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Abstract
In this paper, we investigate the grow-up rate of solutions for the heat equation with
a sublinear source. We find that if the initial value grows fast enough, then it plays a
major role in the growing up of solutions, while if the initial value grows slowly, then
the sublinear source prevails. As a direct application of these results, we show that the
effect of the sublinear source is negligible in the asymptotic behavior of solutions as
t → ∞ if the initial value grows fast enough.
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1 Introduction
We consider the Cauchy problem of the heat equation with the source

∂u
∂t

–�u = up, (x, t) ∈R
N × (,∞), (.)

u(x, ) = u(x), x ∈R
N . (.)

Here p > , N ≥ , and u ∈ L∞(ρσ ) ≡ {ϕ : ρσϕ ∈ L∞(RN )} with ρσ (x) = ( + |x|)– σ
 .

After the famous work [], this problem has been widely studied by several authors. It is
well known that any positive solutions blow up in finite time if  < p ≤ pF ≡  + 

N [–],
while positive global solutions exist if p > pF [, ]. Let

pc =

⎧⎨
⎩

(N–)–N+
√
N–

(N–)(N–) , if N > ,

∞, if  ≤ N ≤ .

If p ≥ pc, the existence of growing up global solutions, the solutions u(x, t) exist for any
(x, t) ∈ R

N × (,∞) and u(x, t) → ∞ as t → ∞ in some senses, has been established by
Poláčik and Yanagida [, ]. If p > pc and the initial data u satisfy some conditions, Fila,
Winkler and Yanagida [] in  precisely evaluated the grow-up rate of solutions of
(.)-(.) and they found that for large t and some � > , the solution u(x, t) satisfies

Ct� ≤ ∥∥u(·, t)∥∥L∞(RN ) ≤ Ct�,

see also []. For the Cauchy-Dirichlet problem of (.), the existence of growing up global
solutions and the grow-up rate of solutions has been investigated by Dold, Galaktionov,
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Lacey and Vázquez in [], Galaktionov and King in []. If p >  + 
N , there are also a lot of

paperswhich intensely investigate the solutions of (.)-(.) converging to zero at different
algebraic rates [–].
For the sublinear case ( < p <  in (.)), it was Aguirre and Escobedo [] who first

proved that if  < σ < ∞, and the initial value u satisfies

 ≤ u(x) ∈ L∞(ρσ ),

then the solutions u(x, t) of (.)-(.) are global.
Our interest in this paper is to investigate the grow-up rate of solutions for the problem

(.)-(.) with a sublinear source. We first show that if the initial value u satisfies

 ≤ u ∈ L∞(ρσ ) (.)

and

lim|x|→∞ |x|–σu(x) = A for some A > , (.)

then the solutions of (.)-(.) ( < p < ) are growing up solutions such that

Ct
�
 ≤ ∥∥u(t)∥∥L∞(ρσ )

≤ Ct
�
 (.)

for large t. Here � = � = σ if σ > 
–p , and � = 

–p < � ≤ 
–p +ε for any ε >  if  < σ ≤ 

–p .
Moreover, as an application of these results, we get that if 

–p < σ < ∞ and the initial value
u satisfies (.), (.), then the effect of the sublinear source is negligible in the asymptotic
behavior of solutions as t → ∞. While for σ = 

–p , Aguirre and Escobedo [] revealed
that the effect of the sublinear source cannot be negligible in the asymptotic behavior of
the solutions as t → ∞. For the absorption case (up is replaced by –up in (.)) and the
supercritical case (p >  + 

N in (.)), some similar results about the asymptotic behavior
of solutions for these problems were established by a lot of papers, see [–].
The paper is organized as follows. The next section is devoted to giving the grow-up

rate for the solutions of the problem (.)-(.) with  < p < . In Section , we investigate
the asymptotic behavior of solutions for the problem (.)-(.).

2 Growth-up rate of solutions
We take  < p <  in the rest of this paper. For any  < σ < ∞, we define a weighted L∞

space as

L∞(ρσ ) ≡
{
ϕ(x);ρσϕ ∈ L∞(

R
N)}

with the norm ‖ϕ‖L∞(ρσ ) = ‖ρσϕ‖L∞(RN ), where ρσ (x) = ( + |x|)– σ
 . If ( + |x|) σ

 ≤ u ≤
C( + |x|) σ

 , then there exist two subsolutions of the problem (.)-(.):

t → S(t)u(x) = (π t)–
N


∫
RN

exp(–
|x–y|
t ) u(y) dy (.)

http://www.boundaryvalueproblems.com/content/2012/1/96
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and

t → (
( – p)t

)/(p–). (.)

