
Discrete Comput Geom (2011) 45: 737–759
DOI 10.1007/s00454-011-9344-x

Persistent Cohomology and Circular Coordinates

Vin de Silva · Dmitriy Morozov ·
Mikael Vejdemo-Johansson

Received: 1 July 2009 / Revised: 13 January 2010 / Accepted: 14 January 2010 /
Published online: 30 March 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Nonlinear dimensionality reduction (NLDR) algorithms such as Isomap,
LLE, and Laplacian Eigenmaps address the problem of representing high-dimensional
nonlinear data in terms of low-dimensional coordinates which represent the intrin-
sic structure of the data. This paradigm incorporates the assumption that real-valued
coordinates provide a rich enough class of functions to represent the data faithfully
and efficiently. On the other hand, there are simple structures which challenge this
assumption: the circle, for example, is one-dimensional, but its faithful representa-
tion requires two real coordinates. In this work, we present a strategy for constructing
circle-valued functions on a statistical data set. We develop a machinery of persistent
cohomology to identify candidates for significant circle-structures in the data, and we
use harmonic smoothing and integration to obtain the circle-valued coordinate func-
tions themselves. We suggest that this enriched class of coordinate functions permits
a precise NLDR analysis of a broader range of realistic data sets.
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1 Introduction

Nonlinear dimensionality reduction (NLDR) algorithms address the following prob-
lem: given a high-dimensional collection of data points X ⊂ R

N , find a low-
dimensional embedding φ : X → R

n (for some n � N ) which faithfully preserves the
“intrinsic” structure of the data. For instance, if the data have been obtained by sam-
pling from some unknown manifold M ⊂ R

N —perhaps the parameter space of some
physical system—then φ might correspond to an n-dimensional coordinate system
on M . If M is completely and nonredundantly parameterized by these n coordinates,
then the NLDR is regarded as having succeeded completely.

Principal components analysis, or linear regression, is the simplest form of di-
mensionality reduction; the embedding function φ is taken to be a linear projection.
This is closely related to (and sometimes identified with) classical multidimensional
scaling [2].

When there are no satisfactory linear projections, it becomes necessary to use
NLDR. Prominent algorithms for NLDR include Locally Linear Embedding [16],
Isomap [18], Laplacian Eigenmaps [1], Hessian Eigenmaps [5], and many more.

These techniques share an implicit assumption that the unknown manifold M is
well described by a finite set of coordinate functions φ1, φ2, . . . , φn : M → R. Ex-
plicitly, some of the correctness theorems in these studies depend on the hypothesis
that M has the topological structure of a convex domain in some R

n. This hypothesis
guarantees that good coordinates exist, and shifts the burden of proof onto showing
that the algorithm recovers these coordinates.

In this paper we ask what happens when this assumption fails. The simplest space
which challenges the assumption is the circle, which is one-dimensional but requires
two real coordinates for a faithful embedding. Other simple examples include the
annulus, the torus, the figure eight, the 2-sphere, the last three of which present topo-
logical obstructions to being embedded in the Euclidean space of their natural di-
mension. We propose that an appropriate response to the problem is to enlarge the
class of coordinate functions to include circle-valued coordinates θ : M → S1. In a
physical setting, circular coordinates occur naturally as angular and phase variables.
Spaces like the annulus and the torus are well described by a combination of real and
circular coordinates. (The 2-sphere is not so lucky and must await its day.)

The goal of this paper is to describe a natural procedure for constructing circular
coordinates on a nonlinear data set using techniques from classical algebraic topology
and its 21st-century grandchild, persistent topology. We direct the reader to [10] as
a general reference for algebraic topology, and to [6] for a survey of the theory of
persistence. We also recommend [19] for a more technical description of persistent
homology.

1.1 Related Work

There have been other attempts to address the problem of finding good coordinate
representations of simple non-Euclidean data spaces. One approach [15] is to use
modified versions of multidimensional scaling specifically devised to find the best
embedding of a data set into the cylinder, the sphere, and so on. The target space
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has to be chosen in advance. Another class of approaches [4, 11] involves cutting
the data manifold along arcs and curves until it has trivial topology. The resulting
configuration can then be embedded in Euclidean space in the usual way. In our
approach, the number of circular coordinates is not fixed in advance, but is determined
experimentally after a persistent homology calculation. Moreover, there is no cutting
involved; the coordinate functions respect the original topology of the data.

1.2 Overview

The principle behind our algorithm is the following equation from homotopy theory,
valid for topological spaces X with the homotopy type of a cell complex (which
covers everything we normally encounter):

[
X,S1] = H1(X;Z). (1)

The left-hand side denotes the set of equivalence classes of continuous maps from X

to the circle S1; two maps are equivalent if they are homotopic (meaning that one map
can be deformed continuously into the other); the right-hand side denotes the one-
dimensional cohomology of X, taken with integer coefficients. In other language: S1

is the classifying space for H1, or equivalently S1 is the Eilenberg–MacLane space
K(Z,1). See Sect. 4.3 of [10].

If X is a contractible space (such as a convex subset of R
n), then H1(X;Z) = 0,

and (1) tells us not to bother looking for circular functions: any such function is
homotopic to a constant function and can therefore be lifted to a real-valued function.
On the other hand, if X has nontrivial topology, then there may well exist a nonzero
cohomology class [α] ∈ H1(X;Z); we can then build a continuous function X → S1

which in some sense reveals [α].
Our strategy divides into the following steps.

