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1 Introduction

Understanding the microscopic origin of Bekenstein-Hawking entropy is one of the impor-

tant problems in any theory of quantum gravity, and in particular in string theory. In

recent years there has been considerable progress towards this direction, including preci-

sion counting of microscopic states in certain string theories with 16 or more unbroken

supersymmetries [1–7]. One of these theories is type IIA or IIB compactified on a six

dimensional torus. In this theory, for certain configurations carrying a combination of

Kaluza-Klein (KK) monopole charge, momentum along one of the circles of the torus and

D-brane wrapping charges along some of the cycles of the torus, one can carry out the

exact counting for the number of microscopic BPS states [7]. On the other hand, for large

charges this system can be described by a supersymmetric black hole with a finite area

event horizon. Thus, by comparing the logarithm of the number of microstates with the

Bekenstein-Hawking entropy of the corresponding black hole, one can verify the equality

of the macroscopic and microscopic entropy of the black hole.

Although the counting of microscopic states was carried out for a specific system of

KK monopoles and D-branes carrying momentum along a compact circle, using duality

symmetry we can map it to other systems. In particular it is possible to map this config-

uration to a system that contains only D-brane charges. Duality symmetry predicts that

the BPS index of this system computed from microscopic counting should give the same

result as the original system to which it is dual. Nevertheless, it is of some interest to count
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the number of microscopic states of the new system directly. At the least, this will provide

us with another non-trivial test of duality symmetry which, although has been tested in

many ways, has not been proven. Another motivation for this is that by learning how to

count states of pure D-brane systems in type II string theory on T 6 we may eventually gain

some insight into similar counting for D-branes wrapped on various cycles of Calabi-Yau

manifolds. Indeed, for type II compactification on Calabi-Yau manifolds, all charges are

associated with D-branes wrapped on various cycles of Calabi-Yau manifolds as there are

no non-contractible circles and hence no momentum, KK monopole charges or winding

numbers of fundamental strings and NS 5-branes. Earlier attempts to count states of pure

D-brane systems describing a black hole can be found in [8–10].

Another reason for studying representations of black holes as pure D-brane systems is as

follows. One knows on general grounds that supersymmetric black holes in 3+1 dimensions

describe an ensemble of states each of which carries strictly zero angular momentum [11, 12]

after factoring out the fermion zero mode contribution whose quantization generates the

supermultiplet structure. This leads to many non-trivial conjectures about the sign of the

index of supersymmetric black holes which have been verified explicitly [13, 14]. However,

in microscopic counting of the same system, one often finds BPS states carrying non-

zero angular momentum. This does not represent a contradiction between microscopic

and macroscopic results, since only the index, and not the detailed information about

angular momentum, is protected as we go from the weak coupling regime where microscopic

calculation is valid, to the strong coupling regime where the black hole computation is valid.

Nevertheless, one could ask if there is a duality frame in which the detailed information

about the angular momentum in the microscopic and macroscopic descriptions matches.

Since in the macroscopic description all black holes carry zero angular momentum, in

the microscopic description this will demand that all states are singlets under the SU(2)

rotation group. Recent analysis of some microstates of N = 2 supersymmetric black holes

revealed that when we describe them as D-branes wrapped on certain internal cycles of

Calabi-Yau manifolds we indeed get exactly zero angular momentum for the microstates

of single centered black holes [15–17]. Assuming this to be a general phenomenon led to

the conjectured Coulomb branch formula for computing the spectrum of quiver quantum

mechanics and of general systems of multicentered black holes [18–20].

Now in N = 2 supersymmetric string theories, the above analysis is made complicated

due to the fact that the index receives a contribution from both single and multi-centered

black holes. Since the latter do not necessarily carry zero angular momentum, we need to

carefully subtract the contribution from multi-centered black holes before we can verify that

D-brane microstates representing single centered black holes carry zero angular momen-

tum. This can be done [18, 21], and was used in the analysis of [18–20]. However, in type

II string theory on T 6, which has N = 8 supersymmetry, the multi-centered black holes

do not contribute to the index, and hence we expect that only single centered black holes

will survive at a generic point in the moduli space of the theory [22]. Generalization of the

observations in N = 2 supersymmetric string theories made above would then suggest that

representing a supersymmetric black hole in type II on T 6 as a system carrying only RR

charges associated with various D-brane sources, we may get a system whose microstates
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would have strictly zero angular momentum after factoring out the goldstino fermion modes

whose quantization generates the supermultiplet structure. Now, after factoring out these

fermionic zero modes and the bosonic zero modes associated with various translational sym-

metries, the BPS states of the D-brane system correspond to the cohomology of the moduli

space of classical solutions of the world-line theory of the system, with the space-time rota-

tion group acting as the Lefshetz SU(2) action on the cohomology [15, 23]. This shows that

in order to get only zero angular momentum states, all states must come from the middle

cohomology. Since any compact manifold has a non-trivial 0-form and a top form, the only

way that a manifold can have only middle cohomology is if it becomes zero dimensional, i.e.

a collection of points.1 Verification of this conjecture is another motivation for our analysis.

In this paper we shall analyze a pure D-brane system in type II theory compactified on

T 6 that is dual to the system for which the microscopic result is known, and test the result

by direct computation of the microscopic index of the D-brane system. We introduce the

system in section 2, and derive its world-line theory for the lowest possible values of the

charges in section 3. In section 4 we explicitly count the index of supersymmetric states

of this system. This is shown to reduce to counting the number of independent solutions

of a set of polynomial equations — a problem that can be easily solved. We find that

the solution contains a set of isolated points provided we work at a generic point in the

moduli space of the theory parametrized by constant background values of the metric and

2-form fields along the internal torus. Hence, at least in this example, the microstates carry

strictly zero angular momentum in agreement with the macroscopic results. In section 5 we

briefly discuss possible generalization of our analysis to cases where we replace each D-brane

of the system described in section 2 by a stack of parallel D-branes. We conclude with a

discussion of our results in section 6. In appendix A we derive the relation between some of

the parameters of the D-brane world-volume theory and the background values of the metric

and 2-form field along T 6. In appendix B we describe the chain of dualities that relate the

system under consideration to the system analyzed in [7]. Finally, in appendix C we give

explicit solutions to the polynomial equations which appear in the analysis of section 4.

