sequencing, but not
WGS. The relatively sparse sampling of the genome ob-
tained with these technologies makes it harder to iden-
tify shifts in the allele frequency spectrum associated
with natural selection. Consequently, many of these
studies focused on candidate genes. Moore et al. [9] re-
ported one of the first genomic scans for selection in
high altitude human populations. Considering roughly
11,000 SNPs, they identified variants in genes related to
the hypoxia inducible factor (HIF) pathway, such as
Endothelin 1. An extended analysis using genotyping ar-
rays [40] identified candidate genes related to the HIF
pathway, including ETA, NOS2A, and PRKAA1. Another
study by Simonson et al. [11] used LD-based tests, find-
ing signatures of selection in EGLN1 and PPARα. Beall
et al. [12] identified positive selection in a sample of
high-altitude Tibetans at the EPAS1 locus. Similar stud-
ies were also carried out in Ethiopia by Scheinfeldt et al.
[13], identifying CBARA1,VAV3, ARNT2 and THRB (the
latter two are related to the HIF pathway), by Alkorta-
Aranburu et al. [14], identifying several hypoxia-related
genes (for example, CUL3, ADRBK1, CORO1B), and
most recently by Huerta-Sanchez et al. [15], identifying
a HIF-related gene (BHLHE41). Interestingly, we did
not observe strong signals of positive selection in our
Ethiopian populations for any of these genes. This may
be the result of a different assaying technique, as this is
the first study in Ethiopians to use WGS in a genome-wide
scan for selection. We note that the above-mentioned
studies showed no experimental evidence supporting the
role of the identified genes in hypoxia tolerance.
There is an important trade-off when comparing WGS

to exome sequencing or genotyping studies. Namely,
WGS is usually performed on fewer individuals, but pro-
vides a near-complete sampling of variant sites. For se-
lection signatures, this is critical. For instance, consider
the high frequency block found near the EDNRB gene.
With WGS, this region corresponds to the highest peak
in the chromosome, with a block of 52 variants that are
fixed in Amhara, but only 36% in LWK. In contrast, the
Nimblegen (Madison, WI, USA) 2.1 M exon capture
array targets only two high-frequency variants in this re-
gion, none within the block. As for genotyping, the ap-
proximately 1 M Affymetrix (Santa Clara, CA, USA)
Genome-Wide Human SNP Array 6.0 samples only 2 of
the 52 sites in the block, resulting in a much weaker sig-
nal (Additional file 14). In both cases, signal in the re-
gion did not exceed the respective genome-wide 0.1%
FDR, calculated using only the corresponding (exome or
genotyping) sites (see Materials and methods). A similar
argument holds for seven of the eight final regions
(Table 1) identified in our study.
In addition, although genotype imputation is powerful

for inferring un-sampled sites, it relies on conserved LD
structure between the study population and a reference
panel. Yet, positive selection strongly affects the struc-
ture of LD in a region by extending haplotype boundar-
ies [41], as is evidently the case in the chromosome 19
region (Additional file 10). As a result, even if LD is gen-
erally well conserved between a study population and
reference panel, this is less likely to hold in regions
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affected by positive selection, rendering imputation less
effective in genomic scans for selection.
The drawback of sampling fewer individuals is that ob-

served frequency differences may arise from sampling.
To account for this, we determined the sampling vari-
ance (95% CI) of a SNP at a given frequency that can be
expected when sampling 12 to 14 haplotypes from a
population (Additional file 8). We then prioritized re-
gions showing a frequency differential that exceeded the
sampling variance between highlanders and lowlander
controls. Despite this limitation, simulations show that
our tests achieve between 67 and 95% power on 12 to
14 haplotypes, compared to a much larger sample of 400
haplotypes (Additional file 15). At the same time, many
of the regions we identified would likely have been
missed by genotyping studies, implying that WGS repre-
sents a complementary approach to sampling-based as-
says. An optimal study design may, for instance, include
WGS of relatively few individuals, followed by targeted
sequencing or genotyping of a larger cohort. This would
enable a complete genomic scan, as well as increased
power derived from larger samples. We achieved a simi-
lar design by integrating our WGS data with genotype
data from Alkorta-Aranburu et al. [14].