1. Represent the given discrete data set as a simplicial complex or filtered simplicial
complex.

2. Use persistent cohomology to identify a “significant” cohomology class in the
data. For technical reasons, we carry this out with coefficients in the field Fp of
integers modulo p for some prime p. This gives us [αp] ∈ H1(X;Fp).

3. Lift [αp] to a cohomology class with integer coefficients: [α] ∈ H1(X;Z).
4. Smoothing: replace the integer cocycle α by a harmonic cocycle in the same co-

homology class: ᾱ ∈ C1(X;R).
5. Integrate the harmonic cocycle ᾱ to a circle-valued function θ : X → S1.

The paper is organized as follows. In Sect. 2.1, we derive what we need of (1).
Steps 1–5 of the algorithm are addressed in Sects. 2.2–2.6, respectively. The correct-
ness of the algorithm for persistent cocycles is addressed in an appendix, Sect. 2.8.

In Sect. 3, we report some experimental results.
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2 Algorithm Details

2.1 Cohomology and Circular Functions

Let X be a finite simplicial complex. Let X0,X1,X2 denote the sets of vertices,
edges, and triangles of X, respectively. We suppose that the vertices are totally or-
dered (in an arbitrary way). If a < b, then the edge between vertices a, b is always
written ab and not ba. Similarly, if a < b < c, then the triangle with vertices a, b, c

is always written abc.
Cohomology can be defined as follows. Let A be a commutative ring (for example,

A = Z,Fp,R). We define 0-cochains, 1-cochains, and 2-cochains as follows:

C0 = C0(X;A) = {
functions f : X0 → A

}
,

C1 = C1(X;A) = {
functions α : X1 → A

}
,

C2 = C2(X;A) = {
functions A : X2 → A

}
.

These are modules over A. We now define coboundary maps d0 : C0 → C1 and
d1 : C1 → C2:

(d0f )(ab) = f (b) − f (a),

(d1α)(abc) = α(bc) − α(ac) + α(ab).

Let α ∈ C1. If d1α = 0, we say that α is a cocycle. If d0f = α admits a solution
f ∈ C0, we say that α is a coboundary. The solution f , if it exists, can be thought
of as the discrete integral of α. It is unique up to adding constants on each connected
component of X.

It is easily verified that d1d0f = 0 for any f ∈ C0. Thus, coboundaries are always
cocycles, or equivalently Im(d0) ⊆ Ker(d1). We can measure the difference between
coboundaries and cocycles by defining the 1-cohomology of X to be the quotient
module

H1(X;A) = Ker(d1)/ Im(d0).

We say that two cocycles α,β are cohomologous if α − β is a coboundary.
We now consider integer coefficients. The following proposition fulfils part of the

promise of (1), by producing circle-valued functions from integer cocycles. It will be
helpful to think of S1 as the quotient group R/Z.

Proposition 1 Let α ∈ C1(X;Z) be a cocycle. Then there exists a continuous func-
tion θ : X → R/Z which maps each vertex to 0, and each edge ab around the entire
circle with winding number α(ab).

Proof We can define θ inductively on the vertices, edges, triangles, . . . of X. The
vertices and edges follow the prescription in the statement of the proposition. To
extend θ to the triangles, it is necessary that the winding number of θ along the
boundary of each triangle abc is zero. And indeed this is α(bc) − α(ac) + α(ab) =
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d1α(abc) = 0. Since the higher homotopy groups of S1 are all zero ([10], Sect. 4.3),
θ can then be extended to the higher cells of X without obstruction. �

The construction in Proposition 1 is unsatisfactory in the sense that all vertices
are mapped to the same point. All variation in the circle parameter takes place in the
interior of the edges (and higher cells). This is rather unsmooth. For more leeway, we
consider real coefficients.

Proposition 2 Let ᾱ ∈ C1(X;R) be a cocycle. Suppose that we can find α ∈
C1(X;Z) and f ∈ C0(X;R) such that ᾱ = α + d0f . Then there exists a continu-
ous function θ : X → R/Z which maps each edge ab linearly to an interval of length
ᾱ(ab), measured with sign.

In other words, we can construct a circle-valued function out of any real cocy-
cle ᾱ whose cohomology class [ᾱ] lies in the image of the natural homomorphism
H1(X;Z) → H1(X;R).

Proof Define θ on the vertices of X by setting θ(a) to be f (a) mod Z. For each edge
ab, we have

θ(b) − θ(a) = f (b) − f (a)

= d0f (ab)

= ᾱ(ab) − α(ab),

which is congruent to ᾱ(ab) mod Z, since α(ab) is an integer.
It follows that θ can be taken to map ab linearly onto an interval of signed length

ᾱ(ab). Since ᾱ is a cocycle, θ can be extended to the triangles as before; then to the
higher cells. �

Proposition 2 suggests the following tactic: from an integer cocycle α we construct
a cohomologous real cocycle ᾱ = α + d0f and then define θ = f mod Z on the
vertices of X. If we can construct ᾱ so that the edge-lengths |ᾱ(ab)| are small, then
the behavior of θ will be apparent from its restriction to the vertices. See Sect. 2.5.

2.2 Point-Cloud Data to Simplicial Complex

We now begin describing the workflow in detail. The input is a point-cloud data set,
in other words, a finite set S ⊂ R

N or more generally a finite metric space. The first
step is to convert S into a simplicial complex and to identify a stable-looking integer
cohomology class. This will occupy the next three subsections.