Using a similar method as in [] (see the Appendix), we can get that there exist constants
C,C >  such that

C
(
 + t + |x|) σ

 ≤ S(t)u(x)≤ C
(
 + t + |x|) σ

 . (.)

So, for any x ∈R
N , those two growing up effects given by (.) and (.) can be compared

as t → ∞. When  < σ < 
–p , the one given by (.) prevails; when 

–p < σ < ∞, the one
given by (.) prevails; and they coincide in the critical case σ = 

–p .
Inspired by the above discussions, in this paper we first study the grow-up rate of so-

lutions for the problem (.)-(.). The mild solution u(x, t) of the problem (.)-(.) is
defined as follows:

u(x, t) = S(t)u(x) +
∫ t


S(t – s)up(x, s) ds. (.)

If the initial value  
≡ u ∈ L∞(ρσ ), the existence and uniqueness of a mild solution for
the problem (.)-(.) has been given in [].

Lemma . ([]) Suppose  ≤ u ∈ L∞(ρσ ) and u 
≡ , then there exists a unique mild
global solution u for the problem (.)-(.) with  < p <  such that

I. u ∈ C∞((,∞)×R
N )∩ L∞

loc((,∞);L∞(ρσ ));
II. limt→ u(x, t) = u(x) for a.e. x ∈ R

N .
Moreover, if u ∈ C(RN ), the convergence is uniform on compact subsets of RN .

Our results about the grow-up rate of solutions are the following two theorems.

Theorem . Let  < p < , A >  and 
–p < σ <∞. Suppose

 ≤ u ∈ L∞(ρσ ) (.)

and

lim|x|→∞ |x|–σu(x) = A. (.)

Then there exist constants T ,C,C > , such that

Ct
σ
 ≤ ∥∥u(t)∥∥L∞(ρσ )

≤ Ct
σ
 for t > T . (.)

Here u(x, t) is the solution of (.)-(.).

Proof The hypothesis (.) clearly implies that there exists a constant R >  such that if
|x| ≥ R, then

A


|x|σ ≤ u(x)≤ A|x|σ .

http://www.boundaryvalueproblems.com/content/2012/1/96
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So,

u(x)≥ A


|x|σ –
A

Rσ .

From the property of the heat semigroup, we have

S(t)u(x)≥ S(t)ϕ(x) –
A

Rσ ,

where ϕ(x) = A
 |x|σ . Using a similar method as [] (see (A.)), we obtain that there exists

a constant C >  such that

S(τ )ϕ(x)≥ C
(
τ + |x|) σ

 .

So, for τ =  + ( A
C

) σ R, there exists a constant C >  (depending on A and σ ) such that

S(τ )u(x)≥ C
(
 + |x|) σ

 .

It follows from the comparison principle that

u(x, τ )≥ S(τ )u(x)≥ C
(
 + |x|) σ

 .

From  ≤ u ∈ L∞(ρσ ) and I of Lemma ., we obtain that there exists a constant C > 
(depending on τ ) such that

u(x, t)
(
 + |x|)– σ

 ≤ sup
≤s≤τ

∥∥u(s)∥∥L∞(ρσ )
≤ C for  ≤ t ≤ τ .

Therefore,

u(x, t)≤ C
(
 + |x|) σ

 for  ≤ t ≤ τ .

So, from (.), we have

C
(
 + t + |x|) σ

 ≤ S(t)
[
u(τ )

]
(x)≤ C

(
 + t + |x|) σ

 , (.)

where C and C are positive constants depending on A, σ and τ . The hypothesis 
–p <

σ < ∞ indicates that

σ ( – p) –  > .

Let

a(t) =
[(

 +Cp–
 ( – p)

∫ t


( + s)

σ (p–)
 ds

)] 
–p

.

So,

η ≡ Cp–
 ( – p)

∫ ∞


( + t)

σ (p–)
 dt =

Cp–
 ( – p)

σ ( – p) – 
> .

http://www.boundaryvalueproblems.com/content/2012/1/96
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Therefore, a(t) is an increasing function satisfying

⎧⎨
⎩
a() = ,

a(t)≤ ( + η)


–p for all t ≥ .
(.)

