
Exp Astron (2013) 35:245–282
DOI 10.1007/s10686-012-9295-0

ORIGINAL ARTICLE

Sub-image data processing in Astro-WISE

Johnson Mwebaze · Danny Boxhoorn ·
John McFarland · Edwin A. Valentijn

Received: 11 June 2011 / Accepted: 21 February 2012 / Published online: 28 March 2012
© The Author(s) 2012. This article is published with open access at SpringerLink.com

Abstract Most often, astronomers are interested in a source (e.g., moving,
variable, or extreme in some colour index) that lies on a few pixels of an
image. However, the classical approach in astronomical data processing is the
processing of the entire image or set of images even when the sole source
of interest may exist on only a few pixels of one or a few images. This is
because pipelines have been written and designed for instruments with fixed
detector properties (e.g., image size, calibration frames, overscan regions,
etc.). Furthermore, all metadata and processing parameters are based on an
instrument or a detector. Accordingly, out of many thousands of images for
a survey, this can lead to unnecessary processing of data that is both time-
consuming and wasteful. We describe the architecture and an implementation
of sub-image processing in Astro-WISE. The architecture enables a user to
select, retrieve and process only the relevant pixels in an image where the
source exists. We show that lineage data collected during the processing and
analysis of datasets can be reused to perform selective reprocessing (at sub-
image level) on datasets while the remainder of the dataset is untouched, a
difficult process to automate without lineage.

Keywords Data lineage · Provenance · Astro-WISE · Sub-image processing

J. Mwebaze (B) · D. Boxhoorn · J. McFarland · E. A. Valentijn
Kapteyn Astronomical Institute,
University of Groningen, Landleven 12,
9700 AV Groningen, The Netherlands
e-mail: jmwebaze@cit.ac.ug

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81076329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

246 Exp Astron (2013) 35:245–282

1 Introduction

The nature of astronomical (or scientific) data processing is changing. Datasets
are doubling in size and number every year, with archives growing beyond
petabyte scales [26]. Similarly, the processing is increasing in complexity
requiring laboriously sophisticated techniques and expertise in both data
reduction and analysis. Often such processing involves evaluation of a variety
of processing techniques and different datasets, tweaking parameters, verify-
ing data quality, repeating data derivation and customization of the results.
Consequently more data is generated as new results are derived. It is therefore
crucial for the experimenter or other users of the system to understand how a
result was derived, what data was used, and how it was selected.

Astronomical systems must also provide scalable (the ability to handle
growing amounts of data/processes in a graceful manner) processing solutions,
and allow seamless access to various distributed resources and archives to
facilitate such data analysis. But, how will users retrieve and process data
they are interested in? For moving an entire dataset, a surprisingly low tech
approach is often used. However, most clients have neither the time nor
resources to effectively store and analyse such huge datasets. Moreover, the
cost of data transfer is not substantially cheaper today than the price of disks to
store the data. Therefore, transferring a minimal set of data is critical. Also, the
traditional approach of simply moving the data to where needed is inherently
not scalable primarily due to network-related and client processing constraints.

We use the above views to motivate the need to trace lineage and also the
need to use lineage data to enable the effective and selective reuse of data,
knowledge and experiences from previous experiments to aid both expert and
non-expert distributed users in performing scientific analysis. The lineage of a
data item consists of its entire processing history. This includes its origin (e.g.,
the identifier of the base data set, the recording instrument, the instrument’s
operating parameters) as well as all subsequent processing steps (algorithms
and respective parameters) applied to it.

Data lineage (provenance) is a well-defined problem with known solutions
as pointed out in recent workshops [20] and surveys [4, 8, 11, 19]. The use
of data lineage has also gained significant attention [7, 25]. Several workflow
management systems do exploit data lineage for different purposes. To the
best of our knowledge, this is the first work that leverages lineage information
to support sub-image processing to simplify and automate the reprocessing of
objects. Since we are working with pixels, this framework required lineage at
pixel level. We extended our lineage model presented in [21] to trace lineage
at pixel level and then use pixel lineage for sub-image processing.

The framework for sub-image processing we have designed and imple-
mented, enables users to select, retrieve and process only relevant pixels
on an image where the source exists. However some image operations may
not be carried out at sub-image level. Moreover all processing parameters
and metadata are based on fixed detector properties. We claim that such a
framework is possible if we can retrieve an entire back trace of the processing

Exp Astron (2013) 35:245–282 247

history of an image at pixel level, and then be able to perform operations that
are otherwise difficult (or impossible) to execute at sub-image level.

The goal of this paper is twofold; firstly, we extend our lineage model
presented in [21] to trace lineage at pixel level and we show that it accurately
locates all pixels that are involved in the processing of a result. Secondly,
we show that using lineage we are able to support sub-image processing. We
specifically focus on Astro-WISE, however, our discussion of the requirements
of sub-image processing can be applied to the general category of all observa-
tional sciences.

The rest of the paper is organized as follows: Section 2 briefly provides an
overview of lineage tracing in Astro-WISE. In Section 3, we review astronomi-
cal data and transformations related to this work. We present the pixel lineage
framework in Section 4, and in Section 5, we describe and implement the sub-
image processing framework. In Section 6, we describe the management of
image cutouts and how awe keeps track of dependencies during si processing.
We present a use case to demonstrate the effectiveness of sub-image process-
ing in Section 7. We review related work in Section 8 and we present our
conclusions in Section 9.

2 Lineage in Astro-WISE

Astro-WISE1 [3, 17] is a distributed system for processing, analysing and
disseminating wide field imaging data. Astro-WISE enables astronomers to
perform scientific experiments in a distributed environment. The full descrip-
tion of lineage tracing in Astro-WISE is described in [21]. Astro-WISE tracks
all parameters used (or created) during runtime that induces any dependency
relationship between objects, i.e., parameters that would affect the state of an
object. These relationships are the links that allow Astro-WISE to deduce the
lineage of an object.

A request for any object in Astro-WISE, automatically invokes the process
of generating a Directed Acyclic Graph (DAG). A directed acyclic graph is
formed by a collection of vertices and directed edges with each edge connecting
one vertex to another. An example of a DAG is shown in Fig. 1. The algorithm
for creating the DAG of an object is to first find which derivation contains
the object as output, then for each input of the associated transformation find
the derivation that contains it as output, iterating until all the dependencies
are resolved. The rectangle nodes in Fig. 1 represent the modules used
during processing and edges represent data flow between the modules. The
circle nodes represent data inputs/output of a module. Each execution of an
experiment may vary the parameters (diamond nodes) to the modules in the
specification which might result in different outputs. The dataflow pattern
(or DAG) in Fig. 1 captures the topology of a typical experiment presented

1http://www.astro-wise.org

http://www.astro-wise.org

248 Exp Astron (2013) 35:245–282

Fig. 1 DAG: an example of a
data lineage graph

p2 m2

x7x8

p1 m1

x5x6

p3 m3

x9

p4 m4

x10

m5

y1

x1 x2 x3 x4

x11

x12

and therefore is used to represent a lineage graph of an item processed in
Astro-WISE.

3 Astronomical transformations

This granularity of lineage traced in Astro-WISE as described in Section 2
does not include transformations at pixel level. For sub-image processing, we
need to trace lineage at pixel level. In this section we discuss the properties of
astronomical images and astronomical image transformations, which form the
basis of pixel lineage tracing.

3.1 Astronomical data

Images of the sky and catalogue data are perhaps the most important as-
tronomical data products. Most of the catalogue data contains astronomical2

(celestial) sources which are ultimately derived from images. The detection
of sources from an image consists of identifying and separating image regions
which have different properties (e.g., brightness, colour, texture). Therefore an

2Any of the natural objects that can be seen in our sky, including stars, planets, moons, asteroids,
galaxies, and comets.

Exp Astron (2013) 35:245–282 249

Fig. 2 Flow chart showing a conversion of pixel coordinates to world-coordinates showing
distortion corrections enclosed in the dashed boxes [16]

astronomical source is a group of connected pixels that exceed some threshold
selected through some detection process and for which the flux contribution of
the source is believed to be dominant over that of other objects.

The de facto standard format for astronomical images is the Flexible Image
Transfer System (FITS).3 Besides pixel data, FITS images usually contain
essential information such as the celestial coordinates used and time of ob-
servation (if applicable) as well as other information in the headers. Each
element in the image data array is mapped onto a sky/world coordinate on
the sky or within a spectrum. In this paper, sky and world coordinates are used
interchangeably.

The FITS coordinate system should be invertible in the sense that a pixel
coordinate, when transformed to a world coordinate, must be uniquely recov-
erable from that world coordinate. In practical terms, it means that two or
more different pixel coordinates should not map to the same world coordinate.
Note that this does not require that each pixel coordinate in an image must
have a valid world coordinate. Similarly, not each valid world coordinate
corresponds to a pixel coordinate.

To locate an astronomical source (celestial object) on the image, requires
locating the pixel coordinate associated with the world coordinate for the
source. This coordinate usually specifies the center of the source. However, the
size of most sources is more than one pixel hence, a source might be associated
with a set of pixel coordinates which locate it in the image data array.

3.2 Coordination transformations

Given a pixel position of an image, the computation of corresponding sky coor-
dinates is illustrated conceptually in Fig. 2. Conversion from pixel coordinates
to world coordinates is a multi-step process that includes linear and non-linear
transformations. A summary of the transformations T1–T5 is shown in below:

– T1, Distortion correction
– T2, Linear transformation, translations, rotation, skewness, scale

3http://fits.gsfc.nasa.gov/, http://archive.stsci.edu/fits/fits_standard/

http://fits.gsfc.nasa.gov/
http://archive.stsci.edu/fits/fits_standard/

250 Exp Astron (2013) 35:245–282

– T3, Distortion correction
– T4, Scale to physical coordinates
– T5, Coordinate computation per agreement

The mathematical details, including the interpretation of the intermediate
world coordinates are described in [5] and [13]. An example of a non-linear
transformation is a Distortion Correction. A Distortion Correction is a map-
ping (or mathematical formula) derived to reduce the effects of geometric
effects such as the translation, rotation, tilt of the photographic plate, non-
linearities in the coordinate measuring machine, physical effects such as re-
fraction, aberration, precession and rotation, and optical defects such as radial
and de-centering distortion. We do not expect distortion functions to have
analytic inverses, because of the greater complexity of distortion functions [16].
We apply iterative methods to invert them. The result of such a process is
probabilistic, and different precision levels can be reached.