The first lesson of point-cloud topology [8] is that point-clouds are best repre-
sented by one-parameter nested families of simplicial complexes. There are several
candidate constructions: the Vietoris–Rips complex Xε = Rips(S, ε) has vertex set S

and includes a k-simplex whenever all k + 1 vertices lie pairwise within distance
ε of each other. The witness complex Xε = Witness(L,S, ε) uses a smaller vertex
set L ⊂ S and includes a k-simplex when the k + 1 vertices lie close to other points
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of S, in a certain precise sense (see [3, 9]). In both cases, Xε ⊆ Xε′
whenever ε ≤ ε′.

Either of these constructions will serve our purposes, but the witness complex has the
computational advantage of being considerably smaller.

We determine Xε only up to its 2-skeleton, since we are interested in H1.

2.3 Persistent Cohomology

Having constructed a one-parameter family {Xε}, we apply the principle of persis-
tence to identify cocycles that are stable across a large range for ε. Suppose that
ε1, ε2, . . . , εm are the critical values where the complex Xε gains new cells. The fam-
ily can be represented as a diagram

Xε1 −→ Xε2 −→ · · · −→ Xεm

of simplicial complexes and inclusion maps. For any coefficient field F, the coho-
mology functor H1(−;F) converts this diagram into a diagram of vector spaces and
linear maps over F; the arrows are reversed:

H1(Xε1;F) ←− H1(Xε2;F) ←− · · · ←− H1(Xεm;F)

According to the theory of persistence [7, 19], such a diagram decomposes as a direct
sum of one-dimensional terms indexed by half-open intervals of the form [εi, εj ).
Each such term corresponds to a cochain α ∈ Ci (Xε) that satisfies the cocycle con-
dition for ε < εj and becomes a coboundary for ε < εi . The collection of intervals
can be displayed graphically as a persistence diagram, by representing each interval
[εi, εj ) as a point (εi, εj ) in the Cartesian plane above the main diagonal. We think
of long intervals as representing trustworthy (i.e., stable) topological information.

Remark This is where we start worrying about the coefficient ring. The persistence
decomposition theorem applies to diagrams of vector spaces over a field. When we
work over the ring of integers Z, however, the result is known to fail: there need not
be an interval decomposition. This is unfortunate, since we require integer cocycles
to construct circle maps. To finesse this problem, we pick an arbitrary prime num-
ber p (such as p = 47) and carry out our persistence calculations over the finite field
F = Fp . The resulting Fp cocycle must then be converted to integer coefficients: we
address this in Sect. 2.4.

In principle we can use the ideas in [19] to calculate the persistent cohomology
intervals and then select a long interval [εi, εj ) and a specific δ ∈ [εi, εj ). We then let
X = Xδ and take α to be the cocycle in C1(X;F) corresponding to the interval.

Persistent cocycle algorithm Explicitly, persistent cocycles can be calculated in the
following way. We discuss the correctness of this algorithm in Sect. 2.8.

Suppose that the simplices in the filtered complex are totally ordered and labelled
σ1, σ2, . . . , σm so that σj arrives at time εj , where the sequence (εj ) is nondecreasing.
Write X	 = σ1 ∪σ2 ∪· · ·∪σ	. A cochain α ∈ C∗(X	) = C∗(X	;F) can be represented
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as a vector (a1, a2, . . . , a	), where aj = α(σj ). The cochains corresponding to the
standard basis vectors are denoted σ̂1, σ̂2, . . . , σ̂	.

We iterate over 	 = 0,1, . . . ,m, maintaining the following information as we go:

– a set of indices I	 ⊆ {1,2, . . . , 	} associated with “live” cocycles;
– a list of cocycles (αi : i ∈ I	) in C∗(X	).

The cocycle αi involves only σi and those simplices of the same dimension that
appear later in the filtration sequence (thus only σj with j ≥ i).

Initialize (	 = 0): Set I0 = ∅. The list of cocycles is empty.

Update (from 	 − 1 to 	): Our convention is to extend each cochain α = (a1, a2,

. . . , a	−1) in C∗(X	−1) to a cochain α = (a1, . . . , a	−1,0) in C∗(X	) by appending 0.
We still call it α.

Begin by computing, for each i ∈ I	−1, the coboundaries of the cocycles αi

of X	−1 within the larger complex X	. Since dαi = 0 in C∗(X	−1), it follows
that the coboundary dαi in C∗(X	) must be a multiple of the newest basis vector
σ̂	 = (0, . . . ,0,1). Write dαi = ci σ̂	.

– If all the ci are zero, then we have one new cocycle: let I	 = I	−1 ∪ {	} and define
α	 = σ̂	.

– Otherwise, we lose a cocycle. Let j ∈ I	−1 be the largest index for which cj �= 0.
Delete αj by setting I	 = I	−1 \ {j}, and restore the earlier cocycles by setting
αi ← αi − (ci/cj )αj . The “lost” cocycle is recorded for posterity: write the per-
sistence interval [εj , ε	) to the output, together with its associated cocycle αj .

Finish (	 = m): Surviving cocycles are associated with semi-infinite intervals. For
each i ∈ Im, write the interval [εi,∞) to the output, together with its associated co-
cycle αi .

Remark The reader may be more familiar with persistence diagrams in homology
rather than cohomology. In fact, the universal coefficient theorem [10] implies that
the two diagrams are identical. The salient point is that cohomology is the vector-
space dual of homology, when working with field coefficients. That said, we cannot
simply use the usual algorithm for persistent homology: we are interested in obtaining
explicit cocycles, whereas the classical algorithm [19] returns cycles.