Conclusions
Our study identifies a number of candidate genes for
hypoxia tolerance that were not previously reported. To
further validate our approach, we tested the impact of
down-regulating these genes (using RNAi knock down)
on hypoxia tolerance in a D. melanogaster model system.
Several orthologs, when knocked down, led to increased
survival (that is, eclosion) under low O2 conditions
(two- to four-fold relative to controls). This provides evi-
dence for their important role under hypoxic conditions,
and lends further credence to our analysis. Finally, the
fact that genes identified by WGS in humans affect flies
implies an evolutionarily conserved mechanism for hyp-
oxia tolerance.

Materials and methods
Sample description
Ten Oromos subjects from the Bale Plateau in the
Oromia region of southeast Ethiopia and seven Amhara
subjects from the Chennek field in the Simien Mountains
of north Ethiopia were chosen to reflect differences in an-
cestral adaptation to high altitude. The Oromos generally
have darker skin color and a less slender build. They ap-
pear more muscular and are generally shorter than the
Amhara people. They have lived at high altitudes for 600
to 700 years; a much shorter time compared to the millen-
nia of the Amhara people [26]. The subjects were exam-
ined and a history was taken. Only males aged 20 to 40
years found to be free of disease and with a chronic
mountain sickness (CMS) score <12 [42] were selected.
See Additional file 13 for the complete clinical characteris-
tics of each test subject. Venous blood was obtained in the
field, stored, and transported in suitable containers to
allow extraction of sufficient DNA from both study popu-
lations. Subjects were volunteers, and each subject gave
informed written consent in their local language, adhering
to a protocol approved by the UCSD institutional review
board (IRB00000354).

DNA extraction, library construction and sequencing
Genomic DNA was isolated using Blood DNA extraction
kit (QIAGEN, Valencia, CA, USA) and randomly frag-
mented. Fragments of the desired length were gel-
purified. Adapter ligation and DNA cluster preparation
were performed using the library preparation kit accord-
ing to manufacturer’s instruction (Illumina, San Diego,
CA, USA). Whole genome sequencing was performed
using Illumina’s Hiseq 2000 platform on all individuals
to a mean, per-sample depth of approximately 18×
(Additional file 16).

Read alignment, score recalibration and variant calling
We aligned the reads to the human reference genome
(hg19) using BWA [17] with default parameter settings.
We adjusted the alignments using GATK indel realign-
ment, Picard read duplicate marking, and GATK quality
score recalibration modules [18,19] under default par-
ameter settings, as defined by the GATK manual (ver-
sion 2). We finally called and filtered the SNPs using the
GATK UnifiedGenotyper tool under default settings. As
can be seen in Additional file 16, the sequencing was
free of any mapping bias in coverage or mapping per-
centage. As an independent test, we also identified vari-
ants using the SoapSNP pipeline [43]. The SoapSNP
variants were generally a super-set of the GATK variants,
with 25% more calls (9,508,898 versus 7,594,936 for Am-
hara, and 10,284,853 versus 8,144,023 for Oromos). This
is mainly attributed to less restrictive filtering.

Variant filters
The coverage difference between our study populations
(approximately 20×) and lowlander controls (approxi-
mately 4×) led to differences in processing the called vari-
ants. To adjust for these differences, we filtered our call
set using three steps. First, we observed several variants in
clustered genomic loci that were discarded by the variant
caller in the study (higher coverage) populations. This
happens due to various sequencing and mapping artifacts,
such as strand bias, low sequence complexity, or structural
variations. Due to the low coverage, variants in these loci
are not always discarded in the controls. We thus removed
from consideration any region comprising 10 consecutive
SNPs that were filtered out using GATK in our study
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population. Second, following the protocol used by the
1000 Genomes Project, we filtered out any site with a
mean coverage greater than twice the genome-wide me-
dian as likely caused by duplication [21]. This removes
variants found in repetitive regions, such as centromeric
sequence. We also filtered out any site with less than 2×
coverage per person in the study population as being too
poorly covered to accurately call SNPs. Finally, we re-
moved sites that had an excess of heterozygotes compared
to expectations from Hardy-Weinberg equilibrium. We
tested this using a test from Emigh [44] describing the het-
erozygote probability as:

PAa ¼ n!
nAA!nAa!naa!