3.3 Image transformations

The image transformational sequence (pipeline) of Astro-WISE is shown in
Fig. 3. Each box in the figure represents an image transformational step. As
an image moves through the transformational sequence, the pixel positions,
pixels values, and image sizes will change due to rotations, alignment, scaling,
distortions corrections and re-sampling effects. However, the world/physical
coordinates will not change although the transformational effects might intro-
duce new pixels coordinates due to the changes in image sizes. Mathemati-
cally, this introduces new world coordinates. Figure 4 illustrates the effect of
applying linear shifts, rotations and distortion corrections during the image
re-gridding process (Regrid Transform). The input grid (shown as small gray
squares) is projected to the output grid (re-sampled image) represented by the
large tilted/rotated ones. Based on a survey, the input to the final image may
come from several images. For example, Several RegriddedFrames (from the
Regrid Transform) created from ReducedScienceFrames (from the Reduce
Transform) can be co-added (Coadd Transform) to form a deeper image with
a substantial reduction of chip defects and divisions. In such cases the final

seq636

Coadd
seq634/635/636

Regrid
seq634

Astrometry
seq632/seq633

Reduce

Global Astrometry

GAstrom
SourceList

GAstromSourceListAstrometry
seq634

Fig. 3 The order and flow (arrow directions) of the image processing steps in the image processing
part of a data reduction process

Exp Astron (2013) 35:245–282 251

Fig. 4 An example of the mapping of an input image onto an output image (re-sampling). The
figure was taken from [9] it describes the drizzling method. Pixels in the original input images
are mapped into pixels in the sub-sampled output image, taking into account shifts and rotations
between images and the optical distortion of the camera

value of a pixel in the CoaddedRegriddedFrame is a contribution from several
other pixels from the various RegriddedFrames that were used to create the
CoaddedRegriddedFrame.

Sources are extracted from the final transformed image by identifying
connected pixels that exceed some threshold. When an interesting source is
found through visualization, such as an outlier, an astronomer may want to
know exactly which source this is and how its parameters were calculated. With
data lineage such endeavours are supported. However the astronomer may
want to know which pixels in the science and calibration images throughout
the transformational process that contributed to the source. Finding the pixels
that contributed to the source is pixel-lineage problem.

4 Pixel lineage framework

In this section, we formalize general data transformations and pixel lineage,
then we briefly motivate why transformation properties can help us with pixel
lineage tracing.

4.1 Transformations

We denote the set of all images as V, one important observation that we lever-
age throughout the text is that every transformation/operation performed on
an image (adding, subtracting, re-gridding and co-addition etc.) can be directly
expressed as a (potential) function F : V → V. We define a transformation F
as any procedure that takes an image I as input and produces image O as
output. For any input dataset I, we say that the application of F to I resulting
in an output set O, is denoted by F(I) = O. Given transformations F1 and F2,
their composition F = F1 ◦ F2 is the transformation that first applies F1 to I to

252 Exp Astron (2013) 35:245–282

obtain I′, then applies F2 to I′ to obtain O. Therefore given transformations
F1,F2, ...,Fn, we represent the composition as a transformation sequence
F1 ◦ · · · ◦ Fn. For now, we will assume that all of our transformations are stable
and deterministic. A transformation F is stable if it never produces spurious
output items, i.e., F(Ø) = Ø. A transformation is deterministic if it always
produces the same output set given the same input set.

4.2 Pixel lineage

In the general case, an astronomical source lies on several pixels of an
image. Although a world coordinate vector identifies each source, a source
is associated with a small subset of pixels. Therefore a source o in the output
set is derived from a small subset pixels from the input images.

Definition 1 Given a transformation instance F(I) = O and an output item
o ∈ O, we call the actual set I′′ ⊆ I of input data items that contributed to o’s
derivation, the lineage of o. We denote it as I′′ = Fl(o). The lineage of a set of
output data items O′′ ⊆ O is the set I′′ = {i ∈ I′′|F({i}) ∈ O′′}.

Knowing something about the workings of a transformation is important
for tracing data lineage. From lineage model presented in Section 2, we can
explicitly assume that every output depends on every input and parameters
passed to the modules. This is because of the black-box nature of the trans-
formation programs that are used for computation. Therefore, such lineage
accounts for an output product produced during the course of a dataflow
execution by displaying a connected graph of data (image) dependencies (i.e.,
input, intermediate, and output data).

Based on the input and output images to a transformation, we can classify
transformations based on how it maps input data items to output items. Using
the relationships between pixel coordinates and sky coordinates, we then
provide a tracing procedure for each classification.

4.3 Lineage tracing using known properties of astronomical image processing

In this section, we discuss how we use the relationship between pixel and world
coordinates to trace lineage. We make use of known properties of astronomical
image processing, where the pixel coordinates change as the image moves
through a data-flow or pipeline while the world-coordinates do not change.

Consider a transformation F that inputs an image I and outputs an image
O. Image I and O can be decomposed into a set of pixel and world coordinates
P = {p1, p2...pn} and W = {w1, w2,wn} respectively.

Definition 2 Let PI denote the set of pixel coordinates of an image I, and
WI denote the set of world coordinates of I. We define T to be a function
that maps each pixel coordinate pi ∈ PI value to its corresponding world
coordinate wi ∈ WI values such that TI(PI) → WI and TO(PO) → WO.

Exp Astron (2013) 35:245–282 253

Note that, in general, although TI and TO will be the same, the parameters
used in the transformation will be different since the computation of pixel
coordinates to sky coordinates is dependent on the specific frame and other
related processing parameters e.g., projections. If the set of pixel coordinates
associated to a source o on an image O is P′

O, then according to Definition 2,
W ′

O will be the world coordinates associated to o therefore W ′
O ⊆ WO. We

are interested in finding W ′
I , where W ′

I ⊆ WI such that W ′
I = {ω|ω ∈ WI and

ω ∈ W ′
O}. The set W ′

I is the set of world coordinates associated with the pixel
coordinates in I that contributed to o’s derivation. From Definition 1 the
lineage of o is the set P′

I = {pi ∈ PI |T ({pi}) ∈ W ′
O)

In the remainder of this section, we consider three different transformation
classes, based on how each transformation maps input pixels to output pixels.

4.3.1 CASE 1

A transformation F(I) = O is linear and one-to-one if each input data item
produces exactly one output data item and if the pixel vector coordinate of
an input data item i ∈ I is the same pixel vector coordinate of the data item in
the output image o ∈ O where F({i}) = o. Let pj be the pixel coordinate vector
corresponding to a data item and T be a transformation on the space of coordi-
nate transformations. If TI(pj) = TO(pj) ∀ j and F(I) = O, then transformation
F is linear and one-to-one.

Representing an image I as an array and pj is a pixel vector coordinate, then
the notion I[pj] will refer to the element in I at pixel position pj. If F(I) = O,
then the lineage of an element o ∈ O at pixel coordinate pj is the element i ∈ I
at pixel position pj. i.e., the lineage of O[pj] is I[pj].

4.3.2 CASE 2

The second categorization of a transformation is where each input data item
from the input image produces one or more output data items (one-to-many)
in the output image. Figure 5a shows an example of this transformation. For
example a re-sampling function that maps each point in output image (O) to
the average of that point and its neighbours in input image (I). The value of a
point o in the output image is determined by the point i and all its neighbours
in I depending on the kernel size. The lineage of an output item o according
to this transformation is defined as Fl(o) = {i ∈ I|o ∈ F({i})}.

We use O′′ to denote the set of all pixels on which the object (source) lies.
Using the terms already defined at the beginning of this section, if W ′

O are the
coordinates associated to O′′ and let W ′

I be the world coordinates associated
to I′′, If m is the number of points in W ′

O, then for k=1,...,n, wk ∈ W ′
I and for

k = (n + 1), ..., m, wk /∈ W ′
I . Then W ′

I ⊆ W ′
O according to this transformation.

The set W ′
I is pure but not complete. Not all points in W ′

O are included in W ′
I .

Algorithm 1, is used to trace lineage of such a transformation.

254 Exp Astron (2013) 35:245–282

Algorithm 1 Tracing lineage for CASE 2 transformations
Input: T, O′′, I,
Output: I′′

1: PO ← pixel coordinates of O′′
2: W ′

O ← Ø
3: for p ∈ P′

O do
4: w = TO({p})
5: add w to W ′

O
6: end for
7: I′′ ← ∅

8: PI ← get all pixel coordinates for I
9: WI ← convert all pixel coordinates PI to world coordinates

10: for w ∈ WI do
11: if {w} ∩ W ′

O
= ∅ then
12: Add w to W ′

I
13: end if
14: end for
15: I′′ ← T −1

I (W ′
I)

4.3.3 CASE 3

The third type of transformation is illustrated in Fig. 5b. This is a trans-
formation where one or more set of points in the input image are mapped
onto the same point in the output image individually. The transformation

(b) Case 3(a) Case 2

Fig. 5 Astronomical image transformations: an illustration of CASE 2 transformation: each
input data item from I, produces zero or more output data in O. An illustration of CASE 3
transformation

Exp Astron (2013) 35:245–282 255

coadd in Fig. 3 is an example of case three type of transformation. During
the co-addition, several RegriddedFrames are co-added together to form a
CoaddedRegriddedFrame. Note that transformation may also include one-
one mapping at the sections where images are not overlapping. However, the
pixel coordinates locating a data point in the input image is different from the
pixel coordinate that locates the data point in the output image. Notice also
from Fig. 5b that, the input data item (pixel) may come from one image or
a combination of several images depending on the co-addition algorithm. We
consider an example of finding lineage of all points that lie on the gray ellipse
in output frame in Fig. 5b. These points could be located on one or more input
images.