2 The system

Let us consider for definiteness a type IIA string theory on T 6 labelled by the coordinates

x4, . . . , x9 and in this theory we take a system containing N1 D2-branes wrapped along

4-5 directions, N2 D2-branes wrapped along 6-7 directions, N3 D2-branes wrapped along

8-9 directions, N4 D6-branes wrapped along 4-5-6-7-8-9 directions and N5 D4-branes along

6-7-8-9 directions. By a series of duality transformations described in appendix B, this

configuration is related to a system of N1 KK monopoles associated with the 4-direction,

−N2 units of momentum along the 5-direction, N3 D1-branes along the 5-direction, N4 D5-

branes along 5-6-7-8-9 directions and −N5 units of momentum along the 4-direction. The

microscopic index of this system was computed explicitly in [7] for N1 = 1. By a further

series of U-duality transformations reviewed e.g. in [24], this system can be mapped to

a system in type IIA string theory on T 6 with only NS-NS sector charges, containing

1We thank Boris Pioline for discussion on this point.
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−N2 units of momentum along the 5-direction, N1 fundamental strings wound along the

5-direction, N4 KK monopoles associated with the 4-direction, −N3 NS 5-branes wrapped

along 5-6-7-8-9 directions and N5 NS 5-branes along 4-6-7-8-9 directions. In the notation

of [24], the electric charge vector Q and magnetic charge vector P for this state in the

latter description are represented as

Q =




0

−N2

0

−N1


 , P =




N3

N5

N4

0


 . (2.1)

The T-duality invariant inner product matrix between charges was given by

(
0 I2
I2 0

)
. With

this we get

Q2 = 2N1N2, P 2 = 2N3N4, Q · P = −N1N5 . (2.2)

We also define

ℓ1 = gcd{QiPj −QjPi} = gcd{N1N3, N1N4, N2N3, N2N4, N5N1},
ℓ2 = gcd{Q2/2, P 2/2, Q · P} = gcd{N1N2, N3N4, N1N5} . (2.3)

We shall consider configurations for which

gcd{ℓ1, ℓ2} = 1, i.e. gcd{N1N3, N1N4, N2N3, N2N4, N1N2, N3N4, N1N5} = 1 . (2.4)

In this case, following [25, 26] one can show that there is a further series of duality trans-

formations that map this system to one with N1 = 1 [27] for which the microscopic index

is known from the analysis of [7]. Expressed in terms of the more general set of variables

(N1, · · · , N5), the result for the BPS index for this system, which in this case corresponds

to the 14-th helicity supertrace B14, takes the form [28]

B14 = (−1)Q·P+1
∑

s|ℓ1ℓ2

s ĉ(∆/s2) , ∆ ≡ Q2P 2−(Q ·P )2 = 4N1N2N3N4−(N1N5)
2 , (2.5)

where ĉ(u) is defined through the relation [6, 7]

− ϑ1(z|τ)2 η(τ)−6 ≡
∑

k,l

ĉ(4k − l2) e2πi(kτ+lz) . (2.6)

ϑ1(z|τ) and η(τ) are respectively the odd Jacobi theta function and the Dedekind eta

function.

In this paper we shall analyze the simplest of these configurations with

N1 = N2 = N3 = N4 = 1, N5 = 0 . (2.7)

For this, (2.6) predicts

B14 = 12 . (2.8)

We shall verify this by direct counting of microstates of the D-brane system.
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3 The low energy dynamics of the D-brane system

The combined system of four D-branes that we have introduced in section 2 with the choice

of Ni’s given in (2.7) preserves 4 out of the 32 supersymmetries. This is equivalent to N = 1

supersymmetry in 3+1 dimensions. Since we are dealing with a quantum mechanical sys-

tem, we can effectively regard this as an N = 1 supersymmetric theory in 3+1 dimensions,

dimensionally reduced to 0+1 dimensions. Thus we can can use the N = 1 superfield

formalism, but ignore all spatial derivatives and integration over spatial directions while

writing the action. We shall follow the normalization conventions of [29] in constructing

this action.

Since the four D-branes we have are related to each other by T-duality, each of them

individually has the same low energy theory given by the dimensional reduction of N = 4

supersymmetric U(1) gauge theory from 3+1 to 0+1 dimensions. We begin with one of the

four different D-branes. In the language of N = 1 supersymmetry in 3+1 dimensions, each

D-brane has one U(1) vector superfield V and three chiral superfields Φ1,Φ2,Φ3. A vector

multiplet, after dimensional reduction to 0+1 dimensions, has three scalars corresponding

to three spatial components of the gauge field and a gauge field A0. We can use the gauge

A0 = 0 and interpret the three scalars as the coordinates giving the location of the D-brane

along the three non-compact directions. We shall denote these three scalars by X1, X2, X3.

The three chiral multiples {Φi} contains three complex scalars {Φi}.2 These complex

scalars give the coordinates or Wilson lines along x4+ ix5, x6+ ix7 and x8+ ix9 directions

respectively. For example, for the D6-brane all three complex scalars correspond to Wilson

lines, while for the D2-brane wrapped along the 4-5 directions, Φ1 corresponds to a Wilson

line along x4 + ix5 but Φ2 and Φ3 correspond to positions of the brane along x6 + ix7

and x8 + ix9 respectively. Finally, we shall use a superscript (k) to label the four different

D-branes, with k = 1, 2, 3 corresponding to D2-branes wrapped along the 4-5, 6-7 and 8-9

directions and k = 4 corresponding to the D6-brane along 4-5-6-7-8-9 directions. Besides

these fields, for every pair of D-branes labelled by (k, ℓ) we have two chiral superfields

Z(kℓ) and Z(ℓk) arising from open strings stretched between the two D-branes. They carry

respectively 1 and −1 units of charge under the vector superfield V (k) and −1 and 1 units

of charge under the vector superfield V (ℓ).