After completing the persistent cocycle calculation, up to some parameter
value εmax, we are left with a collection of finite and semi-infinite persistence in-
tervals. For the next step, we select one such interval and a parameter value δ ≤ εmax
contained in it. Henceforth, we fix our attention on the complex Xδ . The cocycle
associated to the interval can be regarded as a cocycle on Xδ , by restriction. If we are
working over the field Fp , we denote this cocycle αp .

In some of the experimental examples in Sect. 3, we consider several persistence
intervals at once and use a value of δ common to all of them. This can be done
elegantly using the persistence diagram. Select a point (δ, δ) on the diagonal and draw
the upper-left quadrant at that point. The chosen persistence intervals must appear in
the diagram as points in that quadrant. We use this visual convention in all of our
examples.
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2.4 Lifting to Integer Coefficients

We now have a simplicial complex X = Xδ and a cocycle αp ∈ C1(X;Fp). The
next step is to “lift” αp by constructing an integer cocycle α which reduces to αp

modulo p.

Theory To show that this is (almost) always possible, note that the short exact se-

quence of coefficient rings 0 −→ Z
·p−→ Z −→ Fp −→ 0 gives rise to a long exact

sequence, called the Bockstein sequence (see Sect. 3.E of [10]). Here is the relevant
section of the sequence:

→ H1(X;Z) → H1(X;Fp)
β→ H2(X;Z)

·p→ H2(X;Z) → .

By exactness, the Bockstein homomorphism β induces an isomorphism between the

cokernel of H1(X;Z) → H1(X;Fp) and the kernel of H2(X;Z)
·p→ H2(X;Z), and

this kernel is precisely the set of p-torsion elements of H2(X;Z). If there is no
p-torsion, then it follows immediately that the cokernel of the first map is zero. In
other words, H1(X;Z) → H1(X;Fp) is surjective; any cocycle αp ∈ C1(X;Fp) can
be lifted to a cocycle α ∈ C1(X;Z).

If we are unluckily sabotaged by p-torsion, then we pick another prime and redo
the calculation from scratch: it is enough to pick a prime that does not divide the
order of the torsion subgroup of H2(X;Z), so almost any prime will do.

Practice We construct α by taking the coefficients of αp in Fp and replacing them
with integers in the correct congruence class modulo p. The default is to choose
coefficients close to zero; that is, in the range

{−(p − 1)/2, . . . ,−1,0,1, . . . , (p − 1)/2
}

when p is an odd prime. (We do not recommend using p = 2; there is no way to
distinguish 1 from −1.)

We then evaluate d1α. If d1α = 0, then α is a cocycle, and we are done. Otherwise,
it becomes necessary to do some repair work. Certainly d1α ≡ 0 modulo p, so we
can write d1α = pη for some η ∈ C2(X;Z). To effect the repair, we must write η as a
coboundary by solving the equation η = d1ζ for ζ ∈ C1(X;Z). Given a solution, the
1-cochain α − pζ is the required lift of αp , since d1(α − pζ) = pη − pη = 0.

When can this fail? We know that pη is a coboundary (indeed pη = d1α), and
we know that η is a cocycle (since p(d2η) = d2(pη) = d2d1α = 0). Thus we have
a cohomology class [η] in H2(X;Z) such that p[η] = [pη] is zero in cohomol-
ogy. If H2(X;Z) has no p-torsion, then [η] must itself be zero, meaning that η is
a coboundary and there exists a solution to η = d1ζ . On the other hand, if H2(X;Z)

has p-torsion, then there is no such guarantee.
This is all very well. Unfortunately, the equation η = d1ζ is a Diophantine lin-

ear system. At present, we can provide no particular guidance as to how to solve
the system (other than by vague appeal to off-the-shelf Diophantine or integer linear
programming solvers), even if we know that a solution exists. Fortunately, and myste-
riously, this has not proved necessary in any of our examples. In our experiments, the
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heuristic of lifting to integer coefficients close to zero (that is, between ±(p − 1)/2)
produces a cocycle every time. We wonder why.

To finish this section, we draw attention to a basic fact from classical algebraic
topology.

Proposition 3 Let X be a finite simplicial complex. Then H1(X;Z) is torsion free,
and H2(X;Z) has the same torsion as H1(X;Z).

Proof More generally, Hk+1(X;Z) and Hk(X;Z) have isomorphic torsion sub-
groups. This is a consequence of the universal coefficient theorems for homology
and cohomology: see [10, Corollary 3.3]. For the first statement, note that H0(X;Z)

is the free Abelian group generated by the connected components of X. It is therefore
torsion-free, hence so is H1(X;Z). �

Remark We expect that p-torsion is extremely rare in “real” data sets, since it is
symptomatic of rather subtle topological phenomena. For instance, the simplest ex-
amples which exhibit 2-torsion are the nonorientable closed surfaces (such as the
projective plane and the Klein bottle). For a “randomly” chosen prime p, one would
be very surprised to find p-torsion arising from a statistical data set. We do not know
how to quantify this.

At any rate, the arguments in this section show us that we can recognize torsion
trouble when it occurs, by observing the failure of d1α = 0 for the chosen lift α. We
then have the choice of changing primes or setting up an appropriate integer linear
programming problem.

2.5 Harmonic Smoothing

Given an integer cocycle α ∈ C1(X;Z), or indeed a real cocycle α ∈ C1(X;R), we
wish to find the “smoothest” real cocycle ᾱ ∈ C1(X;R) cohomologous to α. It turns
out that what we want is the harmonic cocycle representing the cohomology class [α].