To trace lineage for this transformation, we begin by finding all images that
were used to make the final regridded frame. After knowing the images, then
we find those images that contributed to derivation of o. From these images
we can find the specific pixels that contributed to derivation of o.

Let F(I) = O, be a transformation over a set of images. We decompose I
into unique disjoint partitions {I1, I2, ..., In} such that F(Ik) = ok where K =
1, ..., m. Then the set O = ⋃

k∈K
ok.

If we take a set O′′ ∈ O, we need to find which of the sets in o1, ..., om has
elements in O′′. This can be done by intersecting O′′ with each ok ∈ O. The sets
where the intersection is not empty are the sets with points in O′′. Then O′′’s
lineage is located on images Ik where F(Ik) = ok and ok ∩ O′′
= Ø. Then we
can use the tracing procedure for case 2 type of transformations to find those
elements (i.e., I′′

k) that contributed to o’derivation. Let the set O′′ be the set of
points that contains a source o then O′′ ⊆ O. Then the set I′′ is the set all of
input data items that contributed the results in O′′, the Algorithm 2 is used to
find I′′.

4.4 Sky-to-pixel coordinate transformation

Note that, at the end of Algorithms 1 and 2, we require to find pixel coordinates
for W ′

I . Therefore to complete both algorithms we have to find the pixel
coordinates for each of the world coordinate in the set W ′

I .
The coordinate forward transformation is defined as T = T1 ◦ T2 ◦ T3 ◦ T4 ◦

T5 (from Section 3.2). If T is invertible, then each Ti must have a well-defined
inverse. For example, if Ti is the operation of applying a distortion correction
while converting from pixel coordinates to corrected pixel coordinates, T −1

i
is the operation of removing the distortion correction. Because of the greater
complexity of non-linear distortions corrections used during the conversion
process and the non-linearities caused by distorted image coordinates, such
distortion corrections do not have analytic inverses, therefore we relax the
invertibility requirement and instead switch to heuristics. Since all the other
transformations are linear, with the exception of T1 and T3, we omit the
inversion steps for T2, T4 and T6 but we show the solution of finding the inverse
of distortion corrections.

256 Exp Astron (2013) 35:245–282

Algorithm 2 Tracing lineage for CASE 3 transformations
Input: F , O′′,
Output: I′′

1: P′
O ← pixel coordinates of O′′

2: {I1, I2, ..., In} ← I ;
3: I′ ← ∅
4: I′′ ← ∅
5: W ′

I ← ∅
6: for each Ii ∈ I do
7: if F(Ii) ∩ O′′
= Ø then
8: Add Ii to I′
9: end if

10: end for
11: W ′

O ← Ø
12: for p ∈ P′

O do
13: w = TO({p})
14: add w to W ′

O
15: end for
16: for each Ik ∈ I′ do
17: PI ← pixel coordinates for Ik

18: WI ← TI(PI) to world coordinates
19: for w ∈ WI do
20: if {w} ∩ W ′

O
= ∅ then
21: Add w to W ′

I
22: end if
23: end for
24: end for
25: I′′ ← T −1

I (W ′
I)

For this work, we restrict our initial implementation to TAN Distorted tan-
gential, which uses the plate solution, whose distortion correction polynomial
is shown in (1). This is an example of one of the polynomials widely used for
fitting measured offsets. The equation is a mapping between a source detected
at pixel coordinates 〈x, y〉 in frame and its normal coordinates 〈ζ, η〉 relative to
the nominal centre of field. This degree of the polynomial p is determined
by the nature of distortions being accounted. aij, bij, m and c are initially
unknown coefficients, to be determined by the least squares analysis of the
plate coordinates of the reference stars.

ζ(x, y) =
i+ j=p∑

i+ j=1

aijxi y jmkcl ,

η(x, y) =
i+ j=p∑

i+ j=1

bijxi y jmkcl . (1)

Exp Astron (2013) 35:245–282 257

Equation 1 falls in non-linear kind of system of equations that can be
expressed in the form of

ζ(x, y) = 0
η(x, y) = 0 (2)

In order to compute the 〈x, y〉 from 〈ζ, η〉, we need to find the roots of
the polynomial as expressed in (2). The functions ζ and η are two arbitrary
functions, each of which has zero contour lines that divide the (x, y) plane
into regions where their respective function is positive or negative. These
zero contour boundaries are of interest to us. The solutions that we seek
are those points (if any) that are common to the zero contours of ζ and η.
We used Newton–Raphson method [15] to find the roots of the polynomial.
This method gives us a very efficient means of converging to a root, if you
have a sufficiently good initial guess. However, it can also spectacularly fail to
converge, indicating (though not proving) that the putative root does not exist
nearby.

4.5 Data lineage for a transformational sequence

Consider a simple sequence of two transformations, such as F1 ◦ F2 . For an
input dataset I, let I2 = F1(I) and O = F2(I2). Given an output data item
o ∈ O, if I′′

2 ⊆ I2 is the lineage of o according to F2, and I′′ ⊆ I is the lineage of
I′′

2 according to F1, then I′′ is the lineage of o according to F1 ◦ F2. This lineage
definition generalizes to arbitrarily long transformation sequences using the
associatively of composition. Given a transformation sequence F1 ◦ · · · ◦ Fn,
where each Ik is the intermediate result output from Fk−1 and input to
Fk, a correct but brute-force approach is to store all intermediate results
I2, ..., In (in addition to initial input I) at loading time, then trace lineage
backwards through each transformation at a time. This approach is inefficient
due to the large number of tracing procedure calls when iterating through all
transformations in the sequence. The approach also requires that input and
output images (including intermediate results) are materialized at all times.

Fortunately, it is possible to relieve this problem by combining adjacent
transformations in a sequence for the purpose of lineage tracing. The com-
bination is based on the transformational properties. For example we do not
have to iterate through consecutive transformations that are linear and one to
one, and in some cases, if the input to the coadd transformation is one image,
then the regrid and co-addition can be grouped into one transformation. This
in general will reduce the overall tracing cost, while improving or retaining
tracing accuracy.

4.6 Evaluation

We have implemented all of the algorithms described in this section in Astro-
WISE. Several tests have been carried out and are described in the following
sections.

258 Exp Astron (2013) 35:245–282

4.6.1 Results of pixel-lineage tracing procedures

We begin by testing the accuracy of the sky-to-pixel inverse coordinate trans-
formations algorithm. (i.e., T −1). We selected 90 RegriddedFrames and we
created a SourceList (source catalogue) for each frame. Attached to each
source in a SourceList, is its sky coordinate (α, δ) and its pixel 〈x, y〉 coordinate.
The pixel coordinate specifies the location of the source on the image where
the source was detected. During the creation of the SourceLists, the sky
coordinate values are computed from pixel coordinates via a forward coor-
dinate transformation process. In this test, for each (α, δ), we try to compute
the corresponding (x, y) through an inverse coordination transformational

Fig. 6 The results of the
coordinate transformation
test. The difference in pixel
coordinates (x,y) without and
with (respectively) the
distortions accounted for in
the inverse transform (world
to pixel). Blue is min/max
difference for each
SourceList, red the average
and green the standard
deviation. Panel b shows a
positional accuracy
improvement of about five
orders of magnitude over
panel a

0 10 20 30 40 50 60 70 80 90
Sources

-100

-80

-60

-40

-20

0

20

P
ix

el
 D

iff
er

en
ci

es

Compare differencies Without Distortion Correction

min
max
avg
stdev

(a)

0 10 20 30 40 50 60 70 80 90
Sources

-0.00015

-0.00010

-0.00005

0.00000

0.00005

0.00010

0.00015

P
ix

el
 D

iff
er

en
ci

es

Compare Differencies With Distortion Correction

min
max
avg
stdev

(b)

Exp Astron (2013) 35:245–282 259

process. The values obtained from this computation are compared against the
values stored for each source in the SourceList.

Two tests were done to test the inverse coordinate transformational algo-
rithm. The first test did not include the distortion correction, while the second
test included distortion correction. The result of this test is shown in Fig. 6a
and b. The figures show the difference in pixel coordinates without and with
(respectively) the distortions accounted for in the inverse transform (world to
pixel). Blue is min/max difference for each source list, red the average and
green the standard deviation. Figure 6b shows a positional accuracy improve-
ment of about five orders of magnitude over Fig. 6a. This is an indication that
we can accurately find corresponding 〈x, y〉 positions of pixels in an image. The
algorithm can be tuned to achieve any precision, but it is a trade-off between
performance and accuracy. A higher precision will increase on the time the
algorithm takes to converge (to find the root).

The two images in Fig. 7a and b also show what would happen if the reverse
transformation does not include distortion corrections in locating the sources.
The beginning point is a source with a set of sky-coordinates, and the task
is to locate the corresponding source on the raw science frames. Notice in
Fig. 7a that there is an offset in the positional accuracy of the three sources
marked with ellipses, which is corrected in Fig. 7b after implementing the
correct reverse transformation which includes distortions.

Fig. 7 The figure in
panel a, shows the results
of mapping sources into an
image without considering
the distortion correction,
whereas panel b considers the
distortion correction while
mapping sources back to the
raw images

260 Exp Astron (2013) 35:245–282

4.6.2 Lineage retrieval

Astro-WISE implements the dependency cutout service which is available
on [6]. The service extracts pixels of a source, as rectangular smaller images
from all images that were used during the processing of the source. The service
follows lineage in the system to find all dependent images and uses pixel
lineage to find the actual location of the source on each image. Figure 8 shows
an example of image cutouts of some of the images that were created or used
during the processing of one of the sources.

4.6.3 Data rates

In Astro-WISE, we recognize that data lineage is also first-class data and that
data lineage can be used to simplify and partially automate the scientific
data analysis cycle. Lineage forms part of the system and as such, the target
processor (data processing engine of Astro-WISE) follows dependencies in
the system to assemble pipelines for processing data. Computations in Astro-
WISE are data intensive and do generate many intermediate datasets. Depen-
dencies exist among intermediate datasets and these are recorded and stored.
Dependencies depict derivation relationships between intermediate datasets.
The existence of intermediate data simplifies data processing and speeds up
execution times, since this eliminates processing steps for intermediate data
products that have already been generated by another process.

