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Abstract We use the auxiliary fields and (excited-) de Sit-
ter solutions to study the standard power spectrum of primor-
dial fluctuations of a scalar field in the early universe. The
auxiliary fields are the negative norm solutions of the field
equation and as is shown, with a fixed boundary condition,
utilizing these states results in a finite power spectrum with-
out any infinity. The power spectrum is determined by the
de Sitter solutions up to some corrections and the space-time
symmetry is not broken in this point of view. The modula-
tion to the power spectrum is of order ( H

�
)2, where H is the

Hubble parameter and � is the energy scale, e.g., the Planck
scale.

1 Introduction and motivation

The cosmic microwave background (CMB) which is the ther-
mal radiation decoupled from the cosmic gas after the Big
Bang, provides a snapshot of the early universe that has been
studied in many papers ([1] and references therein). There
is an anisotropy in the temperature map of CMB that could
come from the primordial perturbations of quantum fields
at the very early universe, which indicates the quantum ori-
gin of the universe. It may also be related to physics beyond
the Planck scale as long as the fluctuations start out with a
linear size much smaller than the Planck scale [2]. Such an
anisotropy affects the spectrum of the perturbations and in
some models it is argued that the order of such modifications
on the size of the spectrum cannot be larger than O( H

�
)2

(for a good review see [3]). Analyzing the data coming from
the Planck satellite can help one to provide significant con-
straints on the theoretical aspect of inflation and also pose an
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important challenge to competing scenarios for the origin of
the initial perturbations.

In this paper we use the auxiliary modes (such modes have
negative norm according to the proposed inner product) to
study such a correction to the spectrum, and the key point
in our approach is that the infinity in calculating the cor-
relation functions does not appear. It is well known that the
inflation can be described in approximating the de Sitter (dS)
space-time [4–6], thus the study of dS and quantum theory of
fields in this background is well motivated. For example, the
possible relations between the dS symmetries and the bis-
pectrum of the fluctuations are well studied in [7] in order
to set constraints on the initial fluctuations due to the dS
symmetry, especially, as regards how scale transformations
and special conformal symmetries constrain the correlation
functions. The scalar field in the dS background is impor-
tant because most of the inflationary models are theorized on
using the scalar field [8]. It is proved that, due to the famous
zero-mode problem, quantization of the massless fields in dS
cannot be done covariantly [9,10]. In other words a proper
dS invariant vacuum state cannot be constructed with only
positive norms and one needs auxiliary fields and a Gupta–
Bleuler type construction based on the indefinite metric field
quantization method (Krein space instead of Hilbert space)
is actually needed [11]. This means that for a covariant quan-
tization one should use the negative norm solutions or aux-
iliary states. Consideration of the negative norm states was
first studied by Dirac in 1942 [12]; Gupta and Bleuler in 1950
used such states to remove the infrared divergence in QED
[13]. Carrying out the quantization in Krein space has fol-
lowed in some papers: the vacuum energy vanishes and an
infinite term does not appear in the calculation of the expec-
tation value of Tμν [14]; in the interaction QFT this method
automatically removes the singular behaviors (ultraviolet) of
Green’s functions [15–17].

In the present work, we use this method to study the power
spectrum of the scalar field in dS background by considering
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an approximate dS solution and as is shown the singularity
of the power spectrum is removed automatically. In [18],
through the Krein space quantization method, the spectrum
of the gravitational waves produced during the inflation in
slow roll approximation has been studied.

The layout of paper is as follows: In Sect. 2, we briefly
recall the definition of the standard power spectrum. The
indefinite metric field quantization method or Krein space
method is used to calculate the power spectrum in Sect. 3. A
conclusion and an outlook is given in the final section.