We shall now write down the action involving these fields. To begin with we shall

assume that the six circles of T 6 are orthonormal to each other, with each circle having

radius
√
α′ and that there is no background 2-form field along T 6. From now on, we shall

set α′ = 1. In this case the action takes the form

Skinetic +

∫
dx0



∫

d4θ

4∑

k=1

4∑

ℓ=1
ℓ6=k

{
Z̄(kℓ)e2V

(ℓ)−2V (k)
Z(kℓ)

}
+

∫
d2θW +

∫
d2θ̄W


 , (3.1)

where Skinetic denotes the kinetic terms for the vector superfields V (k) and the gauge neutral

chiral superfields Φ
(k)
i . These have the standard form and will not be written down explic-

itly. The superpotential W has two different components. The first component describes

2Following usual notation, we shall use the same symbol to denote a superfield and its scalar component.
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the coupling of the superfields Φ(k) to Z(kℓ) and takes the form

W1 =
√
2




3∑

k,ℓ,m=1

εkℓmΦ(k)
m Z(kℓ)Z(ℓk) +

3∑

k=1

(
Φ
(k)
k − Φ

(4)
k

)
Z(4k)Z(k4)


 , (3.2)

where εkℓm is the totally antisymmetric symbol with ε123 = 1. The second component

describes the cubic self-coupling between the Z(kℓ)’s and takes the form

W2 =
√
2C

4∑

k,ℓ,m=1
k<ℓ,m; ℓ6=m

Z(kℓ)Z(ℓm)Z(mk) , (3.3)

where C is a constant whose value can be computed in principle by analyzing the coupling

between open strings stretched between different branes, but we shall not need it for our

analysis. The sum over k, ℓ,m runs over all distinct values of k, ℓ and m which are not

related by cyclic permutations of (k, ℓ,m). There could also be gauge invariant quartic and

higher order terms involving the Z(kℓ)’s, but as we shall see, these can be ignored in our

analysis.

So far we have assumed that background metric along T 6 is diagonal and that there

are no background 2-form fields. We shall now study the effect to switching on small

background values of the off-diagonal components of the metric and 2-form fields. As

reviewed in appendix A, this has two effects. First it introduces Fayet-Iliopoulos (FI) term

with coefficient c(k) for each of the four vector superfields, satisfying

4∑

k=1

c(k) = 0 . (3.4)

Second, it generates a linear term in the superpotential of the form

W3 =
√
2




3∑

k,ℓ,m=1

c(kℓ) εkℓmΦ(k)
m +

3∑

k=1

c(k4)
(
Φ
(k)
k − Φ

(4)
k

)

 ,

c(ℓk) = c(kℓ) for 1 ≤ k < ℓ ≤ 4 . (3.5)

Explicit expressions for c(k) and c(kℓ) for 1 ≤ k < ℓ ≤ 4 in terms of the off-diagonal

components of the metric and 2-form fields have also been given in appendix A.

Let us now write down the potential involving the scalar fields derived from the above

action. This consists of three pieces. The first comes from the usual quartic coupling

between the gauge field components X
(k)
i and the charged scalars Z(kℓ) and takes the form

Vgauge =
3∑

i=1

4∑

k=1

4∑

ℓ=1
ℓ6=k

(X
(k)
i −X

(ℓ)
i )(X

(k)
i −X

(ℓ)
i )
(
Z̄(kℓ)Z(kℓ) + Z̄(ℓk)Z(ℓk)

)
, (3.6)

where ‘bar’ denotes complex conjugation. The second component of the potential is the

D-term contribution. This takes the form

VD =
1

2

4∑

k=1

{ 4∑

ℓ=1
ℓ6=k

(
Z̄(kℓ)Z(kℓ) − Z̄(ℓk)Z(ℓk)

)
− c(k)

}2
. (3.7)
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The third component is the F-term potential which takes the form

VF =
4∑

k=1

3∑

i=1

∣∣∣∣∣
∂W

∂Φ
(k)
i

∣∣∣∣∣

2

+
4∑

k=1

4∑

ℓ=1
ℓ6=k

∣∣∣∣
∂W

∂Z(kℓ)

∣∣∣∣
2

. (3.8)

For finding a supersymmetric configuration we have to look for configurations with van-

ishing potential. Since the potential is a sum of squares, this requires setting each of these

terms to zero. In section 4 we shall look for solutions to these conditions.

Note that the potential has the following flat directions

Φ(k)
m → Φ(k)

m + ξm, for 1 ≤ k ≤ 3, k 6= m ; 1 ≤ m ≤ 3,

Φ
(k)
k → Φ

(k)
k + ζk, Φ

(4)
k → Φ

(4)
k + ζk, for 1 ≤ k ≤ 3 ,

X
(k)
i → X

(k)
i + ai , for 1 ≤ k ≤ 4, 1 ≤ i ≤ 3 , (3.9)

where ξm and ζk are arbitrary complex numbers and ai are arbitrary real numbers. The

ai’s represent overall translation of the system along the non-compact directions. The sym-

metries generated by ξm and ζk imply that the potential has six complex flat directions.3

This corresponds to six exactly massless chiral multiplets. Since each chiral multiplet

contains a Weyl fermion in 3+1 dimensions which has four real components, we have alto-

gether 6× 4 = 24 real fermion zero modes after dimensional reduction to 0+1 dimensions.

The vector superfield
∑4

k=1 V
(k) also decouples from the action, reflecting the symmetry

parametrized by the ai’s. The Majorana fermion belonging to this multiplet gives 4 more

fermion zero modes. Thus altogether we have 24 + 4 = 28 fermion zero modes. These are

the Goldstino modes associated with supersymmetry breaking; since a 1/8 BPS black hole

in N = 8 supersymmetric string theory preserves 4 out of 32 supersymmetries, we expect

32 − 4 = 28 broken supersymmetries. Quantization of these 28 fermion zero modes gives

the 214 fold degenerate supermultiplet which is the right degeneracy for a 1/8 BPS state

in a theory with 32 supersymmetries.