For everything processed in Astro-WISE, we store all images and process-
ing data generated during the data flow to centralized database. Using this
information we can quickly compare how many times an object has been
reprocessed or how many objects refer to it. For example, Fig. 9 shows the
number of versions of Bias Frames that were derived from a fixed set of
RawFrames as a function of time. The output shows that different RawFrames
(per CCD) have been reprocessed a number of times even though they belong
to the same image. The y-offset of 6 at the beginning means that six raw images
are considered in this example.

For purposes of this work, we are interested in the lineage of a source. Let
us consider the RawFrame and a list of sources as the only data products that

(a) (b) (c) (d)

Fig. 8 Image cutouts of one of the sources processed in awe. The image in panel (a) is the RAW,
(b) is the RED, (c) is the RGR, (d) is the COADD. These were used/created in the image pipeline
while processing the source

Exp Astron (2013) 35:245–282 261

Derived Bias versions derived from April 2004 raw data
20

18

16

14

12

10

8

6
May 2003 Sep 2003 Jan 2004 May 2004 Sep 2004 Jan 2005 May 2005 Sep 2005 Jan 2006 May 2006 Sep 2006 Jan 2007

ccd50
ccd51
ccd52
ccd53
ccd54
ccd55
ccd56
ccd57

Fig. 9 Graph showing number of BiasFrames (on the y-axis) that were derived from a fixed set
of RawBiasFrames as a function of time (x-axis). This example shows different CCD’s (shown in
the legend) that have been reprocessed different number of times even though they belong to the
same image

are not part of lineage data, then any other data product (e.g., metadata, image
files, other data objects) will be lineage data. From [21], data lineage is stored
as persistent objects in a database. Lineage data is stored as fully integrated
objects or as descriptors. Only pixel values are stored outside the database in
image and other data files. These data files are registered in the Astro-WISE
metadata database with the unique filename. From this model, the database
has a record of the processing history for a source. Each object stored in the
database is identified uniquely with an object_id (OID). Counting the OIDs
will give us an idea of how much data is stored as lineage data. The size of a
science image is dependent on the instrument and perhaps the survey. Since
size is variable, we cannot give a generalization of data files sizes.

Catalogues created from images are stored in Astro-WISE as a SourceList
object. These catalogues consist of sets of sources and parameters (or at-
tributes) that quantify properties of these sources. Normally, the catalogues
are derived from a processed frame existing in the system, but this is not a
requirement.

A dataflow usually has a specification that serves as a template for execu-
tions together with set of valid runs for the given specification. Informally, a
dataflow specification consists of a set of different modules and defines the
order in which they can be executed. In Astro-WISE, a SourceList can be
created from a ReducedScienceFrame, RegriddedFrame or a CoaddedRegrid-
dedFrame. Creating a SourceList from a ReducedScienceFrame, although
considered a valid run, will skip the steps of creating the RegriddedFrames
and CoaddedRegriddedFrame. For the examples in Table 1, we selected
SourceLists created from CoaddedRegriddedFrames. Since these represents

262 Exp Astron (2013) 35:245–282

Table 1 Data lineage objects
for each SourceList object

SourceList ID RawFrames used OIDs

10011 40 5,669
115 48 4,742
116 40 3,702
117 40 3,168
12817 72 7,992
12837 96 10,455
12838 72 8,215
12857 72 9,124
12858 72 8,182
12859 72 6,411
12877 32 7,917
12878 64 7,690

a complete run where all modules in the specification were executed. A Coad-
dedRegriddedFrame can be made from several RegriddedFrames (second
column of the table).

For each SourceList, we count how many objects exist that are stored as
data lineage (i.e., the column labeled OIDs). The OIDs give us an indication of
how many objects are stored as lineage data for each source. This is dependent
on the number of frames used to create the SourceList. However if two
SourceLists refer to the same dependencies, then the SourceLists will share
some of the OIDs.

5 Sub-image processing

Practically, sub-image and full-image processing follow the same standards,
data quality and processing requirements. However processing parameters,
attributes and some modules might defer. This is because pipelines have been
written and designed for instruments with fixed detector properties (e.g., image
size, calibration frames, overscan regions, etc.). All metadata and processing
parameters are based on an instrument or a detector. These variables must be
modified to process a sub-image.

Since no metadata (processing data) exists for sub-image processing, we
use analogical reasoning to infer the necessary changes and then apply them
to processing. By matching and retrieving existing pre-processed information
(data lineage) in the system, we know what relationship exists between what
we want to process and what has been processed before. Using the relation-
ships, we are able to determine the difference between pipelines (and objects).
Hence, we are able to assemble new pipelines so that the new processing
follows the new user processing requirements for a particular region on the
frame.

During data analysis work cycles, users often have to integrate new features
into existing pipelines. For example, a user may wish to improve a given result
by adjusting parameter or changing a method/algorithm. In either case, there
usually exists an example based on full-image processing that demonstrates

Exp Astron (2013) 35:245–282 263

the given technique. The underlying assumption is that the source has been
processed before as part of a full image and a user would like to carry out
a detailed analysis or a computation to a source that lies on few pixels of an
image. Algorithm 3 summaries sub-image processing.

Algorithm 3 High-level view of the algorithm used for Sub-image processing
Input: Object to be re-processed
Output: Re-processed object

if Object exists in database then
Select pipeline that was used to process the object (Section 5.1)
for every node in the pipeline do

Query database for dependencies
Check if dependencies are uptodate() and if they exist()
(Section 5.2)

end for
Edit pipeline for sub-image processing (Section 5.3)
Make new parameter selections/changes (Section 5.3.1)
if dependency is an image then

Compute BoundingBox (Section 5.4)
Check CoverageMap if region has been processed (Section 6.1.1)
Make dependency cutout (Section 5.4)

end if
Re-analyse dependencies
Process sub-image(s)
Update CoverageMap (Section 6.3)
Run SexExtractor on the processed sub-image to extract source
(object)

end if

5.1 Selecting pipelines

The basic idea behind our algorithm is to search for a graph representation
of the dataflow that was used in earlier runs to process the full-image from
which the sub-image to process will be extracted. The next step is to retrieve
data lineage and intermediate data products produced by this graph from
the database. Then the retrieved data will be used as input to the sub-image
processing pipeline. However, since we are processing a sub-image, selected
lineage data to be used as input to the sub-image pipeline will have to be
modified. When such changes occur then the part of pipeline affected by
the changes must be re-run. The re-run will consider dependencies and only
execute those parts of the pipeline affected by the changes.

During a typical data analysis, in the process of trying different datasets,
trying different techniques, and tweaking parameters, a user may create

264 Exp Astron (2013) 35:245–282

multiple sources. Creating multiple sources also implies there are sev-
eral different pipelines that were used to create the sources. We refer to
these pipelines as candidate pipelines. It is clearly impractical to locate a
pipeline that matches a certain criteria by examining each candidate pipeline
individually.

To select a pipeline in Astro-WISE, a user selects particular parameters that
contain the desired attributes. These parameters are used to build a query.
A query interface which is used for processing an object, can also be used
for building a query. Once a query represented as a pipeline fragment is
constructed, we can use the pipeline matching algorithm on each candidate
pipeline to determine if it satisfies the query. A candidate pipeline that has
more matched elements as specified in the query pipeline will be selected.

5.1.1 Matching pipelines

Pipelines arrange the processing of objects by means of a graph that defines the
dependencies and dataflow between objects. In our pipeline representation, a
directed edge will point from object X to object Y, if object X depends object
Y. With a graph for each pipeline, we compute the mapping by comparing
objects (nodes). For each node in the graph, we create a set of its dependencies.
The elements of the set are all edges pointing from the node. Let Gp and Gq

be graphs corresponding a candidate pipeline and the query fragment. If Np is
a node in Gp and Nq is a node in Gq, we define score S that measures the pair
wise similarity of each node as, the number of matched elements in Np and Np,
divided by total number of distinct elements in Np and Nq.

Algorithm 4 Selecting a candidate pipeline
Input: list of sources, pipeline fragment/query pipeline
Output: candidate pipeline Gc(Nc, Ec)

S ← list of sources
Gq ← query pipeline with selection parameters
Gc ← candidate pipeline
Smax ← 0
if length of S
= 0 then

for each source si ∈ S do
Gp ← query Astro-WISE for pipeline that was used to process si

Si ← match Gp with the query pipeline Gq

if Si > Smax then
Smax ← Si

Gc ← Gp

end if
end for

end if

Exp Astron (2013) 35:245–282 265

A score of zero implies, there are no matching elements in the pair wise
nodes. It could also mean that the node in the candidate pipeline was not
specified in the query pipeline. However, we restrict the comparison to only
those nodes specified in the query pipeline. The higher the score, the more
likelihood that there are more matching elements between the nodes. The
overall score of a graph is the sum of all scores on all nodes. The graph
with the highest score will be selected. Selection of the candidate pipeline is
summarised Algorithm 4.

5.2 Pipeline building

Astro-WISE uses the advantages of Object-Oriented Programming (OOP) to
process data in the simplest and most powerful ways. In essence, it turns
the aforementioned data objects into OOP objects, called process targets (or
Process- Targets). These are instances of classes with attributes and methods
that can be inherited. For the remainder of this document, the class names of
objects, their properties, and methods will be in teletype font for more clear
identification.

The starting point of sub-image processing is the selection of the target, i.e.,
set of sky positions and a set of parameters. The system matches and selects the
pipeline from all candidate pipelines as described in Section 5.1. Each node in
the pipeline is associated to an object. Each object is identified with a unique
object ID (OID). The OID is used as a key when searching the database
for data lineage information related to a particular object. Each OID is also
associated with a specific instantiation of a class (module). Using this unique
ID, we can query for all data that went into the processing of this object. If the
OID is associated with an image, a cutout is made of the pixels of interest from
this image and used as input to the module. The pixels extracted as a cutout
are determined through pixel lineage.
Astro-WISE then analyses this graph to detect modules that must be rerun,

based on the processing changes required for sub-image processing. If the
requested target already exists(), (i.e., if it has been processed using
parameters and input data as required for sub-image processing) the system
will check all its dependencies up to the raw data. If all its dependencies are
uptodate() then the target object is returned. If all or some dependencies
are not uptodate(), then these dependencies will be made on-the-fly, by
calling the dependency’s make() method. If new versions exist of the classes
that created the dependencies, then these dependencies will be re-made using
the new-versions of the classes. This analysis is implemented with three key
methods:

– Each target has a make()4 method which explicitly specifies file targets,
their dependencies, and modules/methods required to process the target.