� nA!na!
2nð Þ! � 2

nAa

Variants with P-value <0.05 were discarded. After fil-
tering variants based on the three filters described above,
we remained with 7,555,907 SNPs in the Amhara popu-
lation and 8,069,425 SNPs in the Oromos population.
See Additional file 17 for an exemplar of the number of
variants removed in each filtering step. In addition, to
exclude cryptic relatedness in the Oromos and Amhara
population samples, we applied PLINK’s [45] π̂ test for
identity by descent. This resulted in excluding four indi-
viduals from our initial Oromos sample, finally arriving
at six Oromos and seven Amhara individuals.

Lowlander control populations
To identify appropriate controls, we used low coverage
whole-genome sequencing calls from the 1000 Genomes
Project populations [21]. We ran ADMIXTURE [20] on
13,928 sampled sites to identify the population most
closely related to the highlanders. As seen in Additional
file 2, the Ethiopian individuals consist largely of African
ancestry, but possess a more substantial European com-
ponent compared to the other African populations. The
closest population consists of 67 Luhya (LWK) individ-
uals from Webuye, Kenya, and was thus chosen as the
control for all cross-population tests of selection (see
below). As an out-group for the PBS test (see below), we
used 90 European (CEU) individuals in order to capture
variation in the highlanders shared with individuals of
European ancestry. We also performed principle compo-
nent analysis on our study populations jointly with the
lowlander controls (LWK) and out-group (CEU), further
illustrating our study populations as an admixture of
these two ancestral groups (Additional file 3).

Identifying regions under positive selection
Under positive selection, haplotypes carrying the benefi-
cial mutation (as well as linked, neutral mutations) rap-
idly increase in frequency, leading to a loss of genetic
diversity in the region surrounding the mutation [46]
(illustration in Additional file 5). This loss of diversity,
or selective sweep, decreases with distance from the
beneficial mutation due to recombination. The loss of al-
lelic diversity and the corresponding skew in the allele
frequency spectrum can be used to detect loci important
for adaptation to the selective stress [46]. We use cross-
population tests to adjust for interesting frequency pro-
files that are shared between our study and control pop-
ulations. These are likely due to events (such as
bottlenecks, genetic drift, or even selection for a differ-
ent phenotype) occurring before our study and control
populations diverged, and thus likely not related to hyp-
oxia tolerance. Population-specific selection can be mea-
sured by comparing the estimated scaled mutation rate
θ = 4Neμ in a given loci to that of the same loci in a con-
trol population. A large decrease in θ of the study popu-
lation compared to controls indicates a region is
evolving non-neutrally in the study population, consist-
ent with positive selection. It is important to note that
tests of selection may be confounded by several factors,
including demographic events (for example, severe bot-
tlenecks) and genetic drift [23]. We therefore use experi-
mental validation in a model system as independent
validation that our tests identified adaptive regions.

Tests of selection
First, we ran two cross-population tests comparing the
Amhara or Oromos populations (study) against the 1000
Genomes Luhya population (control). These tests are
based on two common estimators of θ: the summed
non-fixed frequencies estimator, denoted θf, and the
average pairwise heterozygosity estimator, denoted θπ
[47]. For a given region, a high log ratio of θπ (θf ) in the
control relative to the study population is indicative of
selection [48]. We label these log ratio statistics as Sπ for
the average heterozygosity estimator and Sf for the
summed frequency estimator, such that:

Sf ¼ log
θf ;control
θf ;study

� �

Sπ ¼ log
θπ;control
θπ;study

� �

Another class of tests for selection is based on the fix-
ation index, or Fst, between two populations [49]. This
class aggregates differential SNP frequencies across two
populations. For instance, Hudson et al. [50] define this
measure as:

Fst ¼ 1−
πw

πb

Where πw represents the within-population average het-
erozygosity and πb represents the between-population
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average heterozygosity. As two populations diverge, the
variability between the populations increases much more
than the variability within each population, and the statis-
tic approaches one. The fixation index roughly correlates
to the evolutionary branch length T between two popula-
tions [51] as:

T ¼ − log 1−Fstð Þ
This approach is not directional, however. As a result,

a significant statistic value may indicate a selective
sweep in either the study or the control population. To
address this, Shriver et al. [52] and Yi et al. [10] devel-
oped the concept of a population branch statistic, or
PBS. This combines the pairwise branch lengths of three
populations as follows:

PBS ¼ TSN þ TSO−TNO

2

Where S represents a study population, N represents
an evolutionarily close control population, and O repre-
sents a distant out-group. We calculated the PBS with
our study population defined as either the Amhara or
Oromos population, our control as the Luhya popula-
tion, and our out-group as the CEU population. Add-
itionally, we compared the results of the above tests with
XP-CLR [53], a method that attempts to detect large
linkage blocks with high frequency differential as indica-
tive of positive selection.
For Sf, Sπ, Fst, and PBS, we use genomic windows of

size 50 kbp, overlapping at 2 kbp intervals. For each test,
we define the top 0.1% genome-wide value as the
genomic-control cutoff to determine the windows of
interest. The code used to compute these test statistics
can be downloaded from [54].
For the XP-CLR test statistic, we found that using a

0.1% genome-wide threshold was overly stringent. Test-
ing Amhara versus Luhya using a 0.1% threshold, exactly
five non-overlapping regions exceeded the threshold, all
of which contained highly repetitive sequence (except
for the HLA region, which has a high mutation rate).
Relaxing the threshold to 0.3% genome-wide yielded a
comparable number of regions to that found by our
other tests, but since XP-CLR uses variable size genomic
windows (normally much larger than 50 kbp), the list of
implicated genes was dominated by XP-CLR results.
Hence, we used XP-CLR only for secondary validation.
For instance, the EDNRB gene region on chromosome
13 was found to be significant using XP-CLR under a
0.3% threshold.

Population simulations and power estimation
We generated simulated populations using the mpop
forward simulator [55] and Hudson’s ms coalescent
simulator [56]. For a given set of parameters μ, r, s, t
(mutation rate, recombination rate, selection coefficient
and time since selection, respectively) we generated 200
sets of simulated populations. We initiated each instance
with a unique source population of Ne = 1,000 diploids
from a neutral coalescent process, using Hudson’s ms
simulator. We then sampled with replacement from the
source population into three separate populations of size
Ne each, labeled 'study', 'cont1', and 'cont2'. We evolved
these populations separately using the mpop simulator,
such that only the study population had a locus under
positive selection. Individuals carrying the advantageous
allele had higher likelihood (∝ 1 + s, for a homozygous
carrier) to reproduce at each generation. The other pop-
ulations (cont1 and cont2) continued to evolve neutrally.
After τ generations, a random sample (n = 100 diploids)
was taken from each of the three populations, and cross-
population neutrality tests were applied. Genomic regions
of size 50 kbp were simulated, with mutation and recom-
bination rates set to μ = 2.4 × 10-7 and r = 3.784 × 10-8 per
base, per generation. The selection coefficient used for
these simulations was s = 0.02, and the number of genera-
tions since selection τ ranged between [50, 4000].
The power of a test statistic at 5% false positive rate

was determined as the fraction of statistic values exceed-
ing a certain cutoff when applied to the study versus
cont1 samples. Cutoff values were set to the top 5% of
the null distribution, obtained by applying the same test
to samples from two simulated populations evolving
neutrally (cont1 versus cont2).