4 Supersymmetric solutions

We shall now look for configurations preserving supersymmetry, i.e. configurations which

make the potential vanish. As noted below (3.8), this requires setting each term in Vgauge,

VD and VF to zero. Furthermore, due to the U(1)4 gauge symmetry of the original theory,

we need to classify solutions up to equivalence relations under these U(1) gauge symmetries:

Z(kℓ) → exp
[
i
(
θ(k) − θ(ℓ)

)]
Z(kℓ) , (4.1)

where θ(k) for 1 ≤ k ≤ 4 are the gauge transformation parameters. Note that the overall

U(1) — obtained by setting all the θ(k)’s equal — acts trivially on the Z(kℓ)’s. Furthermore,

3These directions are all compact since they are associated with translations along T
6 and the dual torus

T̃
6. Thus the quantization of the zero modes associated with these bosonic flat directions does not cause

any problem and gives a unique zero energy ground state.
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since we have fixed A
(k)
0 = 0 gauge, we need to demand equivalence only under the subgroup

of the gauge group that preserves this gauge condition. This leaves us with the global part

of the gauge group, labelled by time independent θ(k)’s.

We begin by examining the equations ∂W/∂Φ
(k)
i = 0 for 1 ≤ k ≤ 4 and 1 ≤ i ≤ 3.

Using (3.2), (3.5) we see that this gives

Z(kℓ)Z(ℓk) = −c(kℓ) for 1 ≤ k < ℓ ≤ 4 . (4.2)

It follows from this that as long as the c(kℓ) are non-zero for every k, ℓ in the range 1 ≤
k < ℓ ≤ 4, none of the Z(kℓ)’s can vanish. Eq. (3.6) now gives

X
(k)
i = 0 for 1 ≤ k ≤ 4, 1 ≤ i ≤ 3 , (4.3)

up to the translation symmetry parametrized by the constants ai in eq. (3.9). Next we

consider the ∂W/∂Z(kℓ) = 0 equations. This gives

3∑

m=1

εkℓm
(
Φ(k)
m − Φ(ℓ)

m

)
Z(ℓk) + C

4∑

m=1
m 6=k,ℓ

Z(ℓm)Z(mk) = 0 for 1 ≤ k, ℓ ≤ 3 ,

(
Φ
(k)
k − Φ

(4)
k

)
Z(k4) + C

3∑

ℓ=1
ℓ6=k

Z(kℓ)Z(ℓ4) = 0 for 1 ≤ k ≤ 3 ,

(
Φ
(k)
k − Φ

(4)
k

)
Z(4k) + C

3∑

m=1
m 6=k

Z(4m)Z(mk) = 0 for 1 ≤ k ≤ 3 . (4.4)

These equations serve two purposes. First they determine the combinations

Φ(k)
m − Φ(ℓ)

m for 1 ≤ k, ℓ,m ≤ 3, k, l,m distinct, and Φ
(k)
k − Φ

(4)
k for 1 ≤ k ≤ 3 ,

(4.5)

in terms of the Z(kℓ)’s. This gives 6 linear combinations of the 12 complex scalars Φ
(k)
i .

The rest of the Φ
(k)
i ’s are associated with flat directions and hence remain undetermined.

Second they give the following relations among the Z(kℓ)’s:

Z(kℓ)
4∑

m=1
m 6=k,ℓ

Z(ℓm)Z(mk) = Z(ℓk)
4∑

m=1
m 6=k,ℓ

Z(km)Z(mℓ) for 1 ≤ k, ℓ ≤ 3 ,

Z(4k)
3∑

ℓ=1
ℓ6=k

Z(kℓ)Z(ℓ4) = Z(k4)
3∑

m=1
m 6=k

Z(4m)Z(mk) for 1 ≤ k ≤ 3 . (4.6)

Finally let us turn to the D-term constraints. It is well known that the effect of

the D-term constraints together with quotienting by the U(1) gauge groups is to convert

the space spanned by the coordinates Z(kℓ) to a toric variety. This is parametrized by

the coordinates Z(kℓ) modded out by the complexified U(1) gauge groups after removing

appropriate submanifolds of complex codimension ≥ 1 from the space spanned by the Z(kℓ)’s.

– 8 –
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These submanifolds are obtained by setting one or more Z(kℓ)’s to zero, and depend on the

FI parameters c(k). However, since we have seen that the F-term constraints force all the

Z(kℓ)’s to be non-zero, removal of these complex submanifolds has no effect on the final

solutions.4 Thus, we can proceed by parametrizing the variety by an appropriate set of

gauge invariant polynomials and forget about the D-term constraints. Since to start with

there are 4× 3 = 12 independent Z(kℓ)’s, and we quotient by a U(1)3 gauge group — the

overall U(1) having trivial action on all the Z(kℓ)’s — we need 12 − 3 = 9 independent

gauge invariant coordinates. We take them to be

u1 ≡ Z(12)Z(21) , u2 ≡ Z(23)Z(32) , u3 ≡ Z(31)Z(13) ,

u4 ≡ Z(14)Z(41) , u5 ≡ Z(24)Z(42) , u6 ≡ Z(34)Z(43) ,

u7 ≡ Z(12)Z(24)Z(41) , u8 ≡ Z(13)Z(34)Z(41) , u9 ≡ Z(23)Z(34)Z(42) .

(4.7)

We now note that (4.2) fixes u1, . . . , u6 completely. Thus, the only remaining variables

are u7, u8, u9 and the equations to be solved are given in (4.6). These actually give three

independent equations

Z(23)Z(31)Z(12) + Z(23)Z(34)Z(42) = Z(32)Z(21)Z(13) + Z(32)Z(24)Z(43) ,

Z(24)Z(41)Z(12) + Z(24)Z(43)Z(32) = Z(42)Z(21)Z(14) + Z(42)Z(23)Z(34) ,

Z(34)Z(41)Z(13) + Z(34)Z(42)Z(23) = Z(43)Z(31)Z(14) + Z(43)Z(32)Z(24) . (4.8)

Defining

mkℓ = mℓk = −c(kℓ) for 1 ≤ k < ℓ ≤ 4 (4.9)

and using the solutions for u1, . . . , u6 given in (4.2), eqs.(4.8) can be expressed as

u7 u
−1
8 = m24

(
m24m23m12 u

−1
9 − u7 u

−1
8 u9

m31 u7 u
−1
8 u9 −m23m2

24m34 u
−1
9

)
,

u7 u9 = m24

(
m12m14 u9 −m34m23 u7

u7 − u9

)
,

u8 u
−1
9 =

(
m34m31m14 − u8 u9
u8 u9 −m34m23m24

)
, (4.10)

respectively. The solutions to the system (4.10) are given in table 1 of appendix C. The

important point to note from table 1 is that there are 12 distinct solutions. This shows that

there are 12 supersymmetric ground states, in perfect agreement with the prediction (2.8)