4The make() method follows the Linux make metaphor.

266 Exp Astron (2013) 35:245–282

– The exist() method queries the database, using a set of parameters. The
set of parameters depends on the class. If the query results in multiple
objects, the most recent is returned.

– The uptodate() method, first checks if the object is flagged, if so the
object is out-of-date. Then all the dependencies of the object are checked
if they are the newest versions. Essentially calling the exist() method on
every dependency. If not all dependencies represent the newest version,
the object is out-of-date. The last check is to call the uptodate() method
on all the dependencies. This recursive calling of the uptodate method
can be done to a certain depth, or until the last dependency in the
processing chain.

5.3 Pipeline changes

The matched and retrieved pipeline has to be modified to support sub-image
processing. This also includes modifying parameters and input data (e.g., use
image cutouts rather than full images). We define a function � as a function
that takes in input, the matched pipeline Gi and transforms it to another
pipeline Gs (pipeline for sub-image processing). Assuming �(Gi) = Gs, it is
clear that � is not unique for each processing. Our ultimate goal is to find �.
i.e., the changes required to transform Gi to Gs.

For each module or pipeline, we identify all tasks that are required to be
changed or modified to support this new framework. Those tasks are then
included in the system, as a new module, attribute or parameter without
changing the overall data model. If we denote the set of all pipelines as P , every
operation performed on a pipeline, (e.g., adding parameters, modules, etc.) can
be directly expressed as a (potentially partial) function F : G → G. Then �

is defined by such functions. Our results depend on making these functions
part of Astro-WISE. These functions are dynamically loaded whenever a user
requests to process a sub-image. The changes made to the modules for image
analysis are specific and are beyond the scope of this chapter. We present
two examples to demonstrate the kind of changes required for sub-image
processing:

– Astrometric Parameters: A critical step for astronomical processing is
deriving an ‘Astrometric solution’. This is derived by fitting distortion
polynomials to images, taking into account the objects seen. For accurate
results, several reference stars are used to derive the final solution. For
the case of sub-image processing, such a process would fail since reference
stars on the sub-image will be very few. In Astro-WISE, Astrometric
parameters are each linked to a single processed science observation (a
single detector chip of one exposure). It is that observation that provides
the source positions to be calibrated via the astrometric solution. Using
data lineage we locate the astrometric solution that applies to the region
we are processing. The solution is then modified and fitted to the pixels of
the sub-image.

Exp Astron (2013) 35:245–282 267

– Overscan Correction; The overscan is a number of rows and columns
created by doing a few empty readout cycles before the detector is read.
They appear as blank regions attached to the image and serve as an
individual BIAS that comes along with every image. A BIAS shows the
electronic noise of the camera and possible systematics. It represents the
actual state of the camera at the time the exposure was taken. Each image
has overscan rows and columns attached to it. During data reduction, each
image must be corrected for an overscan. The overscan correction is done
by smoothing the overscan regions and subtracting it from the regions with
data. After this correction, the overscan region is trimmed off. For the case
of sub-image processing when extracting the sub-image from the full-image
the algorithm must be aware of the overscan regions. The overscan regions
corresponding to the sub-image are also extracted and used to perform an
overscan correction on the sub-imageṪhe trimming operation is not done
in this case since the sub-images do not have overscan rows and columns.

5.3.1 Parameter and attribute selection

The example below displays a lineage tree for any object. This particular
example shows the parameters that were passed into a program called Swarp
(Use for Co-addition)

awe> regrid = RegriddedFrame()
awe> regrid.swarpconf.info()
SwarpConfig: <astro.main.Config.SwarpConfig object

at 0x1d893ad0>
+-CELESTIAL_TYPE: NATIVE
+-CENTER: ([111.428571428571,

-0.95744680851063801]
+-INTERPOLATE: N
+-OVERSAMPLING: 0
+-PIXEL_SCALE: 0.2
+-PROJECTION_TYPE: TAN
+-RESAMPLING_TYPE: LANCZOS3
+-SUBTRACT_BACK: N
+-object_id:

’83A31678D4D49F0AE0407D81E60E38BA’

---- etc -----
awe>

To change any parameter during processing, the command below would
suffice,

awe> regrid = RegriddedFrame()
awe> regrid.swarpconf.RESAMPLING_TYPE = ’NEAREST’

268 Exp Astron (2013) 35:245–282

In addition, we have also defined a web interface exemplified in Fig. 10
which shows the parameters that were used during processing. The same
interface can be used change parameters as required for sub-image processing.

5.4 Dependency cutouts

This service extracts or “cuts out” rectangular regions of contributing pixels
from some larger image returning a sub-image of the requested size. Con-
tributing pixels are the pixels that contributed to the derivation of a source.
Extracting image cutouts is according to the VO standards described in [27].
Cutouts in Astro-WISE are drawn from a collection of images that were used
or produced during a specific dataflow.

A science image has an associated weight frame and/or calibration frames.
Weight frames are used to assign individual weights to every pixel in the
science image depending on the reliability of the information carried in the
pixel. In the same way, calibration frames are used to correct pixels in the
science image. There is usually a mapping between the pixels in the weight
frame and/or calibration frames to the corresponding science frame. A lineage
query for a source will lead the information system to the science and calibra-
tion images that were used to process the source. Pixel-lineage will lead the
information system to the specific contributing pixels in the images. Cutouts
are made for only the contributing pixels.

Fig. 10 A web interface
for parameters selection

Exp Astron (2013) 35:245–282 269

The size of the cutouts is defined by BoundingBox(BBox). The BBox is
a tuple of pixel coordinates (xmin, ymin, xmax, ymax), where (xmin, ymin) and
(xmax, ymax) are lower and upper pixel coordinates of a rectangular region
respectively. To determine the size of the BBox, we begin with the position
of the source, then we follow the procedure outlined below:

(i) find source with Ra and Dec
(ii) get its size on the sky;

(iii) scale it by the pixel scale factor
(iv) convert into pixel coordinates;
(v) draw a rectangular section that encloses all pixel coordinates computed

in step (iv)
(vi) get minimum (xmin, ymin) and maximum (xmax, ymax) values of the pixel

coordinates in the rectangular section
(vii) (xmin, ymin, xmax, ymax) is the BBox.

Using the (xmin, ymin) and (xmax, ymax) together with the pixel lineage tracing
procedures, we work through all image dependencies while computing the
BBox on each frame. However, Astro-WISE implementation allows a user to
specify the size of the BBox or the size of the cutout. This may be specified
using one or two values in the coordinate space. These values are used to
extract the cutout with reference to the position of the source.

6 Book keeping

We describe the management of image cutouts and how Astro-WISE keeps
track of dependencies during sub-image processing. We introduce key classes
that enable the methods presented in this section:

– DBObject: This is the base class of all persistent objects. It defines per-
sistent properties that all classes share. For example, the object identifier
(OID) which uniquely identifies each object in the database.

– DataObject: This class is derived from DBObject and is the base class
for persistent classes of which their instances have an associated file on the
data-server. It defines the persistent property filename. The filename
attribute specifies the name of the file as it is stored on the data-server.
Each file in Astro-WISE has a unique name and this name is stored in the
database as part of the metadata. Every instance of the class DataObject
or every class which is derived from class DataObject has an associated
data file.

– FileObject: Data files are stored in Astro-WISE as FileObjects. An
instantiation of the FileObject class creates the StorageTable. The OID
and the object type of a DataObject are used as reference to identify the
relationship between the data file and the DataObject. Figure 11 shows a
UML class diagram that shows the relationship between the FileObject
and DataObject. A FileObject contains information of a file, such as

270 Exp Astron (2013) 35:245–282

Fig. 11 Class diagram to
support storage of multiple
processed sub-imagess to the
same FileObject

DBObject

+object_id

FileObject

+ref_object_id

+__init__()

DataObject

+storage

+subimage:turple

+pathname:str

+filename:str

+retrieve()

+store()

+update()

CoverageMap

+ref_object_id

+update()

+is_processed()

1

*

1

1

file size, creation date, hash value, etc. An abstract Storage class defines
a general interface for the different protocols. It defines a retrieve and
a store methods which should be implemented by the different kinds of
storage, that is, classes that inherit the Storage class.

– BaseFrame: This is the base class for all classes representing image data.
A BaseFrame is a persistent FITS file object. BaseFrame, inherits from
DataObject. All objects derived from BaseFrame describe the con-
tents of associated FITS images and have methods that operate on these
images. It is from the BaseFrame class from which more complicated
image classes such as the RawScienceFrame, ReducedScienceFrame, are
derived.

6.1 Smart processing

The classical paradigm to handle data streams of large physical experiments is
characterized as data-driven and feed-forward [28]. Operators have a task to
push input data through the stream, often by means of a pipeline irrespective
of whether the derived data items are actually used by the end users or have
been derived before. In Astro-WISE, we use a different approach. Firstly, we
limit the creation of data objects to those required for an experiment, secondly
we support re-using existing data objects rather than recreating them as long
as input parameters and other dependencies have not changed.

With sub-image processing, the same applies. Users can now focus on
processing regions that have sources of their specific interests, rather than
processing the full frame and discarding what does not interest them. Similarly,
a region on a frame should not be re-processed if it has been processed before.
Especially if the processing parameters and dependencies have not changed.