We define smoothness. Each of the spaces Ci (X;R) comes with a natural Eu-
clidean metric:

‖f ‖2 =
∑

a ∈X0

∣∣f (a)
∣∣2

,

‖α‖2 =
∑

ab∈X1

∣∣α(ab)
∣∣2

,

‖A‖2 =
∑

abc∈X2

∣∣A(abc)
∣∣2

.

A circle-valued function θ is “smooth” if its total variation across the edges of X

is small. The terms |ᾱ(ab)|2 capture the variation across individual edges; therefore
what we must minimize is ‖ᾱ‖2.
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Proposition 4 Let α ∈ C1(X;R). There is a unique solution ᾱ to the least-squares
minimization problem

argmin
ᾱ

{‖ᾱ‖2 | ∃f ∈ C0(X;R), ᾱ = α + d0f
}
. (2)

Moreover, ᾱ is characterized by the equation d∗
0 ᾱ = 0, where d∗

0 is the adjoint of d0

with respect to the inner products on C0,C1.

Proof Note that if d∗
0 ᾱ = 0, then for any f ∈ C0, we have

‖ᾱ + d0f ‖2 = ‖ᾱ‖2 + 2〈ᾱ, d0f 〉 + ‖d0f ‖2

= ‖ᾱ‖2 + 2〈d∗
0 ᾱ, f 〉 + ‖d0f ‖2

= ‖ᾱ‖2 + ‖d0f ‖2,

which implies that such an ᾱ must be the unique minimizer. For existence, note that

d∗
0 α + d∗

0 d0f = 0

certainly has a solution f if Im(d∗
0 ) = Im(d∗

0 d0). But this is a standard fact in finite-

dimensional linear algebra: Im(AT) = Im(ATA) for any real matrix A; this follows
from the singular value decomposition, for instance. �

It is customary to construct the Laplacian � = d∗
1 d1 + d0 d∗

0 . The twin equations
d1 ᾱ = 0 and d∗

0 ᾱ = 0 immediately imply (and conversely, can be deduced from) the
single equation �ᾱ = 0; in other words, ᾱ is harmonic.

Remark The space of harmonic 1-forms H1 = Ker(�) is naturally isomorphic to
both the cohomology H1(X;R) and the homology H1(X;R) with real coefficients.
These are related to the integer cohomology and homology groups via natural maps:

H1(X;Z) → H1(X;R) = H1(X) = H1(X;R) ← H1(X;Z).

For our purposes (following Propositions 1 and 2), we seek points in the image of the
map H1(X;Z) → H1(X). The set of these points is a full-rank discrete lattice of the
real vector space H1(X). The Diophantine nature of our calculations arises from the
fact that we are trying to work in a lattice.

Remark Dual to the integer cohomology lattice is the integer homology lattice, which
is the image of the map H1(X;Z) → H1(X). The two lattices are generally different.
This is why we must compute persistent cocycles rather than cycles. See Fig. 1.

2.6 Integration

The least-squares problem in (2) can be solved using a standard algorithm such as
LSQR [14]. By Proposition 2 we can use the solution parameter f to define the cir-
cular coordinate θ on the vertices of X: simply let θ be the reduction of f modulo Z.
This works because the original cocycle α has integer coefficients.
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Fig. 1 A torus, and the integer cohomology and homology lattices of its harmonic space H1. The
two lattices are dual with respect to the inner product whose unit circle is shown. We seek points in the
cohomology lattice

Remark More generally, if ᾱ is an arbitrary real cocycle such that

[ᾱ] ∈ Im
(
H1(X;Z) → H1(X;R)

)
,

it is a straightforward matter to integrate ᾱ to a circle-valued function θ on the vertex
set X0. Suppose that X is connected (if not, each connected component can be treated
separately) and pick a starting vertex x0 and assign θ(x0) = 0. One can use Dijkstra’s
algorithm to find shortest paths to each remaining vertex from x0. When a new vertex
b enters the structure via an edge ab, we assign θ(b) = θ(a)+ ᾱ(ab) (or θ(a)− ᾱ(ba)

if the edge is correctly identified as ba). If a vertex a is connected to x0 by multiple
paths, then the different possible values of θ(a) differ by an integer; this is where we
use the hypothesis that ᾱ is cohomologous to an integer cocycle.

2.7 Summary

The procedure described above seeks a 1-cocycle ᾱ with real coefficients which is:

– harmonic (for smoothness)
– in the integer cohomology lattice (for integrability to S1 = R/Z)
– persistent (for geometric significance)

The circular coordinate θ is obtained by integrating ᾱ, either by brute force or as a
side-effect of the smoothing step.

In order to compute persistent cocycles, we are forced to work over a field, so we
choose Fp and then attempt to lift the results to Z. This step may fail if H2(X;Z) (or
equivalently H1(X;Z)) has nontrivial p-torsion. Even when the lifting problem has
a solution, we might have to solve a Diophantine linear system to find it.

2.8 Appendix: Correctness of the Cocycle Algorithm

The persistent cocycle algorithm is a stripped-down version of a more complete cal-
culation, which we describe now. The output of this calculation is the following in-
formation:



748 Discrete Comput Geom (2011) 45: 737–759

– A partition {1,2, . . . ,m} = I ∪ P ∪ Q (where I,P,Q are disjoint).
– A bijective pairing between the sets P,Q. We write p � q to indicate that p is

paired with q .
– An “echelon basis” α1, α2, . . . , αm for C∗(Xm). By “echelon” we mean that αj in-

volves σj (with a nonzero coefficient) and subsequent cells only. In vector notation,
each αj is of the form

αj = (
0, . . . ,0, a

j
j , a

j

j+1, . . . , a
j
m

)
,

where a
j
j �= 0.