2 Power spectrum: basic set-up

The following metric of dS is used to describe the universe
during inflation:

ds2 = dt2 − a(t)2dx2 = a(η)2(dη2 − dx2), (2.1)

where for the conformal time η the scale factor is defined
by a(η) = − 1

Hη
. There are some models of inflation but the

single field inflation in which there is a minimally coupled
scalar field (inflaton) in dS background is usually studied in
the literature. The action is given by

S = 1

2

∫
d4x

√−g
(

R − (∇φ)2 − m2φ2
)
,

where M−2
Planck = 8πG = 1. The corresponding massless

field equation is given by the usual Klein–Gordon equation,
which takes the following form in conformal coordinates:

φ′′ + 2
a′

a
φ′ − ∇2φ = 0, (2.2)

where the prime is the derivative with respect to conformal
time. In Fourier space by substituting φk(η) = 1

a uk(η), the
inflaton field equation turns out to be

u′′
k +

(
k2 − a′′

a

)
uk = 0. (2.3)

One can quantize φ by considering the general solution of
(2.3) as

uk =
√

πη

2

(
D−H (1)

3/2(kη) + D+H (2)
3/2(kη)

)
, (2.4)

where Hν are the Hankel functions [19]. The quantum mode,
û, becomes

û(x, η) =
∫

d3k
(2π)3

(
âkuk(η)eik·x + â†

ku∗
k(η)e−ik·x), (2.5)

where âk and â†
k are the annihilation and creation operators,

respectively. The degrees of freedom can indeed be fixed by
imposing the flat limit condition, namely, at the early time
(η → −∞ or equivalently |kη| � 1 or k � aH ), the
corresponding vacuum should match the flat vacuum state
[20]. We will get back to this in the next section.

In the linear evolution schema of universe, the density per-
turbations are encoded by the correlation functions, where for
a Gaussian distribution these are completely specified by the
spectrum of the density fluctuations. In the single field infla-
tion, the scalar field (including both inflaton and associated
spatial curvature) and tensor field fluctuations are usually
studied [20]. The spectrum of the fluctuations is indeed the
smoothed modulus-squared of its Fourier coefficient and is
defined by [21]

Pχ ≡ (Lk/2π)34π〈|χk|2〉; (2.6)

χ stands for any kind of perturbations and L is the size of
normalization box for the Fourier expansion, noting that the
average is taken over a small region of k-space.

Tensor mode fluctuations or the primordial gravitational
waves come from the metric fluctuation and this may cor-
respond to a free massless scalar field for both independent
polarizations of the metric fluctuations [22], and approxi-
mately one can deduce that their equations of motion are
somehow similar to (2.3). Therefore, it is expected that aside
from a series of coefficients, the power spectrum for gravita-
tional waves is proportional to their scalar field counterpart
[23].

2.1 Power spectrum in Hilbert space

In the case of the de Sitter metric (H = const. and a′′
a = 2

η2 )
the exact solution of (2.3) is as follows:

uk = Ak√
2k

(
1 − i

kη

)
e−ikη + Bk√

2k

(
1 + i

kη

)
eikη, (2.7)

where Ak and Bk are Bogoliubov coefficients. Because there
is no time-like Killing vector in dS, in general, a set of vacua
(labeled by α) is used. In other words, the free parameters Ak

and Bk characterize the non-uniqueness of the mode func-
tions.1 However, imposing an initial condition at the very
early time together with the normalization condition leads to
the Bunch–Davies vacuum, in which one sets Ak = 1 and
Bk = 0:

u B.D
k = 1√

2k

(
1 − i

kη

)
e−ikη. (2.8)

In other words in the limit of η → −∞ for a fixed mode k,
a scalar field can be well described by quantum field theory
in flat space-time, as long as in this limit the modes can

1 Basically in Minkowski space for a free scalar field, one can find an
essentially unique vacuum state which is Poincaré invariant. However,
there is no such unique vacuum in the de Sitter space; in fact for a free
massive scalar field, a set of vacua pose the invariance under the isome-
tries of de Sitter space [9,24]. These states are obtained from (2.7) by
considering Ak , Bk �= 0, and the resulting vacua can be parameterized
by a single complex number, say, as α and are usually named α-vacua.
These vacua have some special features, such as a mixture of positive
and negative frequency modes at short distances.