Exp Astron (2013) 35:245–282 271

To solve the problem of finding which region has been processed, we introduce
the idea of a CoverageMap as presented below:

6.1.1 CoverageMap (CMap)

A CMap is a way of representing which regions on an image have been
processed. The CMap is implemented as a pixel-map in the system and is
derived from the BaseFrame. There is a one-to-one mapping between the
pixels of the CMap to the pixels of the BaseFrame. Each pixel is assigned
a value of 1 for good/processed or 0 for bad/unprocessed pixel in the CMap.
Figure 12 represents an example of aCMap, with regions R1 to R9 representing
processed regions in a frame. If a user requests to process a region on a frame,
the CMap is checked to establish if that region has been processed fully or
partially as follows:

Given a binary 2D image (CMap in this case) with regions R in
{ R1, R2,Rk}, where Ri represents all processed regions in R. If Ri is a set of
points (x, y) over R, given an arbitrary region R′, we find if any points (x, y) in
R′ that do (not) exist in any Ri. This is implemented as shown in Algorithm 5.
If the region has been processed before then a link to the processed frame is
returned, else a False is returned implying that the region or part of the region
has not been processed before.

6.2 Cutout dependencies

Any module in Astro-WISE that uses an image as one of its inputs, does
processing on the image and outputs another image, will store any new images
created and create links to the images used and to all other dependencies.

Fig. 12 An example of a
CMap. Regions R1–R9
represent processed regions.
These regions will have a
value of ‘1’ in the pixel-map

R1

R2

R4R4

R5

R6
R7

R8

R9

272 Exp Astron (2013) 35:245–282

Algorithm 5 Checking for processed regions on a frame
Input: CMap, BaseFrame, R′
Output: Boolean, True or False, if True, link to processed frame

if BaseFrame has a CMap then
R ← R1, R2,, Rk,

for R′ ∈ R do
if R′ ⊂ Ri then

Return Link
else if R′ ⊃ Ri then

Return False
else if R′ = Ri then

Return False
else if Ri ⊃ R′ then

Return Link
else if R′ ∩ Ri then

Return False
else if R′ ⊃ Ri then

Return False
else

continue
end if

end for
end if

In case the input images have not been stored before, DataObjects for the
images will be created, stored and linked to the results.

In the case of sub-image processing, for every sub-image we process, a new
DataObject is created. A store command would want to store the cutouts
used as input to the processing module and also store the newly processed
sub-image. However, since cutouts are made from existing images, the storage
of the cutouts will duplicate pixel data in the system and will make history
tracking complicated.

To avoid duplication of pixel data in Astro-WISE, image cutouts that used as
input to any transformation are not stored. We instead store a link that refers
to the image from which the cutout was made and make the cutout parameters
persistent. This implies that all sub-images processed from the same frame will
refer to the same dependencies. To avoid the storage of the cutouts, we defined
three attributes and redefined the retrieve method:

1. subimage attribute specifies the BBox.
2. filename attribute refers the name of image file
3. pathname attribute specifies name and path of the filename as stored on

the local processing node. This attribute separates into a filename which
is persistent and a file-path, which is not persistent. This is because the
pathname is only meaningful on the site where a process is running.

Exp Astron (2013) 35:245–282 273

4. Retrieve() is used to transfer data files from the data-server to the local
node for processing. For sub-image processing, the retrieve method
implements the cutout algorithm in addition to file renaming. Retrieve
uses BBox parameters which specified by the subimage attribute to
implement the image cutouts algorithm and the retrieval of cutouts.
For example, if a user wants to retrieve a file associated with a
DataObject, he can use the retrieve method from the DataObject
class to retrieve the file. The DataObject’s retrieve method in turn
calls the corresponding retrieve method from the Storage class. In the
context of the sub-image processing, the retrieve method returns a cutout
of the image file associated with the DataObject. In addition, the retrieve
method renames the retrieved cutout and the new name is referred to with
the pathname attribute.

If a DataObject has an attribute subimage, then the pathname refers
to the name of the sub-image and filename attribute refers to the Base-
Frame from which the cutout was made. Otherwise both the filename
and pathname will refer to the BaseFrame. Since the filename still refers
to an existing object, with an existing OID, such an object will never be
(re)stored.

6.3 Storage of processed sub-images

Assuming that a user wants to process several objects which lie on the
same BaseFrame, the user might decide to make cutouts and process each
individual object separately. If such a process leads to the creation of a Re-
ducedScienceFrame, then a several ReducedScienceFrame objects, i.e., several
FileObjects and DataObjects, all linked to the same RawScienceFrame
will be created. Even if they share the same input datasets, parameters and
methods. This is not only wasteful but will complicate data management and
history tracking.

A processed sub-image may be stored as an individual processed image, or
stored in some larger image. If several sub-images are processed from the
same BaseFrame, then all pixel processed data will be stored in the same
FileObject. A FileObject is created for each processing parameter set.
A processing parameter set contains similar parameters that were used during
processing. The pixels of the processed sub-images will be stored in the same
FileObject provided they all share the same processing parameter set. In
case of a parameter change, a new FileObject will be created to store pixel
data for the processed sub-image. A conceptual example of a FileObject
used to store processed pixel data is shown in Fig. 12. Assuming regions R1
to R9 represent processed regions, then only those regions will contain valid
data. We then use a CMap to assign individual weights for every other pixel
which does not lie in any of the processed regions.

274 Exp Astron (2013) 35:245–282

7 Evaluation

7.1 Detailed use-case

The use of sub-image data processing proves to be useful for a number of
scientific use cases. We show one of the possible implementations of the
developed sub-image processing.

In the search for special types of objects (quasars, brown dwarfs, white
dwarfs etc.), the scientist usually works with multi-band catalogues created
from a number of images. Objects which are selected as candidates for a class
of objects the scientists is interested in are called “drop-outs”. A drop-out is
an object which is missing one or more detection values on the images used
to create a catalogue. For example, if the same detection threshold is used for
all images in different filters used to create a final multi-band catalogue, the
brown dwarf will appear on infra-red images but will be most probably missed
on ultra-violent and visual bands.

For this work we used W3 and W4 of CFHTLS [24] ingested in Astro-WISE.
CFHTLS is a deep sky survey observed by Canada-France-Hawaii Telescope
in u,g,r,i,z bands.5 W3 and W4 fields of CFHT Legacy Survey was combined
with the corresponding area in the VISTA Kilo-Degree Infrared Galaxy
Survey (VIKING6 survey). VIKING is an ESO public survey in Y,Z,J,H,K
bands. The reduced images were provided by Cambridge Astronomy Survey
Unit7 and catalogues were extracted in Astro-WISE.

This is seven square degree area which is covered in ten filters (u,g,r,i,z—for
CFHT, Z,Y,J,H,K—for VIKING). The resulting catalogue contains 2,247,126
sources, 1,801,216 of them are formally dropouts. However only a small
fraction of these objects can be classified as candidates for some type of special
objects. For example, approximately 1,000 of the sources can be brown dwarfs,
depending on the selection criteria. The important task for all these sources is
to estimate their minimum flux. To do so without the sub-image processing, we
have to repeat the source extraction for a full image with parameters defined
from the images where the source was detected. With sub-image processing,
we can carry out source extraction for a particular source.
SExtractor8 which is integrated in Astro-WISE is the program that

extracts sources and computes source attributes. The program estimates the
magnitude of the object using shapes defined from images where the object
was detected. For this task we use SExtractor in the so-called double-image
mode. This requires two images, the first image (detection image) will be

5http://www.cfht.hawaii.edu/Science/CFHTLS/
6http://www.eso.org/sci/observing/policies/PublicSurveys/sciencePublicSurveys.html
7http://casu.ast.cam.ac.uk/
8SExtractor is a program that builds a catalogue of objects from an astronomical image.
http://www.astromatic.net/software/sextractor

http://www.cfht.hawaii.edu/Science/CFHTLS/
http://www.eso.org/sci/observing/policies/PublicSurveys/sciencePublicSurveys.html
http://casu.ast.cam.ac.uk/
http://www.astromatic.net/software/sextractor