Power of different tests under varying model parameters
The different tests for selection described above all aim
to find regions with marked differences in allele frequen-
cies across study and control populations. However, the
specific signal observed is highly influenced by different
factors, such as the selection coefficient and the time
since selection. In general, the allelic divergence in a re-
gion is a function of the local mutation and recombin-
ation rates. Under a Wright-Fisher model of neutral
evolution, the expected distribution of allele frequencies
(the site frequency spectrum) is known. Specifically, the
expected number of alleles with frequency f, where f =
(1,…,n-1), is given by θ/f [47]. Under selective pressure,
the site frequency spectrum begins to shift [57]. Initially,
the haplotypes carrying the beneficial alleles rapidly in-
crease in frequency, reducing the overall divergence (a
selective sweep). Shortly after the beneficial allele be-
comes fixed in the population, the divergence is at its
lowest, and the signal of selection is strongest. As time
passes, de novo mutations and recombination events
gradually restore variability to the region. Initially, there
is an increase in low frequency alleles, which then reach
intermediate and high frequencies, finally drowning out
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the selection signal. Thus, there are three major regimes
for a population under positive selection: 'pre-fixation',
where the beneficial haplotype starts to rise in frequency;
'near fixation', where the haplotype approaches fixation;
and 'post-fixation', where the haplotype is fixed in the
population, and de novo mutations slowly restore diversity
to the population. In these regimes, the four tests show
different relative strengths in detecting positive selection
(Additional file 4). Importantly, although in the example
shown the selection coefficient was set to s = 0.02, the per-
formance of the different tests diverges further under dif-
ferent selection pressures (where some tests dominate in
weaker selection and others in stronger selection) as well
as under different demographic histories [22].

Sf test
The Sf test sums non-fixed frequencies in a region, ef-
fectively down-weighting low frequency alleles [58]. The
result of this is that the Sf test is optimized for the post-
fixation regime, since in this regime, the bulk of the sig-
nal comes from the reduced number of intermediate and
high frequency alleles in the study population. As de
novo mutations only approach these frequencies many
generations after fixation, Sf is able to detect selection
for longer periods of time after fixation has occurred
than other tests. In addition, Sf excels at capturing stron-
ger selection pressures, where the beneficial allele goes
to fixation relatively quickly and thus reaches the post-
fixation regime sooner. As Additional file 4 shows, once
in the post-fixation regime, the peak power for Sf is sus-
tained for more generations compared to other tests.

Sπ test
The Sπ test is similar to Sf in that it is sensitive to strong
selection pressures, as well as long times since selection
start. However, Sπ is based on average heterozygosity,
which weights allelic differences identically (in other
words, Sπ returns the same value if the derived allele is
defined as either the major or the minor allele). This es-
sentially folds the frequency spectrum [58], leading to
two major benefits. First, an approach such as Sf de-
pends heavily on the idea that the ancestral allele is the
reference nucleotide. If this is not true, for instance, a
variant at 10% frequency can be mistaken for a variant
at 90% frequency instead, heavily impacting the statistic
value. For a folded spectrum, however, this is not the
case. In addition, unlike Sf, Sπ can detect the loss of di-
versity due to a loss of intermediate frequency alleles,
causing it to pick up selection prior to fixation (where
there is an abundance of high frequency alleles). How-
ever, since it folds the spectrum, Sπ cannot distinguish
high frequency from low frequency variants, and thus
only has high power until de novo mutations reach inter-
mediate frequencies.
Fst and PBS tests
As mentioned previously, under positive selection, as the
beneficial haplotype dominates the study population, the
variability within this population decreases. This can be
tested directly using the relative allele frequency spectra
as in Sf and Sπ, but there is additional information in the
site-specific frequency differences across the study and
control populations. For instance, let us consider a vari-
ant at 20% frequency in the control population. In the
study population, this variant lies on a beneficial haplo-
type, and is sampled at frequency 80%. Under Sπ, this
variant contributes equally to both the study and the
control statistics, while in Sf, this variant contributes
negatively to the overall statistic. However, there is
clearly a sharp rise in frequency, representing an in-
creased branch length between the study and control
populations in the phylogenetic tree, which may be indi-
cative of selection. Since the Fst test measures the site-
specific variability between populations (πb), it would be
able to detect such situations. Importantly, the scenario
described above is consistent with selection occurring on
standing variation, where the beneficial haplotype is
present in non-negligible frequencies in the control popu-
lation. However, the undirected nature of the branch
lengths presents disadvantages. For instance, a significant
Fst value could also indicate positive selection in the con-
trol population. This is addressed in the PBS test by calcu-
lating population-specific branch lengths using multiple
controls.