From (.), we have

a′(t) = Cp–
 a(t)p( + t)

σ (p–)


= a(t)p
[
C( + t)

σ

]p– ≥ a(t)p

[
S(t)u(τ )(x)

]p–. (.)

Let w(x, t) = S(t)u(τ )(x), and assume that

w(x, t) = a(t)w(x, t).

So, from (.), one can verify that w(x, t) is a supersolution of the following problem:

∂v
∂t

–�v = vp, (x, t) ∈R
N × (,∞),

v(x, ) = w(x, ) = u(x, τ ), x ∈ R
N .

By (.), (.) and the comparison principle, we get that

C
(
 + t + |x|) σ

 ≤ w(x, t)≤ v(x, t)≤ w(x, t)

= a(t)w(x, t)≤ ( + η)


–p w(x, t)≤ C
(
 + t + |x|) σ

 .

This means that

C
(
 + t + |x|) σ

 ≤ u(x, t + τ ) ≤ C
(
 + t + |x|) σ

 for t > τ .

Let T = τ + . So, there exist two constants, which we still write as C and C, such that

C
(
 + t + |x|) σ

 ≤ u(x, t)≤ C
(
 + t + |x|) σ

 for t > T . (.)

From this, we get (.) easily. So we complete the proof of this theorem. �

In the following theorem, we consider the grow-up rate for the solutions of the problem
(.)-(.) when the nonnegative initial value u ∈ L∞(ρσ ) with  < σ ≤ 

–p .

Theorem . Let  < p < , and assume that  < σ ≤ 
–p . If the initial value u satisfies

(.) and (.), then for any ε > , there exist constants C,C,T >  such that

Ct


–p ≤ ∥∥u(t)∥∥L∞(ρσ )
≤ Ct


–p+ε for t > T .

Here u(x, t) is also the solution of (.)-(.).

http://www.boundaryvalueproblems.com/content/2012/1/96
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Proof Using the same method as the proof of (.), we can get if  < σ ≤ 
–p , then there

exist C,C,T >  such that

C
(
t + |x|) σ

 ≤ S(t)u(x)≤ C
(
t + |x|) σ

 for t > T and x ∈R
N . (.)

So, by the comparison principle, we can get that there exists a constant τ > T satisfying

u(x, τ )≥ S(τ )u(x)≥ C
(
 + |x|) σ

 .

We first consider the case of N > . Let

B = ( – p)–C–p
 and w(x, t) = ( – p)


–p

(
B
(
 + |x|) σ (–p)

 + t
) 
–p .

So, w is a subsolution of the following problem:

∂v
∂t

–�v = vp, (x, t) ∈ R
N × (,∞),

v(x, ) = u(x, τ ), x ∈ R
N .

(.)

Here we have used the facts that w(x, ) = C( + |x|) σ
 ≤ u(x, τ ) and N > . Therefore, by

the comparison principle, for t > , there exists a constant C satisfying

C
((
 + |x|) σ (–p)

 + t
) 
–p ≤ w(x, t)≤ u(x, t + τ ).

From this, we can get that there exist C,T >  such that

C( + t)


–p ≤ ∥∥u(t)∥∥L∞(ρσ )
for t > T . (.)

Now, we consider the case of N = . Let

C =min
(
C, (σ )–


–p

)
and B = ( – p)–C–p

 .

Then, we define the function

w(x, t) = ( – p)


–p

(
B

(
 + |x|) σ (–p)

 +


t
) 

–p
.

Therefore, w is also a subsolution of the problem (.). In fact,

∂w

∂t
–w

p = –


( – p)

p
–p

(
B

(
 + |x|) σ (–p)

 +


t
) p

–p

and

∂w

∂x
≥ –( – p)


–p Bσ

(
B

(
 + x

) σ (–p)
 +



t
) p

–p
,

http://www.boundaryvalueproblems.com/content/2012/1/96
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so,

∂w

∂t
–w

p –
∂w

∂x
≤ .