– The coboundaries of the basis cochains αj are:

dαi = 0 for i ∈ I , (∗i)

dαp = αq for p ∈ P with p � q, (∗p)

dαq = 0 for q ∈ Q. (∗q )

Note that the echelon form implies that the kernel of each restriction map C∗(Xm) →
C∗(Xj ) is spanned by the cochains αj+1, . . . , αm.

The key point is that the persistent cohomology of the filtered complex can be
deduced from any partition, pairing, and echelon basis which satisfy the coboundary
equations (∗i), (∗p), and (∗q ). Indeed, the equations imply that the space of cobound-
aries in C∗(Xj ) has basis consisting of the (restrictions of the) cochains

αq for q ∈ Q with q ≤ j ,

and the space of cocycles has basis consisting of these boundary cochains together
with the (restrictions of the) cochains

αi for i ∈ I with i ≤ j,

αp for p ∈ P with p � q and p ≤ j < q.

Thus, each αi , for i ∈ I , restricts to a nonzero cocycle over the index range {i, . . . ,m},
and each αp , for p ∈ P with p � q , restricts to a nonzero cocycle over the index range
{p, . . . , q − 1}. These give us persistence intervals [εi,∞) and [εp, εq), respectively.

We now describe the computation, carried out iteratively. Suppose that we have
determined a partition

{1, . . . , 	 − 1} = I	−1 ∪ P	−1 ∪ Q	−1,

a pairing �, and an echelon basis α1, . . . , α	−1 for C∗(X	−1), with coboundaries as
above. We now add the cell σ	.

The immediate impact is that coboundaries computed in C∗(X	) have an extra
coefficient for the new cell. Thus, for some scalars c1, c2, . . . , c	−1, we have

dαi = ci σ̂	 for i ∈ I	−1,

dαp = αq + cpσ̂	 for p ∈ P	−1 with p � q,

dαq = cq σ̂	 for q ∈ Q	−1.
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We can begin defining a new echelon basis ᾱ1, ᾱ2, . . . , ᾱ	 as follows:

ᾱp = αp for p ∈ P	−1,

ᾱq = dᾱp = αq + cpσ̂	 for q ∈ Q	−1 with p � q.

Note that the leading term of ᾱq is unchanged from αq and that dᾱq = d(dαp) = 0.
Now we must consider ᾱi for i ∈ I	−1, and ᾱ	.

Case 1 Each ci = 0 for i ∈ I	−1. Then we can set ᾱi = αi for each i ∈ I	−1, and
ᾱ	 = σ̂	. We set

I	 = I	−1 ∪ {	}, P	 = P	−1, Q	 = Q	−1,

and the coboundary equations (∗i), (∗p), (∗q ) are clearly satisfied.

Case 2 Some ci �= 0 for i ∈ I	−1. Let j be the largest such index. Define

ᾱj = αj ,

ᾱi = αi − (ci/cj )αj for i ∈ I	−1 with i �= j,

ᾱ	 = dαj = cj σ̂ .

The echelon property still holds (since j was chosen largest). If we set

I	 = I	−1 \ {j}, P	 = P	−1 ∪ {j}, Q	 = Q	−1 ∪ {	}
and extend the pairing by adding the relation j � 	, then it is easily seen that the
coboundary equations are satisfied.

The persistent cocycle algorithm can be thought of as a “forgetful” or “neglectful”
version of the calculation above. We maintain only the I	 and the echelon basis vec-
tors αi . The index sets P	 and Q	, the pairing �, and the remaining basis vectors are
not necessary for this. We write each interval [εp, εq) to output as soon as we identify
a pair p � q , but we immediately discard the pairing information from memory. At
the end we collect the remaining intervals [εi,∞).

Thus, the correctness of the cocycle algorithm follows from the correctness of
the full cohomology algorithm. The correctness of the cohomology algorithm fol-
lows from the fact that the persistent cohomology can be deduced from any partition,
pairing, and echelon basis which satisfy the coboundary equations.

3 Experiments

3.1 Software

Early experimental trials were performed with the Java-based jPlex simplicial com-
plex software [17]. The present results and timings are obtained with the C++ library
Dionysus [12]. We used Paige and Saunders’ implementation of LSQR [13] for the
least-squares problems in the harmonic smoothing step.
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3.2 General Procedure

We tested our methods on several synthetic data sets with known topology, ranging
from the humble circle itself to a genus-2 surface (“double torus”). Most of the ex-
amples were embedded in R

2 or R
3, with the exception of a sample from a complex

projective curve (embedded in CP 2) and a synthetic image-like data set (embedded
in R

120000).
In each case, we selected vertices for the filtered simplicial complex: either the

whole set, or a smaller well-distributed subset of “landmarks” selected by iterative
furthest-point sampling. We then built a Rips or witness complex, with maximum
radius generally chosen to ensure around 105 simplices in the complex.

In most cases, we show the persistence diagram produced by the cocycle compu-
tation. The chosen value δ is marked on the diagonal, with its upper-left quadrant
indicated in green lines. The persistent cocycles available at parameter value δ are
precisely those contained in that quadrant. Each of those cocycles then produces a
circular coordinate.

There are various figures associated with each example. Most important are the
correlation scatter plots: each scatter plot compares two circular coordinate functions.
These may be functions produced by the computation (“inferred coordinates”) or
known parameters. These scatter plots are drawn in the unit square, which is of course
really a torus S1 × S1.