123



Eur. Phys. J. C (2014) 74:2920 Page 3 of 5 2920

be situated deep in the Hubble horizon and consequently
the curvature effect is negligible. This is the initial boundary
condition, and the vacuum of the theory coincides with the flat
space vacuum and the positive frequency modes are deduced
from the Hankel functions (2.8); the resulting vacuum is the
thermal or Euclidean vacuum [25].

For a given mode uk , the two-point function in Hilbert
space is defined by

〈φ2〉 = 1

(2π)3

∫ |uk |2
a2 d3k. (2.9)

Then from (2.8) and (2.9) one can write

〈φ2〉 = 1

(2π)3

∫
d3k

[
1

2ka2 + H2

2k3

]
. (2.10)

The first term is the usual contribution from vacuum fluctu-
ations in Minkowski space-time that can be eliminated after
the renormalization [26]; then the power spectrum for the
scalar field fluctuations is calculated as [21,22]

Pφ(k) =
(

H

2π

)2

. (2.11)

In [27], for a different initial condition (namely for α-
vacua), by considering the trans-Planckian effect that appears
as a fixed scale, the fluctuation spectrum has been obtained
as follows:

Pφ =
(

H

2π

)2 (
1 − H

�
sin

(
2�

H

))
. (2.12)

Note that for a given k a finite η0 is chosen in which the
physical momentum corresponding to k is given by some
fixed scale �, where η0 = − �

Hk has a finite value and �

is the energy scale, e.g., the Planck scale. This is a scale-
dependent power spectrum and corrections are of order H

�
.

At the next section the power spectrum is considered in Krein
space.

3 Power spectrum in Krein space

As is well known, in flat space-time, the vacuum expecta-
tion value of the energy-momentum tensor diverges and the
divergency is removed by means of the normal ordering pro-
cedure. However, in curved space-time, the following remedy
is usually used (equation (4.5) in [30]):

〈	| : Tμν : |	〉 = 〈	|Tμν |	〉 − 〈0|Tμν |0〉, (3.1)

where |	〉 is the vacuum of the theory and |0〉 stands for
the flat vacuum state. Note that the minus sign at the above
equation might be interpreted as the effect of the background
solutions. In this renormalization procedure the vacuum is
defined globally while the singularities are removed locally.
Indeed the background solutions are no longer solutions of

the wave equation in curved space-time, thus it vividly breaks
the symmetry. But the symmetry would be preserved if diver-
gences are removed by the quantities which are defined glob-
ally. This interpretation of removing infinity resembles the
Krein space approach, where the renormalization procedure
is accomplished with the help of the negative norm solutions
of the wave equation and then the minus sign in (3.1) appears
because of the auxiliary solutions.

Krein space is the generalization of the Hilbert space in
which both negative and positive norm states are present in
its construction. Formally, it is defined by K = H+ ⊕ H−,
where H−(=H
+) is the ‘anti-Hilbert’ space. It is proved
that after making use of such negative norm states some
infinities of the theory are removed. Actually in the Krein
methodology, utilizing the negative norm states (with their
own ladder operators which are independent of the positive
norm states), one reduces the singularity of Green’s func-
tions [11,14]. But one might wonder about the instability of
the vacuum and also the unitarity of the theory. Introduc-
ing an ansatz would address such problems: the elements of
the S-matrix (probability amplitude) are defined as follows
[28,29]:

Sif = 〈in|out〉
〈0, in|0, out〉 , (3.2)

where the states at dominator are the physical states; this
guarantees that negative norm states only appear in the inter-
nal lines of the Feynman diagrams.