Effects of sample size on power
In our study, we performed high coverage (15 to 20×),
WGS on seven Amhara and six Oromos individuals. Al-
ternative approaches to WGS would include exome se-
quencing or genotyping. As these approaches are
currently less expensive, this may allow for sampling
more individuals. In Additional file 15, we show the im-
pact of sample size on power, using simulated popula-
tions. The simulation procedure was similar to the one
described above, with 500 neutral initial populations,
and selection coefficient fixed at s = 0.02. As previously
described (Additional file 5), there appear to be three
general regimes of selection ('pre-fixation', 'near fixation',
and 'post-fixation'), where different tests vary in their
relative performance across regimes. We focus on a sin-
gle test, Sπ, and sample from each of the three regimes
(τ = 450, 700, 1,000, 1,500 generations after selection be-
gins). In order to identify the effect of decreasing the
sample size on power, we vary the sample sizes from n =
(2, …, 40). As a gold standard for maximal attainable
power, we used a large sample size of n = 400. Although
sequencing more individuals would improve the sensitiv-
ity, as seen in Additional file 15, sampling 12 or 14 hap-
lotypes yields between 67 and 95% power compared to
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our gold standard. Notably, we see that sampling fewer
individuals has the greatest impact in the 'pre-fixation'
regime. This is due to two factors. First, sampling fewer
individuals leads to higher variance in the observed fre-
quencies (Additional file 8). Second, the pre-fixation re-
gime is when the frequency differential of the beneficial
haplotype block compared to controls is lowest. Despite
this, we are still able to detect positive selection in the
majority of our simulated cases.

Comparison of whole genome sequencing with other
assays
We also tested the power of whole genome sequenc-
ing in comparison to other technologies, due to its
unique ability to capture all allelic variation in a region.
Additional file 14 shows the Sπ test applied to chromo-
some 13, which contains one of our top hits (the EDNRB
gene region). We compared the variants captured in our
study to those captured by two alternative approaches:
whole exome sequencing and genotyping. To mimic
the effects of whole exome sequencing, we masked vari-
ants not targeted by the Nimblegen 2.1 M exon capture
array. For comparison with genotyping studies, we masked
variants not included in the approximately 1 M Affy-
metrix Genome-Wide Human SNP Array 6.0. As shown
in Additional file 14, with WGS the strongest signal
chromosome-wide is located in the EDNRB gene region.
In contrast, genotyping shows a significantly weaker signal
in the region, while whole exome sequencing shows no
signal at all. Thus, for situations where a large portion of
the signal is in intergenic or intronic sequence, WGS may
provide a major advantage over other technologies.

Drosophila stocks and test of hypoxia tolerance
The D. melanogaster stocks carrying UAS-RNAi trans-
gene were obtained from the Vienna Drosophila RNAi
Center (Vienna, Austria; stock numbers 25995 and
103805 carrying UAS-RNAi(cic); 22358 and 109336 car-
rying UAS-RNAi(Hsl); 29003 and 107333 carrying UAS-
RNAi(Paf-Ahα); 42462 and 8018 carrying UAS-RNAi
(CG7466)). The da-Gal4 driver (stock number 8641) was
obtained from Bloomington stock center (Bloomington,
IN, USA).
Hypoxia tolerance of Drosophila crosses with specific

RNAi-mediated knockdown was carried out as described
in [16]. Fifteen virgin female flies homozygous for UAS-
RNAi were crossed with 10 male flies homozygous for
da-GAL4 and allowed to lay eggs for 24 hours in nor-
moxia. The vials with the eggs were transferred into a
computer-controlled atmosphere chamber supplied with
5% oxygen balanced with nitrogen, with 12 hour-dark
and 12 hour-light cycle at 22 ± 1°C. The Gal4 driver and
UAS-RNAi stocks alone without crossing were included
in parallel as controls. After three weeks of culturing,
the vials were assayed for the number of pupal cases that
were empty or full to calculate the eclosion rate. Six vials
of each condition were completed in 2 different experi-
ments for a minimum of 200 pupal cases scored for each
condition/cross. The eclosion rate was presented as per-
centage of empty pupae in all scored pupal cases.
Data availability
Genotype data have been deposited in dbGaP under
accession number phs000647.v1.p1.
Additional files