When the original data are embedded in R
2 or R

3, we also display the circular
coordinates directly on the data set, plotting each point in color according to its coor-
dinate value interpreted on the standard hue-circle. This works less well in grayscale
reproductions, of course.

Finally, in certain cases, we plot coordinate values against frequency, as a his-
togram. This distributional information can sometimes be useful in the absence of
other information.

Remark When the goal is to infer the topology of a data set whose structure is un-
known, we do not have any “known parameters” available to us. We can still construct
correlation scatter plots between pairs of inferred coordinates, and the distributional
histograms for each coordinate individually. We exhort the reader to view the follow-
ing examples through the lens of the topological inference problem: what structures
can be distinguished using scatter plots and histograms (and persistence diagrams)
alone?

3.3 Noisy Circle

We begin with the circle itself, and its tautological circle-valued coordinate.
We picked 200 points distributed along the unit circle. We added a uniform random

variable from [0.0,0.4] to each coordinate. A Rips complex was constructed in 0.07
seconds with maximal radius 0.5, resulting in 23475 simplices. The computation of
cohomology finished in 0.03 seconds.

Parameterizing at 0.4 yielded a single coordinate function, which very closely
reproduces the tautological angle function. Parameterizing at 0.14 yielded several
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Fig. 2 Noisy circle. Persistence diagram (top). Global coordinate (middle row), local coordinate (bottom
row). In the coordinate rows: histogram of coordinate values (left), correlation scatter plot against known
angle function (middle), inferred coordinate in color (right)

possible cocycles. We selected one of those with low persistence; this produced a
parameterization which “snags” around a small gap in the data.

See Fig. 2. The left panel in each row shows the histogram of coordinate values;
the middle panel shows the correlation scatter plot against the known angle function;
the right panel displays the coordinate using color. The high-persistence (“global”)
coordinate correlates with the angle function with topological degree 1. Variation in
that coordinate is uniformly distributed, as seen in the histogram. In contrast, the
low-persistence (“local”) coordinate has a spiky distribution.

3.4 Trefoil Torus Knot

Another example with circle topology: see Fig. 3. We picked 400 points distributed
along the (2,3) torus knot on a torus with radii 2.0 and 1.0. We jittered them by a uni-
form random variable from [0.0,0.2] added to each coordinate. We generated a Rips
complex in 0.11 seconds up to radius 1.0, acquiring 36936 simplices. We computed
persistent cohomology in 0.05 seconds. As expected, the inferred coordinate corre-
lates strongly with the known parameter with topological degree 1. The scatter plot
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Fig. 3 Trefoil torus knot. Persistence diagram (left), correlation scatter plot of inferred coordinate against
known parameterization (middle), inferred coordinate in color (right)

Fig. 4 Images of a rotating cube. Histogram of coordinate values (left); scatter plot against known angle
function (middle); a selection of images matched to recovered circle coordinate (right)

shows three “bulges” corresponding to the three high-density regions of the sampled
curve, which occur when the curve approaches the central axis of the torus.

3.5 Rotating Cube

For a more elaborate data set with S1-topology, we generated a sequence of 657 ren-
dered images of a colorful cube rotating around one axis. Each image was regarded as
a vector in the Euclidean space R

200·200·3. From this data we built a witness complex
with 50 landmark points and constructed a single circular coordinate. Interpolating
the resulting function linearly between the landmarks gave us coordinates for all the
points in the family.

See Fig. 4. The frequency distribution is comparatively smooth (by which we mean
that there are no large spikes in the histogram), which indicates that the coordinate
does not have large static regions. The correlation plot of the inferred coordinate
against the original known sequence of the cube images shows a correlation with
topological degree 1. We show the progression of the animation on an evenly-spaced
sample of representative points around the circle.

3.6 Pair of Circles

See Fig. 5 for these two examples.
Conjoined circles: we picked 400 points distributed along circles in the plane with

radius 1 and with centres at (±1,0). The points were then jittered by adding noise
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Fig. 5 Two conjoined circles (left); two disjoint circles (right). In each case, we show the persistence
diagram (top left), the two inferred coordinates (right column), the correlation scatter plot (bottom left)

to each coordinate taken uniformly randomly from the interval [0.0,0.3]. A Rips
complex was constructed in 0.26 seconds with maximal radius 0.5, resulting in 76763
simplices. The cohomology was computed in 0.10 seconds.

Disjoint circles: 400 points were distributed on circles of radius 1 centered around
(±2,0) in the plane. These points were subsequently disturbed by a uniform ran-
dom variable from [0.0,0.5]. We constructed a Rips complex in 0.14 seconds with
maximum radius 0.5, which gave us 45809 simplices. The cohomology computation
finished in 0.06 seconds.

In both cases, our method detects the two most natural circle-valued functions.
The scatter plots appear very similar. In the conjoined case, there is some interference
between the two circles, near their meeting point.

3.7 Torus

See Fig. 6. We picked 400 points at random in the unit square, and then used a stan-
dard parameterization to map the points onto a torus with inner and outer radii 1.0
and 3.0. These were subsequently jittered by adding a uniform random variable from
[0.0,0.2] to each coordinate. We constructed a Rips complex in 0.20 seconds with
maximal radius

√
3, resulting in 61522 simplices. The corresponding cohomology

was computed in 0.09 seconds.
The two inferred coordinates at the radius 1.6 in this (fairly typical) experimental

run recover the original coordinates essentially perfectly: the first inferred coordi-
nate correlates with the meridional coordinate with topological degree −1, while the
second inferred coordinate correlates with the longitudinal coordinate with degree 1.