4Put another way, for a generic toric variety, if some equation is given in terms of homogeneous coor-

dinates, it may have solutions in more than one patch. Thus, when we translate the equations in terms

of coordinates of any single patch (which does not cover the whole variety) and look for the solutions, we

always have the risk of not having all the solutions. Fortunately this is not the case here. If we closely

look into what are the regions that are not covered by an arbitrary single patch, we see that these are

the regions where some of the coordinates vanish. But our Z
(kℓ)’s cannot vanish due to the constraint

Z
(kℓ)

Z
(ℓk) = mkℓ. Thus, although such regions exist in the toric variety, they are not part of the solution

of our equations. Hence it is enough to work in a single patch only, which is what we do.
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from the dual description. Furthermore since the moduli space of solutions is zero dimen-

sional, all the solutions carry zero angular momentum after factoring out the contribution

of the goldstino fermion zero modes. This is in agreement with the prediction from the

black hole side.

It is clear from the form of the potential as well as the solutions given in table 1 that

under a uniform scaling of all the c(k)’s and c(kℓ)’s by a real parameter λ, the Z(kℓ)’s and

Φ
(k)
m ’s at the solution (except the ones associated with flat directions) scale as λ1/2. Thus by

taking λ to be small we can ensure that each Z(kℓ) and Φ
(k)
m at the solution is small. In this

case the contributions from the quartic and higher order terms in the superpotential are

small compared to the cubic terms that we have included. This justifies our ignoring such

terms for studyng these solutions. This also justifies our ignoring the fact that Φ
(k)
i −Φ

(ℓ)
i for

1 ≤ k, ℓ ≤ 3 and Φ
(k)
k −Φ

(4)
k for 1 ≤ k ≤ 3 are periodic variables while solving the eqs. (4.4).

Note however that we have not ruled out existence of solutions where Φ
(k)
i −Φ

(k)
j and

Z(kℓ)’s are of order unity measured in the string scale. In such cases we must take into

account possible higher order terms in the superpotential, and must also include the effect

of Φ
(k)
i ’s being periodic variables so that we have to include in our analysis also open string

states which wind around the various circles on their way from one D-brane to another.

In other words, full stringy dynamics is needed for examining the existence of these states.

Our experience with BPS state counting tells us however that the BPS states arise only

from low energy fluctuations on the branes and hence it seems unlikely that there will be

new BPS states from the stringy configurations of the type described above.

5 Non-abelian generalization

In this section we shall generalize the analysis of section 3 to the case where some of the

stacks have more than one brane, i.e. the Ni’s introduced in section 2 are not all equal to

1. We shall focus on the scalar fields and their potential since this is what is needed for

the counting of supersymmetric solutions.

We begin with a discussion of how the scalar degrees of freedom change in this case.

First of all, the complex scalars Φ
(k)
i and the real scalars X

(k)
i become Nk × Nk hermi-

tian matrices transforming in the adjoint representation of U(Nk). On the other hand,

the complex scalar Z(kℓ) becomes Nk × Nℓ complex matrix transforming in the (Nk, N̄ℓ)

representation of U(Nk)×U(Nℓ).

Let us now describe the modification of the potential. The superpotential W1 given

in (3.2) is generalized to

W1 =
√
2




3∑

k,ℓ,m=1

εkℓm Tr
(
Φ(k)
m Z(kℓ)Z(ℓk)

)
+

3∑

k=1

Tr
(
Z(4k)Φ

(k)
k Z(k4)

)

−
3∑

k=1

Tr
(
Φ
(4)
k Z(4k)Z(k4)

)]
. (5.1)
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The generalization of (3.3) takes the form

W2 =
√
2C




4∑

k,ℓ,m=1
k<ℓ,m; ℓ6=m

Tr
(
Z(kℓ)Z(ℓm)Z(mk)

)

 . (5.2)

The generalization of (3.5) is

W3 =
√
2




3∑

k,ℓ,m=1

c(kℓ) εkℓmNℓ Tr
(
Φ(k)
m

)
+

3∑

k=1

c(k4)
[
N4 Tr

(
Φ
(k)
k

)
−Nk Tr

(
Φ
(4)
k

)]

 .

(5.3)

There is also an additional superpotential

W4 = −
√
2

4∑

k=1

Tr
(
Φ
(k)
1

[
Φ
(k)
2 ,Φ

(k)
3

] )
. (5.4)

(3.6) generalizes to

Vgauge =
4∑

k=1

4∑

ℓ=1
ℓ6=k

3∑

i=1

Tr
[(

X
(k)
i Z(kℓ) − Z(kℓ)X

(ℓ)
i

)†(
X

(k)
i Z(kℓ) − Z(kℓ)X

(ℓ)
i

)]
(5.5)

+
4∑

k=1

3∑

i,j=1

Tr
([

X
(k)
i ,Φ

(k)
j

]†[
X

(k)
i ,Φ

(k)
j

])
+
1

4

4∑

k=1

3∑

i,j=1

Tr
(
[X

(k)
i , X

(k)
j ]†[X

(k)
i , X

(k)
j ]
)
.

Finally, the D-term potential (3.7) is generalized to

VD =
1

2

4∑

k=1

Tr

[( 4∑

ℓ=1
ℓ6=k

Z(kℓ)Z(kℓ)† −
4∑

ℓ=1
ℓ6=k

Z(ℓk)†Z(ℓk) +
3∑

i=1

[Φ
(k)
i ,Φ

(k)†
i ]− c(k)INk

)2]
, (5.6)

where INk
denotes Nk ×Nk identity matrix. The FI parameters c(k) now satisfy

4∑

k=1

c(k)Nk = 0 . (5.7)

The coefficients c(kℓ) and c(k) are to be chosen so that they reproduce the masses of the

Z(kℓ)’s correctly. The equations take the form of (A.4) and (A.5) with identical right hand

sides, but the left hand sides are different since the masses of Z(kℓ)’s expressed in terms of

c(k)’s and c(kℓ)’s have additional dependence on the Nk’s.