Additional file 1: Figure S1. Computational analysis workflow. The raw
reads were mapped using BWA, followed by indel realignment, duplicate
marking, and quality score recalibration using the GATK pipeline. Variants
were then called and filtered using GATK’s UnifiedGenotyper. After
applying additional variant filters to account for the differences in
coverage between the study and control populations, we applied several
complementary tests to identify 420 regions as candidates for positive
selection. Of these, 412 were filtered using 4 prioritization filters
customized to the challenges of our sequencing framework, leading to
8 final prioritized regions.

Additional file 2: Figure S2. ADMIXTURE analysis with six clusters on
the Ethiopian highlanders, along with the 1000 Genomes populations.
The highlander ancestry is a mixture of traditionally African and
traditionally European genotypes, represented by the green and dark
blue segments, respectively. Within the African 1000 Genomes
populations, the nearest population geographically as well as ancestrally
appears to be the Luhya (LWK) population. We thus selected this
population as our control. Similarly, the section sharing ancestry with
European populations appears closer to the southern and western
Europeans than the Finnish population. As a result, as outgroup in the
PBS test, we used the CEU population.

Additional file 3: Figure S3. Principal component analysis of the
Ethiopian highlanders, along with the 1000 Genomes control (LWK) and
out-group (CEU). As can be seen, the first principal component separates
the four population samples, further illustrating that the Amhara and
Oromos highlanders posses a mixture of African and European ancestry.

Additional file 4: Figure S4. Power of neutrality tests used in this study
(Sπ, Fst, Sf, and PBS) as function of time. (A) The x-axis scales linearly in
terms of generations since selection start. (B) Power as function of
logarithmically scaled time for the neutrality tests used in this study. We
also show the x-axis in units of ln(2Ns)/s (top axis), which can define the
regimes as a function of selection pressure. We observe three major
regimes, corresponding to the state of the beneficial haplotype in the
case population: before the haplotype has significantly risen in frequency
('pre-fixation'), as the haplotype dominates the case population ('near
fixation'), and after the haplotype has gone to fixation, while the fre-
quency spectrum gradually reverts to neutrality ('post-fixation'). In these
three regimes, the statistics perform differently: PBS performs better in
the first regime, Sπ performs best in the second regime, and Sf dominates
the third regime.

Additional file 5: Figure S5. Illustration of a selective bottleneck in one
of two diverged populations, leading to a loss of genetic diversity. The
haplotype carrying the beneficial allele (shown in blue) becomes
dominant in the population under selection, at the expense of other
haplotypes that die out (black lines near the selective bottleneck). This
leads to decreased genetic diversity, characterized by a skew in the site
frequency spectrum (top) relative to neutrality (bottom). As time
progresses, genetic diversity is gradually restored to the region via
de novo mutation (seen in the 'post-fixation' regime).

Additional file 6: Table S1. Regions identified as significant under a
0.1% genome-wide false discovery rate.

http://www.biomedcentral.com/content/supplementary/gb-2014-15-2-r36-S1.png
http://www.biomedcentral.com/content/supplementary/gb-2014-15-2-r36-S2.png
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http://www.biomedcentral.com/content/supplementary/gb-2014-15-2-r36-S6.pdf
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Additional file 7: Supplementary Dataset 1. Regions exceeding the
1% genome-wide FDR for the four tests of selection (Sπ, Sf, Fst, and PBS)
and the final list of prioritized regions. In addition, it contains a list of
nonsynonymous SNPs within the final regions, as well as SNPs in ENCODE
and TRANSFAC transcription factor binding sites overlapping these re-
gions. Provided as a separate Excel file with the tables as sheets. The file
can be viewed with Microsoft Excel Viewer.