When the original coordinates are unavailable, the important figure is the inferred-
versus-inferred scatter plot. In this case, the scatter plot is fairly uniformly distributed
over the entire coordinate square (i.e., torus). In other words, the two coordinates are
decorrelated. This is slightly truer (and more clearly apparent in the scatter plot) for
the two original coordinates. Contrast these with the corresponding scatter plots for
a pair of circles (conjoined or disjoint).
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Fig. 6 Torus in R
3

3.8 Elliptic Curve

See Fig. 7. For fun, we repeated the previous experiment with a torus abstractly de-
fined as the zero set of a homogeneous cubic polynomial in three variables, inter-
preted as a complex projective curve. We picked 400 points at random on S5 ⊂ C

3,
subject to the cubic equation

x2y + y2z + z2x = 0.
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Fig. 7 Elliptic curve. Persistence diagram (left), correlation scatter plot between the two coordinates
(right)

Fig. 8 Double torus:
persistence diagram

To interpret these as points in CP 2, we used the projectively invariant metric

d(ξ, η) = cos−1(|ξ̄ · η|)

for all pairs ξ, η ∈ S5. With this metric we built a Rips complex in 0.08 seconds with
maximal radius 0.15. The resulting complex had 44184 simplices, and the cohomol-
ogy was computed in 0.06 seconds. We found two dominant coclasses that survived
beyond radius 0.15, and we computed our parameterizations at the 0.15 mark.

The resulting scatter plot quite clearly exhibits the decorrelation which is charac-
teristic of the torus.

3.9 Double Torus

See Figs. 8 and 9. We constructed a torus by generating 1600 points, uniformly dis-
tributed in the unit square, and then using a standard parameterization of the torus to
wrap the points onto a torus surface with inner and outer radii 1.0 and 3.0. This was
done twice, translating the two tori to place centers 5.7 apart from each other. The
points, from each torus, that overrun the intersection plane were dropped, resulting
in a data set with 2885 points distributed on a double torus. We build a Rips complex
on these points in 12.97 seconds up to radius 1.25, which yields 1,879,805 simplices.
The persistent cohomology computation took 8.46 seconds and identified the four
most significant cocycles. The resulting persistence diagram is in Fig. 8.
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Fig. 9 Double torus in R
3
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The identified cocycles and the resulting parameterizations are not especially per-
spicuous; we present them in Fig. 9(a). On the other hand, by taking linear combi-
nations we can find a new basis of circular coordinate functions whose correlation
scatter-plot matrix is much more suggestive of the double torus: see Fig. 9(b).

This particular coordinate transformation was obtained “by inspection.” Open
question: is there a systematic way to transform a basis of circular coordinate func-
tions so that the structure of the data is revealed as helpfully as possible?

After the update, coordinates 1 and 2 are “coupled,” in the sense that they are sup-
ported over the same subtorus of the double torus. The scatter plot shows that the two
coordinates appear to be completely decorrelated except for a large mass concentrated
at a single point. This mass corresponds to the other subtorus, on which coordinates
1 and 2 are essentially constant. A similar discussion holds for coordinates 3 and 4.

The uncoupled coordinate pairs (1,3), (1,4), (2,3), (2,4) produce scatter plots
reminiscent of two conjoined circles.

4 Discussion

Although our procedure works well in these simple examples, there are various unan-
swered questions about the behavior of this algorithm in general. We discuss these
now.

Diophantine Algebra

– When lifting from Fp coefficients to Z coefficients, why does the “close to zero”
heuristic work perfectly in the given examples? In fact, coefficients of cocycles
produced by the persistence algorithm appear to be almost always 0,±1. What
makes this happen?

– Are there efficient ways to repair an integer lift α of an Fp-cocycle αp , when
d1α �= 0? What about under special conditions, such as d1α being sparse?

– Are there a priori geometric estimates on the largest torsion prime in H2(X;Z)? In
other words, can one quantify the assertion “p-torsion is rare”?

– The cohomology group H1(X;Z) is torsion-free and hence isomorphic to some Z
n.

Are there efficient ways to compute an independent set of generators?

Generalized Multidimensional Scaling (mds)

– The real coordinates in classical MDS have an absolute scale, which can be related
to the metric structure on the input data. Circular coordinates, on the other hand,
have no absolute scale. Is there a meaningful way to assign radius values to each
circular coordinate, for instance, to estimate the longitudinal and meridional radii
of a general torus?

– The methods presented in this paper will recover topologically independent circle
coordinates (since the generators of the persistence diagram are by definition lin-
early independent elements of H1). Classical MDS, similarly, recovers statistically
independent real coordinates. Is there some way to combine the two approaches
to obtain mixed families of real and circular coordinates? What is the appropriate
notion of independence?
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Higher Dimensions

– Can we apply similar methods to obtain sphere-valued coordinates for spheres Sn

with n ≥ 2? The simplest analogue of (1) in two dimensions is
[
X,CP

∞] ∼= H2(X;Z),

where CP
∞ can be thought of as S2 with a sequence of attached disks D4,D6,

D8, . . . in even dimensions. One can therefore define S2-valued maps up to the
3-skeleton of X, which are homotopy-unique up to the 2-skeleton. Is there a
tractable smoothing procedure analogous to the harmonic smoothing used here
for S1-maps?

Our hope is that the methods presented here are simply the first steps in a larger,
more ambitious theory of topological multidimensional scaling and structure discov-
ery.
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