The potential given above has a shift symmetry generalizing (3.9)

Φ(k)
m → Φ(k)

m + ξmINk
, for 1 ≤ k ≤ 3, k 6= m; 1 ≤ m ≤ 3,

Φ
(k)
k → Φ

(k)
k + ζkINk

, Φ
(4)
k → Φ

(4)
k + ζkIN4 , for 1 ≤ k ≤ 3 ,

X
(k)
i → X

(k)
i + ai INk

, for 1 ≤ i ≤ 3 . (5.8)
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This generates six complex translations along compact directions and three real translations

along the non-compact directions.

The ∂W/∂Φ
(k)
m = 0 equations give

Z(kℓ)Z(ℓk) = −c(kℓ)NℓINk
+ [Φ

(k)
k ,Φ

(k)
ℓ ] for 1 ≤ k, ℓ ≤ 3 ,

Z(k4)Z(4k) = −c(k4)N4INk
+

3∑

ℓ,m=1

εkℓmΦ
(k)
ℓ Φ(k)

m , 1 ≤ k ≤ 3 ,

Z(4k)Z(k4) = −c(k4)NkIN4 −
3∑

ℓ,m=1

εkℓmΦ
(4)
ℓ Φ(4)

m , 1 ≤ k ≤ 3 , (5.9)

generalizing (4.2). The ∂W/∂Z(kℓ) equations give

3∑

m=1

εkℓm
(
Z(ℓk)Φ(k)

m − Φ(ℓ)
m Z(ℓk)

)
+ C

4∑

m=1
m 6=k,ℓ

Z(ℓm)Z(mk) = 0 for 1 ≤ k, ℓ ≤ 3 ,

(
Φ
(k)
k Z(k4) − Z(k4)Φ

(4)
k

)
+ C

3∑

ℓ=1
ℓ6=k

Z(kℓ)Z(ℓ4) = 0 for 1 ≤ k ≤ 3 ,

(
Z(4k)Φ

(k)
k − Φ

(4)
k Z(4k)

)
+ C

3∑

m=1
m 6=k

Z(4m)Z(mk) = 0 for 1 ≤ k ≤ 3 , (5.10)

generalizing (4.4).

It seems reasonable to assume that up to the translation symmetry described in the

last line of (5.8), all the X
(k)
i ’s vanish at the zeroes of the potential since this makes all

the terms in Vgauge vanish. This will also make the classical bound state have zero size

in the non-compact directions. Furthermore, the effect of D-term constraints is to take

the quotient of the space of solutions to (5.9), (5.10) by complexified
∏4

k=1U(Nk) gauge

transformations. Let M be the space of gauge inequivalent solutions to (5.9), (5.10) after

factoring out the zero mode directions associated with the shift symmetry (5.8). The

number of supersymmetric states (or more precisely the index B14) will be given by the

Euler number of M. Thus, duality symmetry of string theory predicts that

χ(M) = −ĉ(4N1N2N3N4) , (5.11)

where ĉ(u) has been defined in (2.6). If M is zero dimensional, then χ(M) just counts the

number of solutions as in the abelian case. In that case all the microstates would carry

strictly zero angular momentum after factoring out the contribution due to the goldstino

fermion modes.

6 Conclusion

In this paper we have set up the general equations whose solutions describe the BPS states

of type II string theory compactified on T 6 carrying only RR charges. We have been able
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to solve the equations explicitly when the charges take the lowest possible values. The

result is in perfect agreement with the counting of the same states in a U-dual description.

Admittedly this is only a small beginning of the much more ambitious project. Never-

theless even at this level our analysis provides a non-trivial test of duality symmetry, since

the counting leading to the magic number 12 is very different from the one that was used

to arrive at the formula (2.6). As far as test of black hole entropy is concerned, a black hole

carrying charges given in (2.7) has large curvature at the horizon and hence the Bekenstein-

Hawking entropy is not expected to agree with ln 12. Nevertheless explicit computation of

Bekenstein-Hawking entropy, together with one loop logarithmic corrections [30, 31], give

a macroscopic entropy

Smacro = π
√
∆− 2 ln∆ + · · · ≃ 2π − 2 ln 4 ≃ 3.51 , (6.1)

which is not very different from the microscopic entropy

Smicro = ln 12 = 2.48 . (6.2)

Thus it is not unreasonable to regard our analysis as the counting of microstates of a black

hole made solely of D-branes although the curvature at the horizon of the black hole is

large. Just for comparison we note that for ∆ = 100, ℓ1ℓ2 = 1 we shall have

Smacro = π
√
100− 2 ln 100 + · · · ≃ 22.2056, Smicro = ln 3627000060 = 22.012 . (6.3)

In recent years there has also been progress in computing the macroscopic entropy of

these black holes by evaluating the supergravity path integral in the near horizon geometry

of the black hole using localization techniques [32–36]. In this approach one regards the

N = 8 supersymmetric theory in 3+1 dimensions as an N = 2 supersymmetric theory with

vector, hyper, gravitino and Weyl multiplets and evaluates the path integral. Although

the arguments are not complete due to the inability to extend the analysis to include

hypermultiplets and gravitino multiplets in the language of N = 2 supergravity, if we

ignore this problem then the result of localization gives the following result for Smacro from

the leading saddle point [34]

Smacro ≃ ln
[√

2π∆−7/4 I7/2(π
√
∆)
]
, (6.4)

where In(x) is the standard Bessel function. For ∆ = 4 this gives

Smacro = 2.50 , (6.5)

which is quite close to the microscopic result (6.2).

Finally we must mention that there is one important aspect of our result which could

have significant impact on our understanding of black hole microstates in the future. All

the microstates of the D-brane system we have constructed have zero angular momentum

after factoring out the contribution due to fermion zero modes, in agreement with the

prediction from the black hole side. Although the D-brane and black hole descriptions

hold in different regions of the moduli space of the theory, and hence the detailed results
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on the angular momentum need not match, the results mentioned above indicate that the

D-brane description may be closer to the actual microstates of the black hole than what one

might naively expect. This could eventually help us identify the microstates of the black

hole in the region of the moduli space where the black hole description is actually valid.