Exp Astron (2013) 35:245–282 275

T
ab

le
2

T
he

ta
bl

e
de

m
on

st
ra

te
s

th
e

m
is

si
ng

m
ag

ni
tu

de
va

lu
es

of
pa

rt
ic

ul
ar

fi
lt

er
s

SL
ID

SI
D

R
A

D
ec

u-
m

ag
g-

m
ag

r-
m

ag
i-

m
ag

z-
m

ag
Z

-m
ag

Y
-m

ag
J-

m
ag

H
-m

ag
K

-m
ag

16
86

28
1

1,
64

3,
57

6
36

.2
−5

.2
7

21
.0

5
21

.0
6

20
.7

4
21

.6
8

25
.1

1
24

.6
6

16
86

28
1

1,
64

0,
44

9
36

.4
7

−5
.3

7
20

.2
6

20
.6

23
.9

8
24

.7
4

24
.6

1
16

86
28

1
1,

45
5,

85
5

35
.6

3
−4

.1
9

20
.7

20
.8

6
22

.1
3

25
.1

6
16

86
28

1
79

,6
15

34
.1

3
−5

.4
4

18
.7

18
.8

4
23

.1
9

23
.9

1
23

.1
7

24
.0

9
25

.1
3

W
e

la
te

r
us

e
th

e
fi

lt
er

s
th

at
re

tu
rn

ed
m

ag
ni

tu
de

va
lu

es
to

es
ti

m
at

e
m

ag
ni

tu
de

s
va

lu
es

fo
r

fi
lt

er
s

th
at

di
d

no
tr

et
ur

n
an

y
va

lu
es

276 Exp Astron (2013) 35:245–282

T
ab

le
3

R
e-

co
m

pu
te

d
m

ag
ni

tu
de

va
lu

es
fo

r
se

le
ct

ed
so

ur
ce

s

SL
ID

SI
D

R
A

D
ec

u-
m

ag
g-

m
ag

r-
m

ag
i-

m
ag

z-
m

ag
Z

-m
ag

Y
-m

ag
J-

m
ag

H
-m

ag
K

-m
ag

16
86

28
1

1,
64

3,
57

6
36

.2
−5

.2
7

24
.1

8
16

86
28

1
1,

64
3,

57
6

36
.2

−5
.2

7
24

.5
2

16
86

28
1

1,
64

3,
57

6
36

.2
−5

.2
7

25
.5

5
16

86
28

1
1,

64
3,

57
6

36
.2

−5
.2

7
a

16
86

28
1

1,
64

0,
44

9
36

.4
7

−5
.3

7
24

.5
1

16
86

28
1

1,
64

0,
44

9
36

.4
7

−5
.3

7
23

.7
4

16
86

28
1

1,
64

0,
44

9
36

.4
7

−5
.3

7
25

.7
0

16
86

28
1

1,
64

0,
44

9
36

.4
7

−5
.3

7
26

.2
5

16
86

28
1

1,
64

0,
44

9
36

.4
7

−5
.3

7
b

16
86

28
1

1,
45

5,
85

5
35

.6
3

−4
.1

9
22

.2
9

16
86

28
1

1,
45

5,
85

5
35

.6
3

−4
.1

9
23

.7
1

16
86

28
1

1,
45

5,
85

5
35

.6
3

−4
.1

9
99

16
86

28
1

1,
45

5,
85

5
35

.6
3

−4
.1

9
23

.7
3

16
86

28
1

1,
45

5,
85

5
35

.6
3

−4
.1

9
26

.1
4

16
86

28
1

1,
45

5,
85

5
35

.6
3

−4
.1

9
99

c

16
86

28
1

79
,6

15
34

.1
3

−5
.4

4
22

.1
0

16
86

28
1

79
,6

15
34

.1
3

−5
.4

4
23

.9
0

16
86

28
1

79
,6

15
34

.1
3

−5
.4

4
24

.6
0

A
ro

w
in

ea
ch

ta
bl

e
of

th
e

sa
m

e
so

ur
ce

in
di

ca
te

s
a

un
iq

ue
pr

oc
es

s
th

at
w

as
us

ed
fo

r
so

ur
ce

ex
tr

ac
ti

on
a T

he
re

is
no

ov
er

la
p

be
tw

ee
n

R
ed

uc
ed

Sc
ie

nc
eF

ra
m

es
fo

r
i-

m
ag

an
d

z-
m

ag
b
E

rr
or

in
P

ro
je

ct
io

ns
c N

o
so

ur
ce

de
te

ct
ed

at
th

is
po

si
ti

on

Exp Astron (2013) 35:245–282 277

used for detection of sources, and the second image (measurement image)
for measurements only. The detection image will define the shape and other
parameters which shall be used to estimate the magnitude of the source in the
measurement frame.

Rather than using the full-image for this, we make cutouts of the sources in
the detection and measurement frames. Other parameters, which are selected
from lineage data, have to be modified to reflect the changes in image sizes
that are being passed into the pipeline. It is very important that cutouts are
precise and accurate to avoid using parameters that could be detected from
wrong pixels. This procedure is summarized below.

– We begin by searching the catalogues (or SourceList the table identifier
in Astro-WISE) for all sources that fall in the description of dropouts stated
above. For purposes of this demonstration, only foursources have been
selected. These are shown in Table 2. The sources with SLID = 1686281
and SID = 1643576 from the table has missing magnitude values in the z-
mag, Z-mag,Y-man and K-mag bands. We estimate the missing magnitude
values by using the closest filter that has the values of interest.

– We use the image for the i-mag as the detection frame and the image for
the z-mag as the measurement frame to compute the magnitude value for
z-mag. We use the image for H-mag as the detection frame, and K-Mag
as the measurement frame to compute the magnitude for K-Mag, and use
the image for J-mag as the detection frame for both Z-mag and Y-Mag
measurements frames to compute magnitude values for Z-mag and Y-Mag
respectively.

– Using data lineage queries, we locate the frames for all filters on which
these sources were extracted or the frames where we expect the source to
appear (dropout cases). This process can be done recursively up to the raw
data as taken from the telescope.

– If reprocessing is required, the cutouts of the science frames together
with the cutouts of the calibration frames for the specific regions on the

Source u.MP9301 g.MP9401 r.MP9601 i.MP9701 z.MP9801 ESO-Z-0001 ESO-Y-0002 ESO-J-0002 ESO-H-0002 ESO-Ks-0002

(35.62,
-4.13)

(36.47,
-5.37)

(36.20,
-5.27)

(34.13,
-5.44)

Fig. 13 The cutouts of the sources shown in Tables 2 and 3

278 Exp Astron (2013) 35:245–282

Table 4 Performance parameters for extracting sources using double-image mode on full images

Project Image size File retrievals
Detection Measurement Detection Measurement Processing
image (GB) image (GB) image (s) image (s) time (s)

VIKING 2 2 70.57 70.02 4525.30
CHFT 1.7 1.7 55.60 55.65 2145.31

science frames can be made and pushed through the sub-image-processing
pipeline.

– For this case, re-processing is not required, what is needed is extracting one
source from the measurement frame using parameters from the detection
frame.

– For each source, the detection and measurements cutouts are submitted to
the Astro-WISE sub-image-pipeline for source extraction.

The results are summarized in Table 3. The cutouts for the selected sources
are shown in Fig. 13

7.2 Performance

The experiments described in this section were carried out on a dedicated Intel
dual core 2.8Ghz desktop, with 4GB of memory, running GNU/Linux 2.6.18-
238.12.1.e15, connected on 1Gbit network connection to the data server and
database. However, the speeds of the test are heavily determined by the speed
at which the database will send data to the local workstation for processing.
For this reason, we show the time it takes to retrieve the files to the local node
for processing. Table 4 shows processing details for the full images and Table 5
shows the processing details for sub-image processing. Notice that it took only
176.58 s on VIKING data to extract the information as required using sub-
image processing as opposed to 4,525 s if we were to use full images.

One common characteristic of all dataflow programming frameworks is the
requirement of locally staged data for processing. A computation cannot start
before all required inputs are available locally at the processing node because
data has to be transferred from archives to processing nodes. This is one of the
performance bottlenecks in such systems. From the results in Tables 4 and 5, it
is evident that a lot of time is saved when smaller images are transmitted from
the storage nodes to the processing nodes over the network for processing.

Table 5 Performance parameters for extracting sources using double-image mode on a sub-
images

Project Image size File retrievals
Detection Measurement Detection Measurement Processing
image (KB) image (KB) image (s) image (s) time (s)

VIKING 20 20 0.12 0.18 176.58
CHFT 20 20 0.13 0.17 170.30

Exp Astron (2013) 35:245–282 279

Fig. 14 A plot showing a relationship between the sub-image size and the time it takes to process
a sub-image

We proceed to make and process cutouts of different sizes and we record
the time it takes to process and extract sources from these cutouts. The time
it took to process each different sized cutout was recorded. The results of this
processing are shown in Fig. 14. Notice from the Fig. 14 that the processing
time increases as the size of the cutout increases. This therefore shows that
there is significant saving in computation time (and resources) while processing
sub-images compared to processing full-images.

8 Related work

Most of the popular astronomical software languages and packages (Interac-
tive Data Language,9 European Southern Observatory Munich Image Data
Analysis System10 [14], Image Reduction and Analysis Facility [12]) assume a
standalone approach to working with data. In the case of all these packages,
the storage and access of the raw and processed data is a responsibility of the
user. However, the astronomical data processing community (or the scientific
community in general) is becoming very sophisticated. Data reduction and
analysis has become complex [29], data rates have kept pace with advances in

9http://www.ittvis.com/language/en-us/productsservices/idl.aspx
10http://www.eso.org/sci/data-processing/software/esomidas

http://www.ittvis.com/language/en-us/productsservices/idl.aspx
http://www.eso.org/sci/data-processing/software/esomidas

280 Exp Astron (2013) 35:245–282

processing power (doubling roughly every two years), and the dimensionality
of data is increasing [26]. As a result, several scalability issues have arisen
which range from ensuring good performance, to handling large amounts of
data, to capturing data lineage, and providing interfaces to interact with a large
number of archives. Distributed or grid systems [30] have been developed to
address performance and dataset concerns. Such systems like [17], provide a
scalable infrastructure for running image pipelines in a distributed way.

Provenance-aware scientific workflow systems [10] have been considered
as the paradigm for representing and managing complex distributed scientific
computations. Systems such as those surveyed in [19] and [4] have enabled
scientists to carry out complex scientific computations while capturing data
lineage. Despite these developments, little or no support exists in current
systems to trace lineage and pixel level. Most data lineage models do not allow
end-users to use lineage data in scientifically meaningful way, in particular to
improve scientific processes. Our lineage model introduced in this paper does
capture lineage at the finest detail (e.g., a pixel transformation process). This
lineage, specifically at pixel level is then used for various scientific processes,
mainly in sub-image processing as described in this paper.

While tracing lineage at pixel level is missing out in most workflow systems,
the level of granularity at which lineage is collected is linked to the particular
needs of data lineage requirements. Different data lineage models are in use
today and also several workflow management systems do exploit data lineage
for different purposes. The use of lineage we describe in this paper is analogous
to how other authors have used lineage to solve some use-cases. For example
in [2, 23] and [18] data lineage has been used for results verification and
to prove robustness of methods, in Kepler [1] data lineage has been used
to enable smart “reruns” and process simplification of previously executed
workflows and in [22] and [7], data lineage has been used for interactive design
of workflows.

In this work, we extracted and processed cutouts from astronomical images
according to the VO standards described in [27]. To the best of our knowledge,
there haven’t been attempts at sub-image processing reported in the literature.
Therefore, we have no comparative analysis to evaluate if there could be
advantages or disadvantages of our approach against any other approach.
However, we show that in this current data deluge sub-image processing as
compared to full-image processing supports research in distributed communi-
ties by transferring and processing a minimal set of data.

9 Discussion and conclusions

We have described a new framework that leverages data lineage to aid in
selective retrieval and processing of data. We argue that sub-image processing
is a powerful method that will provide efficient solutions for what are otherwise
manual, time-consuming tasks.

Exp Astron (2013) 35:245–282 281

This method provides scalable and easy-to-use primitives for reprocessing
of data. With this kind of processing, even users at remote research centres
could comfortably run and process data, without the limitations of huge data
transfers and insufficient resources on local clients. We have proposed efficient
algorithms and intuitive interfaces for realizing these primitives inAstro-WISE.