In Krein space, the two-point function is then defined by
〈
	Krein

∣∣∣: φ2 :
∣∣∣ 	Krein

〉
= 〈φ2〉P + 〈φ2〉N , (3.3)

where the subscript P, (N ) stands for the positive (nega-
tive) norm solutions. In the language of (3.1) this technique
means that one removes the effect of the background (flat
space in that case) solutions. To illustrate this point let us
take the Bunch–Davies mode (2.8) and calculate the spec-
trum with the auxiliary modes with flat space as a background
(it appears by u BG

k below); then we have

ud S
k = 1√

2k

(
1 − i

kη

)
e−ikη, u BG

k = 1√
2k

eikη. (3.4)

According to (3.3) and after doing some calculations one
finds

〈φ2〉 = 1

(2π)3

∫
d3k

(
1

2ka2 + H2

2k3

)
− 1

(2π)3

∫
d3k

2ka2

= 1

2π2

∫
dk

k

(
H2

2

)
. (3.5)

Note that the power spectrum in this case is obtained as ( H
2π

)2,
which is the same as (2.11). In the case of α-vacua, one can
write
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〈φ2〉 = 1

(2π)3

∫
d3k

(
H2

2k3 + 1

2ka2 − H3

2�k3 sin

(
2�

H

))

− 1

(2π)3

∫
d3k

2ka2

= 1

2π2

∫
dk

k

(
H2

2
− H3

2�
sin

(
2�

H

))
, (3.6)

where the power spectrum is also similar to (2.12), noting
that the infinity does not appear in these calculations.

Now let us consider an approximate dS solution. Since
inflation takes place in (an approximate) de Sitter space, basi-
cally in this high energy area of the very early universe with
varying H , finding a proper mode is difficult. We offer an
excited de Sitter solution as the fundamental mode during
the inflation that asymptotically approaches the dS solutions.
Such an approximate mode might be obtained by expanding
the Hankel function in (2.4) up to its third term [31] and then
one can write

uk � 1√
2k

(
1 − i

kη
− 1

2

(
i

kη

)2
)

e−ikη. (3.7)

Then the auxiliary or background modes are chosen as

u BG
k = 1√

2k

(
1 + i

kη

)
eikη, (3.8)

noting that according to the proposed ansatz, the negative
norm solutions are not affected by the boundary conditions
and they only play a renormalizer role in the calculation of the
power spectrum. After doing some straightforward algebra,
one obtains

〈φ2〉 = 1

(2π)3

∫
d3k

[
1

2ka2 + H2

k3 + a2 H4

8k5

]

− 1

(2π)3

∫
d3k

[
1

2ka2 + H2

2k3

]

= 1

2π2

∫
dk

k

(
H2

2
+ a2 H4

8k2

)
. (3.9)

It is worth noting that if one carries out the quantization
at finite wavelength, rather than fully in the ultraviolet (i.e.
Bunch–Davies) limit, and after substituting k = ap and p =
�, the power spectrum becomes

Pφ(k) =
(

H

2π

)2
(

1 + 1

4

(
H

�

)2
)

, (3.10)

which is scale dependent and the correction is of order ( H
�

)2.
Note that in [19,32], a similar correction has been obtained.

4 Conclusions

In this paper, we used the auxiliary field to calculate the
power spectrum. Quantum fields that contain such states are

defined in Krein space. Krein space is built by enlarging the
Hilbert space by adding negative norm states. This math-
ematical approach provides some interesting results which
are in agreement with their (Hilbert space) quantum field
theory’s counterparts; e.g., in calculating the vacuum expec-
tation value of the energy-momentum tensor one automati-
cally obtains a finite result, or in the Casimir effect of the
scalar field the regularized form can be obtained within this
formalism [33]. Such auxiliary states are only utilized as a
mathematical tool and are not affected by the boundary con-
ditions. It means that in the Feynman diagrams they only
appear at the internal legs in the disconnected parts of the
diagrams. This also guarantees the unitarity of the theory in
studying the S-matrix elements [29].

Pursuing this approach, the power spectrum of the inflaton
was calculated, and it was shown that the results are similar to
the previous works. However, in our calculation the infinity
does not appear. This inspires some kind of renormalization,
noting that the theory becomes finite itself. In the case of a
dS background, a slight deviation of the exact solution by
expanding the Hankel function for the quantum mode in dS
before quantization leads to a correction to the power spec-
trum which is of order ( H

�
)2. This is similar to many calcula-

tions of trans-Planckian modulations to the power spectrum
but in our calculations the infinity does not appear. On the
other hand, the symmetry of curved space-time has been pre-
served and the obtained spectrum was scale dependent.
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