Acknowledgments

We wish to thank Anirban Basu and Boris Pioline for useful discussions. This work was

supported in part by the DAE project 12-R&D-HRI-5.02-0303. The work of A.S. was also

supported in part by the J. C. Bose fellowship of the Department of Science and Technology,

India.

A Effect of metric and 2-form background

The undeformed system that we started with in section 3 had the six circles of T 6 orthonor-

mal to each other and each having period 2π. The system of D6-D2-D2-D2 branes that

we have considered will be described by a set of massless degrees of freedom with action

governed by the supersymmetric action with superpotentials W1 and W2 and all the FI

parameters set to zero. In this appendix we shall show that the effect of small off-diagonal

components of the metric and the 2-form field is to generate the superpotential W3 given

in (3.5) and the FI terms labelled by the c(k)’s.

Our strategy will be to compute the mass of the open strings stretched between different

D-branes in the presence of the deformation and compare it with the mass computed from

the deformed action given in section 3. Consider for example the open string stretched

between the D2-brane along the 4-5 directions and the D6-brane along the 4-5-6-7-8-9

directions, labelled by the 0+1 dimensional fields Z(14) and Z(41). The quadratic terms

involving these fields, computed from the action in section 3, is given by

(c(4) − c(1))(|Z(14)|2 − |Z(41)|2) + 4 c(14)∗Z(14)Z(41) + 4 c(14)Z(14)∗Z(41)∗ . (A.1)

After diagonalization we find the renormalized (mass)2 of the fields to be

±
√
16|c(14)|2 + (c(1) − c(4))2 . (A.2)

On the other hand, we can calculate the mass of the open string stretched between the

D2-brane along the 4-5 directions and the D6-brane along the 4-5-6-7-8-9 directions as

follows. First we make a T-duality transformation along the 4-5-directions to convert this

into a D0-D4 system. This leaves unchanged the components of the metric and 2-form

field along the 6-7-8-9 direction. Now for small values of the background 2-form field, the

(mass)2 of the open string stretched between the D0-brane and the D4-brane along the

6-7-8-9 directions takes the form [37, 38]

±

√√√√1

2

∑

m,n

bmn

(
bmn+

1

2

∑

p,q

ǫmnpqbpq

)
=±

√
(b67+b89)2+(b68−b79)2+(b69+b78)2 , (A.3)

– 14 –



J
H
E
P
1
0
(
2
0
1
4
)
1
8
6

up to an overall proportionality constant. Here ǫmnpq denotes the component of the in-

variant totally anti-symmetric rank 4 tensor along the D4-brane world-volume. Compar-

ing (A.2) and (A.3) we get

16 |c(14)|2 + (c(1) − c(4))2 = (b67 + b89)
2 + (b68 − b79)

2 + (b69 + b78)
2 . (A.4)

A similar analysis of open strings stretched between other brane pairs, and comparison

with the result derived from the deformed action yields the results

16 |c(12)|2 + (c(1) − c(2))2 = (g47 + g56)
2 + (b45 − b67)

2 + (g46 − g57)
2 ,

16 |c(13)|2 + (c(1) − c(3))2 = (g49 + g58)
2 + (b45 − b89)

2 + (g48 − g59)
2 ,

16 |c(23)|2 + (c(2) − c(3))2 = (g69 + g78)
2 + (b67 − b89)

2 + (g68 − g79)
2 ,

16 |c(24)|2 + (c(2) − c(4))2 = (b45 + b89)
2 + (b48 − b59)

2 + (b49 + b58)
2 ,

16 |c(34)|2 + (c(3) − c(4))2 = (b45 + b67)
2 + (b46 − b57)

2 + (b47 + b56)
2 . (A.5)

Note that in the mass formula, only 6 independent combinations of metric components and

9 independent combinations of 2-form field components appear. This gives a total of 15

independent real quantities. On the other hand, in our Lagrangian we have 3 independent

FI parameters and six complex parameters c(kℓ). This also gives a total of 15 real param-

eters. Nevertheless the solutions are not unique since, for example, the left hand sides of

eqs. (A.4), (A.5) are insensitive to the phases of the c(kℓ)’s. A similar symmetry exists on

the right hand side. A possible choice of c(k)’s and c(kℓ)’s is

c(1) =
1

2
(b45 − b67 − b89) , c(2) =

1

2
(b67 − b45 − b89) ,

c(3) =
1

2
(b89 − b45 − b67) , c(4) =

1

2
(b45 + b67 + b89) , (A.6)

16 |c(12)|2 = (g47 + g56)
2 + (g46 − g57)

2, 16 |c(13)|2 = (g49 + g58)
2 + (g48 − g59)

2,

16 |c(14)|2 = (b68 − b79)
2 + (b69 + b78)

2, 16 |c(23)|2 = (g69 + g78)
2 + (g68 − g79)

2,

16 |c(24)|2 = (b48 − b59)
2 + (b49 + b58)

2, 16 |c(34)|2 = (b46 − b57)
2 + (b47 + b56)

2 .(A.7)

It is also clear that given a set of c(k)’s and c(kℓ)’s satisfying
∑4

k=1 c
(k) = 0 it is always

possible to find bij ’s and gij ’s satisfying (A.6), (A.7). For example, if we denote by the

subscripts R and I the real and imaginary parts of c(kℓ), then we can invert (A.6), (A.7) as

b45 =
1

2
(c(1) − c(2) − c(3) + c(4)), b67 =

1

2
(−c(1) + c(2) − c(3) + c(4)),

b89 =
1

2
(−c(1) − c(2) + c(3) + c(4)), (A.8)

g47 + g56 = 4 c
(12)
R , g46 − g57 = 4 c

(12)
I , g49 + g58 = 4 c

(13)
R , g48 − g59 = 4 c

(13)
I ,

b68 − b79 = 4 c
(14)
R , b69 + b78 = 4 c

(14)
I , g69 + g78 = 4 c

(23)
R , g68 − g79 = 4 c

(23)
I ,

b48 − b59 = 4 c
(24)
R , b49 + b58 = 4 c

(24)
I , b46 − b57 = 4 c

(34)
R , b47 + b56 = 4 c

(34)
I . (A.9)
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This establishes that the effect of an arbitrary constant background metric and 2-form field

along T 6 can be encoded in an appropriate choice of the constants c(k) and c(kℓ). On the

other hand, a generic deformation of the D-brane world-volume theory characterized by

the constants c(k) and c(kℓ) can be produced by suitably choosing the background values

of the metric and 2-form fields.