However, our approach is not foolproof. There are cases where it may fail to
produce the results a user expects. For example, if a user applies the method to
a processing that involves neighbouring pixels to determine a result of a pixel
(e.g., derivation of astronomical parameters solution) the pipelines is likely to
fail. However, when such a processing fails, or produces poor results, the user
can initially process the full image and extract all parameters/needed to aid in
processing of other sub-images. The effect shall be slower performance for the
start, which improves significantly while processing other sub-images.

There are many avenues for future work. We intend to further transform
scientific systems to process pixels rather than images. We are currently
investigating how we can use databases to aid in such processing. One way
that we are currently evaluating involves the loading of data into a database
and then performing all processing inside the database, allowing accurate data
lineage that can be easily captured and traced.

Acknowledgements Partially based on raw observations obtained with MegaPrime/MegaCam,
a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT)
which is operated by the National Research Council (NRC) of Canada, the Institut National des
Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and
the University of Hawaii. The data is processed within Astro-WISE system.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.

References

1. Altintas, I., Ludaescher, B., Klasky, S., Vouk, M.A.: Introduction to scientific workflow man-
agement and the kepler system. In: SC ’06: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, p. 205. ACM, New York (2006)

2. Anderson, E.W., Ahrens, J.P., Heitmann, K., Habib, S., Silva, C.T.: Provenance in
comparative analysis: a study in cosmology. Comput. Sci. Eng. 10(3), 30–37 (2008).
doi:10.1109/MCSE.2008.80

3. Begeman, K.G., Belikov, A.N., Boxhoorn, D.R., Dijkstra, F., Valentijn, E.A., Vriend, W.J.,
Zhao, Z.: Merging grid technologies. J. Grid Computing 8, 199–221 (2010)

4. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM Comput.
Surv. 37(1), 1–28 (2005)

5. Calabretta, M.R., Greisen, E.W.: Representations of celestial coordinates in fits. Astron.
Astrophys. 395(3), 1077–1122 (2002)

6. Consortium, A.W.: Dependency cutout web interface. http://cutout.astro-wise.org/. Accessed
June 2011

7. Ellkvist, T., Koop, D., Anderson, E.W., Freire, J., Silva, C.: Using provenance to sup-
port real-time collaborative design of workflows. Provenance and Annotation of Data
and Processes: 2nd International Provenance and Annotation Workshop, IPAW 2008, Salt
Lake City, UT, USA, 17–18 June 2008. Revised Selected Papers pp. 266–279 (2008).
doi:10.1007/978-3-540-89965-5_27

http://dx.doi.org/10.1109/MCSE.2008.80
http://cutout.astro-wise.org/
http://dx.doi.org/10.1007/978-3-540-89965-5_27

282 Exp Astron (2013) 35:245–282

8. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: a survey.
Comput. Sci. Eng. 10(3), 11–21 (2008)

9. Fruchter, A.S., Hook, R.N.: Linear reconstruction of the hubble deep field (1996).
http://www-int.stsci.edu/~fruchter/dither/drizzle.html. Accessed July 2011

10. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M.,
Moreau, L., Myers, J.: Examining the challenges of scientific workflows. Computer 40(12),
24–32 (2007)

11. Glavic, B., Dittrich, K.R.: Data provenance: a categorization of existing approaches. In: BTW
’07: 12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web, pp. 227–241.
Verlagshaus Mainz, Aachen (2007). ISBN 978-3-88579-197-3

12. Greenfield, P.: Reaching for the stars with python. Comput. Sci. Eng. 9(3), 38–40 (2007).
doi:10.1109/MCSE.2007.62

13. Greisen, E.W., Calabretta, M.R., Valdes, F.G., Allen, S.L.: Representations of spectral coor-
dinates in fits. Astron. Astrophys. 446(2), 747–771 (2006). doi:10.1051/0004-6361:20053818

14. Heck, A. (ed.): Information Handling in Astronomy—Historical Vistas. Springer-Verlag (2002)
15. Jaan, K.: Numerical Methods in Engineering with Python. Cambridge University Press (2005)
16. Mark, C.A., Francisco, V.G., Eric, G.W., Steven, A.L.: Representations of distortions in fits

world coordinate systems. Astronomical Data Analysis Software and Systems XIII 314, 551
(2003)

17. McFarland, J., Verdoes-Kleijn, G., Sikkema, G., Helmich, E., Boxhoorn, D., Valentijn, E.: The
astro-wise optical image pipeline. Exp. Astron. (2010). doi:10.1007/s10686-011-9266-x

18. Miles, S., Wong, S.C., Fang, W., Groth, P., Zauner, K.P., Moreau, L.: Provenance-based valida-
tion of e-science experiments. Web Semant. 5, 28–38 (2007). doi:10.1016/j.websem.2006.11.003.
http://portal.acm.org/citation.cfm?id=1229184.1229197

19. Moreau, L.: The foundations for provenance on the web. Found. Trends Web Sci. 2, 99–241
(2010). doi:10.1561/1800000010

20. Moreau, L., Ludäscher, B., Altintas, I., Barga, R.S., Bowers, S., Callahan, S., Chin, J.G.,
Clifford, B., Cohen, S., Cohen-Boulakia, S., Davidson, S., Deelman, E., Digiampietri, L.,
Foster, I., Freire, J., Frew, J., Futrelle, J., Gibson, T., Gil, Y., Goble, C., Golbeck, J., Groth,
P., Holland, D.A., Jiang, S., Kim, J., Koop, D., Krenek, A., McPhillips, T., Mehta, G., Miles,
S., Metzger, D., Munroe, S., Myers, J., Plale, B., Podhorszki, N., Ratnakar, V., Santos, E.,
Scheidegger, C., Schuchardt, K., Seltzer, M., Simmhan, Y.L., Silva, C., Slaughter, P., Stephan,
E., Stevens, R., Turi, D., Vo, H., Wilde, M., Zhao, J., Zhao, Y.: Special issue: the first prove-
nance challenge. Concurr. Comput.: Pract. Exper. 20(5), 409–418 (2008)

21. Mwebaze, J., Boxhoorn, D., Valentijn, E.: Tracing and using data lineage for pipeline process-
ing in astro-wise. Exp. Astron. (2011). doi:10.1007/s10686-011-9276-8

22. Scheidegger, C., Vo, H., Koop, D., Freire, J., Silva, C.: Querying and creating vi-
sualizations by analogy. IEEE Trans. Vis. Comput. Graphics 13(6), 1560–1567 (2007).
doi:10.1109/TVCG.2007.70584

23. Simmhan, Y., Plale, B., Gannon, D.: Karma2: Provenance management for data-driven
workflows. Int. J. Web Service Res. 5(2), 1–22 (2008)

24. Stephen, G.: The cfht legacy survey: stacked images and catalogs (2011).
arXiv:1101.1084v2(astro-ph.CO).

25. Stevens, R., Zhao, J., Goble, C.: Using provenance to manage knowledge of In Silico experi-
ments. Brief Bioinform. 8(3), 183–194 (2007)

26. Szalay, A.S.: The sloan digital sky survey and beyond. SIGMOD Rec. 37(2), 61–66 (2008).
doi:10.1145/1379387.1379407

27. Tody, D., Plante, R.: Simple image access specification version 1.0 (2009). http://www.ivoa.
net/Documents/SIA/. Accessed October 2011

28. Valentijn, E.A., McFarland, J., Snigula, J., Begeman, K., Boxhoorn, D., Renegelink, R.,
Helmich, E., Heraudeau, P., Kleijn, G.V., Vermeij, R., Vriend, W.J., Tempelaar, M.J.:
Astro-wise: chaining to the Universe. In: Astronomical Data Analysis Software and Systems
XVI, ASP Conference Series, vol. 376 (2007)

29. Wang, F., Luo, J., Deng, H., Liang, B., Ji, K.: C-swf: A lightweight scientific workflow system
for astronomical data processing. International Workshop Computer Science and Engineering
2, 64–67 (2009). doi:10.1109/WCSE.2009.767

30. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. SIGMOD
Rec. 34(3), 44–49 (2005). doi:10.1145/1084805.1084814

http://www-int.stsci.edu/~fruchter/dither/drizzle.html
http://dx.doi.org/10.1109/MCSE.2007.62
http://dx.doi.org/10.1051/0004-6361:20053818
http://dx.doi.org/10.1007/s10686-011-9266-x
http://dx.doi.org/10.1016/j.websem.2006.11.003.
http://portal.acm.org/citation.cfm?id=1229184.1229197
http://dx.doi.org/10.1561/1800000010
http://dx.doi.org/10.1007/s10686-011-9276-8
http://dx.doi.org/10.1109/TVCG.2007.70584
http://arxiv.org/pdf/1101.1084.pdf
http://dx.doi.org/10.1145/1379387.1379407
http://www.ivoa.net/Documents/SIA/
http://www.ivoa.net/Documents/SIA/
http://dx.doi.org/10.1109/WCSE.2009.767
http://dx.doi.org/10.1145/1084805.1084814

	Sub-image data processing in Astro-WISE
	Abstract
	Introduction
	Lineage in Astro-WISE
	Astronomical transformations
	Astronomical data
	Coordination transformations
	Image transformations

	Pixel lineage framework
	Transformations
	Pixel lineage
	Lineage tracing using known properties of astronomical image processing
	CASE 1
	CASE 2
	CASE 3

	Sky-to-pixel coordinate transformation
	Data lineage for a transformational sequence
	Evaluation
	Results of pixel-lineage tracing procedures
	Lineage retrieval
	Data rates

	Sub-image processing
	Selecting pipelines
	Matching pipelines

	Pipeline building
	Pipeline changes
	Parameter and attribute selection

	Dependency cutouts

	Book keeping
	Smart processing
	CoverageMap (CMap)

	Cutout dependencies
	Storage of processed sub-images

	Evaluation
	Detailed use-case
	Performance

	Related work
	Discussion and conclusions
	References