Using the same method as above, we can get that (.) holds for N = . Without loss of
generality, we can assume that t > T in the rest of this proof. From the definition of the
mild solutions with (.), we have

u(x, t) = S(t)u(x) +
∫ t


S(t – s)up(x, s) ds

≤ C
(
 + t + |x|) σ

 +
∫ t


S(t – s)

[(
 + |x|) σ

 u(x, s)
(
 + |x|)– σ


]p ds

≤ C
(
 + t + |x|) σ

 +C sup
≤s≤t

∥∥u(s)∥∥p
L∞(ρσ )

∫ t



(
 + |x| + (t – s)

) σp
 ds

≤ C
(
 + t + |x|) σ

 +C sup
≤s≤t

∥∥u(s)∥∥p
L∞(ρσ )

(
 + |x| + t

) σp
 t

≤ C
(
 + |x|) σ

 ( + t)
σ
 +C sup

≤s≤t

∥∥u(s)∥∥p
L∞(ρσ )

(
 + |x|) σp

 ( + t)
σp
 +

≤ C
(
 + |x|) σ

 ( + t)
σ
 +C sup

≤s≤t

∥∥u(s)∥∥p
L∞(ρσ )

(
 + |x|) σ

 ( + t)
σp
 +.

Here we have used  < p <  and Lemma A., see the Appendix. The assumption  < σ ≤


–p implies that

σ


≤ σp


+ .

Therefore,

( + t)
σ
 ≤ ( + t)

σp
 +.

By (.), we deduce that there exists a constant C such that

u(x, t)≤ C sup
≤s≤t

∥∥u(s)∥∥p
L∞(ρσ )

(
 + |x|) σ

 ( + t)
σp
 +.

This implies that

sup
≤s≤t

∥∥u(s)∥∥L∞(ρσ )
≤ C( + t)

σp
(–p) +


–p .

Using the integral expression (.) again, we have

u(x, t)≤ C
(
 + t + |x|) σ

 +C sup
≤s≤t

∥∥u(s)∥∥p
L∞(ρσ )

∫ t



(
 + t – s + |x|) σp

 ds

≤ C
(
 + t + |x|) σ

 +C( + t)
σp
(–p) +

p
–p

(
 + t + |x|) σp

 t.

http://www.boundaryvalueproblems.com/content/2012/1/96
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Here we have used the fact that

(
 + |x| + t

)α ≤ ( + t)α
(
 + |x|)α for α > .

Notice that for t > s andm > ,

S(t – s)φ(x)≤ C
(
 + t + |x|)m

 ,

where φ(x) = ( + s + |x|)m . So,

u(x, t) = S(t)u(x) +
∫ t


S(t – s)up(x, s) ds≤ C

(
 + t + |x|) σ



+C
∫ t



[(
 + t + |x|) pσ

 + ( + s)
σp
(–p) +

p
–p

(
 + t + |x|) σp

 sp
]
ds

≤ C
[(
 + t + |x|) σ

 +
(
 + t + |x|) pσ

 t

+ ( + t)
σp
(–p) +

p
–p

(
 + t + |x|) σp

 t+p
]
. (.)

Iterating (.) n –  times, we get that

u(x, t) ≤ C
[(
 + t + |x|) σ

 +
(
 + t + |x|) pσ

 t +
(
 + t + |x|) pσ

 t+p + · · ·

+
(
 + t + |x|) pn–σ

 t
–pn–
–p

+ ( + t)[
σp

(–p) +


–p ]p
n(
 + t + |x|) σpn

 t


–p–
pn
–p

]

≤ C
[(
 + |x|) σ

 ( + t)
σ
 +

(
 + |x|) pσ

 ( + t)+
pσ


+
(
 + |x|) pσ

 ( + t)
–p
–p + pσ

 + · · · + (
 + |x|) pn–σ

 ( + t)
–pn–
–p + pn–σ



+ ( + t)
σpn
(–p) +


–p

(
 + |x|) σpn


]

≤ C(n)
(
 + |x|) σ


[
( + t)


–p+

σpn
(–p) + ( + t)


–p+

σpn–


]
. (.)

Here we have used the facts that

σ


≤ pσ


+  ≤ pσ


+
 – p

 – p
≤ · · · ≤ pn–σ


+
 – pn–

 – p
≤ pn–σ


+


 – p

and

(
 + |x|) σpm

 ≤ (
 + |x|) σ

 form > .

So, for any ε > , we can select n large enough to satisfy

ε >max

(
pnσ

( – p)
,
pn–σ


)
.

http://www.boundaryvalueproblems.com/content/2012/1/96
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From (.), we thus have

∥∥u(t)∥∥L∞(ρσ )
≤ C( + t)


–p+ε .