B Duality transformation

In [7], the counting of BPS states was done for a system consisting of N1 KK monopoles as-

sociated with the 4-direction, −N2 units of momentum along the 5-direction, N3 D1-branes

along the 5-direction, N4 D5-branes along 5-6-7-8-9 directions and −N5 units of momentum

along the 4-direction.5 Our goal will be to show that via a series of duality transformations

this can be related to the system introduced in section 2. During this analysis we shall ig-

nore all the signs (which can in principle be determined by following some specific sign con-

vention, e.g. the one given in appendix A of [24]). This way we shall at most miss the signs

of the charges carried by the final D -brane configurations. However, our analysis of the

world-line theory of the D-brane system is independent of the signs of these charges as long

as the signs are chosen to give a configuration that preserves 4 out of 32 supersymmetries.

Consider the following series of duality transformations:

• T-duality transformations along the 4 and 5 directions: this gives a configuration

of N1 NS-5-branes along 5-6-7-8-9 directions, N2 fundamental strings along the 5-

direction, N3 D1-branes along the 4-direction, N4 D5-branes along 4-6-7-8-9 direc-

tions and N5 fundamental strings along the 4-direction.

• T-duality transformation along 8 and 9 directions: this gives a configuration of N1

NS-5-branes along 5-6-7-8-9 directions, N2 fundamental strings along the 5-direction,

N3 D3-branes along 4-8-9 directions, N4 D3-branes along 4-6-7 directions and N5

fundamental strings along the 4-direction.

• S-duality: this gives a configuration of N1 D5-branes along 5-6-7-8-9 directions, N2

D1-branes along the 5-direction, N3 D3-branes along 4-8-9 directions, N4 D3-branes

along 4-6-7 directions and N5 D1-branes along the 4-direction.

• T-duality along 5, 8 and 9 directions: this gives a configuration of N1 D2-branes

along 6-7 directions, N2 D2-branes along 8-9 directions, N3 D2-branes along 4-5

directions, N4 D6-branes along 4-5-6-7-8-9 directions and N5 D4-branes along the

4-5-8-9 directions.

• Cyclic permutation of 6-7→4-5→8-9→6-7: this gives a configuration of N1 D2-branes

along 4-5 directions, N2 D2-branes along 6-7 directions, N3 D2-branes along 8-9

directions, N4 D6-branes along 4-5-6-7-8-9 directions and N5 D4-branes along the

6-7-8-9 directions.

For N5 = 0, this reduces to the configuration described in section 3.

5The actual computation was done for N1 = 1 but we shall consider a more general situation.
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u7 u8 u9

1 −√
m12m14m24 −√

m31m14m34 −√
m23m24m34

2
√
m12m14m24 −√

m31m14m34 −√
m23m24m34

3 −√
m12m14m24

√
m31m14m34 −√

m23m24m34

4
√
m12m14m24

√
m31m14m34 −√

m23m24m34

5 −√
m12m14m24 −√

m31m14m34
√
m23m24m34

6
√
m12m14m24 −√

m31m14m34
√
m23m24m34

7 −√
m12m14m24

√
m31m14m34

√
m23m24m34

8
√
m12m14m24

√
m31m14m34

√
m23m24m34

9 −(d/g)
√
b+ c (e/h)

√
b+ c −

√
(b+ c)/2

10 (d/g)
√
b+ c −(e/h)

√
b+ c

√
(b+ c)/2

11 −(f/g)
√
b− c −(e′/h)

√
b− c −

√
(b− c)/2

12 (f/g)
√
b− c (e′/h)

√
b− c

√
(b− c)/2

Table 1. Solutions to (4.10).

C Explicit solutions to (4.10)

In this appendix we shall describe the solutions to (4.10) in terms of the quantities

a ≡ m2
12 (m31m14 −m23m24)

2

−2m12m34

[
m2

31m14m23 +m31m24

(
m2

14 − 4m14m23 +m2
23

)
+m14m23m

2
24

]

+m2
34 (m31m23 −m14m24)

2 ,

b ≡ − m2
23 (m31 −m24) (m12 −m34)

m14 −m23
− m14 (m12m31 −m24m34)

2

(m31 −m24) (m12 −m34)

+
m23

[
−m2

12m31 (m31 − 2m24) + 2m12m31m34 (m31 − 2m24) +m2
24m

2
34

]

(m31 −m24) (m12 −m34)
,

c ≡ √
a

[
− m23

m14 −m23
− m12m31

(m31 −m24) (m12 −m34)
+

m24m34

(m31 −m24) (m12 −m34)

]
,

– 17 –
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d ≡ −m12

[
m14

√
a+ 2m31m14m23m34 +m24m34

(
m2

14 − 4m14m23 +m2
23

)]

+m23m34

(√
a+m31m23m34 −m14m24m34

)
+m2

12m14 (m31m14 −m23m24) ,

e ≡ −√
a+m12 (m31m14 +m23m24)−m34 (m31m23 +m14m24) ,

e′ ≡ −√
a−m12 (m31m14 +m23m24) +m34 (m31m23 +m14m24) ,

f ≡ √
am12m14 +m23m34

(
−√

a+m31m23m34 −m14m24m34

)

+m2
12m14 (m31m14 −m23m24)

−m12m34

[
2m31m14m23 +m24

(
m2

14 − 4m14m23 +m2
23

)]
,

g ≡ 2
√
2m23m24m34 (m12 −m34) (m14 −m23) ,

h ≡ 2
√
2m23m24 (m12 −m34) . (C.1)

The solutions are given in table 1. The important point to note is that there are 12

solutions, in agreement with the microscopic results.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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