Additional file 8: Figure S6. The impact of sampling haplotypes from
a population on observed allele frequencies. The red (blue) line shows
the 95% confidence interval (CI) of observed frequency when sampling
n = 12 (n = 14) haplotypes from a population. This corresponds to our
Oromos and Amhara population samples, respectively. For most
intermediate frequencies, a difference of around 20% is within the 95%
CI. We use the 95% CI frequency difference as a cutoff, prioritizing
regions containing haplotype blocks with a greater frequency differential
between the highlander population and lowlander controls. For regions
on the X chromosome, the number of sampled haplotypes is half, and
we therefore required a greater frequency differential (approximately 40%
for intermediate frequencies).

Additional file 9: Test statistic values on chromosomes 1 to 22, as
well as X, in the Amhara and the Oromos populations. The tests
shown are PBS, Fst, Sπ, and Sf. Regions exceeding the 0.1% genomic FDR
and that passed all prioritization criteria are shown in green.

Additional file 10: Figure S7. Linkage disequilibrium (LD) near the
chromosome 19 region. In Oromos (top left), Amhara (top right), as well
as the two 1000 Genomes lowlander controls: LWK (bottom left) and CEU
(bottom right). The center of the region is marked by a black star. We
observe a strong, and large, LD block surrounding the chromosome 19
region in Oromos. A corresponding, but smaller, block is also visible in
the Amhara. This observation is in line with the longer time spent at high
altitude by the Amhara population, during which recombination may
have broken local LD structure. We note that the overall higher levels of
LD observed in the Oromos and Amhara may be due to smaller sample
sizes in these populations, but that this should be mostly a background
effect, and is thus not expected to significantly alter the observed block
structure.

Additional file 11: Table S2. Nonsynonymous SNPs with significant
frequency differential in one of the eight prioritized regions.

Additional file 12: Figure S8. Evidence supporting EDNRB as a gene
candidate. Top panel: Sπ statistic values across chromosome 13 in the
Amhara population, compared to the Luhya (LWK) population. The red
line represents a genome-wide, 0.1% FDR. Two distinct regions exceed
this cutoff, one of which did not show a haplotype block with significant
frequency differential compared to our lowlander controls, and was thus
removed from consideration. Bottom panel: SNP frequency profile of the
significant region in the Amhara (blue) compared to Luhya (brown,
inverted) populations. As can be seen, variant frequencies in this region
are much higher in the Amhara population compared to lowlander
controls.

Additional file 13: Table S3. Clinical characteristics of Oromos and
Amhara subjects.

Additional file 14: Figure S9. Impact of whole genome sequencing on
selection signals. (A-C) Sπ statistic values across chromosome 13 in the
Amhara population compared to the Luhya (LWK) population, using the
complete set of variants from whole genome sequencing (A), the subset
that overlap targets from whole exome capture (B), and the subset
(about 1 M) that overlaps a popular genotyping array (C). The red lines
represent the respective genome-wide 0.1% FDR calculated individually
for each case. Highlighted in green is the EDNRB gene loci. (D-F) SNP
frequency profiles of the EDNRB region in Amhara (blue) compared to
Luhya (brown, inverted) for whole genome sequencing (D), whole exome
sequencing (E), and genotyping (F). As can be seen from the green
highlighted regions (A-C), the strong signal present when considering
whole genome sequencing is reduced drastically with genotyping and is
entirely absent with exome sequencing.

Additional file 15: Figure S10. The impact of sequenced sample size
on power, using Sπ as an exemplar test. Five hundred populations were
simulated with a fixed selection coefficient of s = 0.02 and sampled at
different times after selection start. Sample size is shown in haplotypes,
and ranges in n = (2,3,…,40). Optimal power at each time was determined
using a large sample size of n = 400. The populations were sampled at four
time points representing each of the observed regimes: t= 450 for 'pre-fixation',
t= 700 and t= 1,000 for 'near-fixation', and t= 1,500 for 'post-fixation'. Although
we see an increase in power as more haploptypes are sampled, sampling 12 or
14 haplotypes (our Oromos and Amhara populations, respectively) yields 67 to
95% of the optimal power.

Additional file 16: Table S4. Sequencing depth and coverage statistics
per individual in the sample.

Additional file 17: Table S5. Number of variants removed in each
filtering step, for the Luhya and Oromos populations.
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