Combining this with (.), we can get the desired results. So we complete the proof of
this theorem. �

Remark . From Theorem . and Theorem ., we find that if σ > 
–p , then the main

effect on the growing up of solutions comes from the initial value; while if  < σ ≤ 
–p ,

then the sublinear source has a major effect.

3 Asymptotic behavior
In this section, we will use the fact that the mild solutions of the problem (.)-(.) given
by Lemma . also satisfy the following integral identity:

∫ T



∫
RN

[(
∂ξ

∂t
+�ξ

)
u + ξup

]
dxdt +

∫
RN

ξ (x, )u(x) dx = , (.)

for any ξ ∈ C,([,T]×R
N ) which vanishes for large |x| and at t = T .

The following result gives the fact that if σ > 
–p , then the sublinear source is negligible

in the asymptotic behavior of the rescaled solution t– σ
 u(x, t) as t → ∞. Similar to [, ,

], we follow the framework by Kamin and Peletier [] to give the proof of our result.

Theorem . Let  < p <  and 
–p < σ < ∞. If the initial value u satisfies (.) and (.),

then

lim
t→∞ t–

σ

∣∣u(x, t) – S(t)ϕ(x)

∣∣ =  (.)

uniformly on sets {(y, s); |y| ≤ γ s 
 }, γ > . Here u(x, t) is the mild solution of (.)-(.) and

ϕ(x) = A|x|σ .

Proof We first define the functions

w(x, t) = S(t)u(x),

uλ(x, t) = λ–σu
(
λx,λt

)

and

wλ(x, t) = λ–σ
[
S
(
λt

)
u

]
(λx).

Using the comparison principle, we know that

w(x, t)≤ u(x, t),

and

wλ(x, t)≤ uλ(x, t) for all λ ≥ .

http://www.boundaryvalueproblems.com/content/2012/1/96
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For t > , without loss of generality, we can assume that λ is large enough to satisfy λt > T ,
where T is the constant given by Theorem .. So, from (.), we have

uλ(x, t) ≤ Cλ–σ
[
 + λt + λ|x|] σ

 ≤ C
(
λ– + t + |x|) σ



≤ C
(
λ– + t

) σ

(
 +

(
λ– + t

)–|x|) σ


≤ C
(
λ– + t

) σ

(
 +

(
λ– + t

)– 
 |x|)σ . (.)

So, if λ >  and  < τ < 
 , then

∫ τ



∫
B
uλ(x, t) dxdt ≤ C

∫ τ+λ–

λ–
s
N+σ


∫ s–




( + r)N+σ– dr ds

≤ C
∫ τ+λ–

λ–
s
N+σ


[(
 + s–



)N+σ – 

]
ds

≤ C
∫ τ+λ–

λ–
s
N+σ


(
s–



)N+σ ds ≤ Cτ .

Similarly, for any q > , from (.), we can obtain the following integral estimates:

∫ τ



∫
B
uλ(x, t)q dxdt ≤ C

∫ τ+λ–

λ–
s
N+qσ


[(
 + s–



)N+qσ – 

]
ds

≤ C
∫ τ+λ–

λ–

(
 + s



)N+σ

 ds ≤ C
(
 + τ + λ–)N+qσ

∫ τ+λ–

λ–
ds

≤ C
(
 + τ + λ–)N+qσ

τ . (.)

Using the same method as above and the comparison principle, we can get the similar
integral estimates for wλ(x, t). For any T > t > , from (.), we have

∫∫
Sτ+Sτ

T

[
ξt(uλ –wλ) +�ξ (uλ –wλ)

]
dt dx =

∫∫
ST

λ–κξupλ dxdt, (.)

where Sτ ≡ (, τ ] × R
N , Sτ

T ≡ (τ ,T] × R
N , κ = σ ( – p) –  >  and ξ ∈ C,(ST ) which

vanishes for large |x| and at t = T. For any ε > , by the integral estimates of uλ(x, t) and
wλ(x, t), there exists τ >  such that

∫∫
Sτ

[
ξt(wλ – uλ) +�ξ (wλ – uλ)

]
dxdt <

ε


. (.)

From the fact that κ >  and (.), we can get that there exists λ such that if λ > λ, then

∫∫
ST

λ–κξupλ dxdt <
ε


. (.)

Let zλ(x, t) = uλ(x, t) –wλ(x, t). From (.), we can get that for any compact subset K of ST ,
uλ(x, t) and wλ(x, t) have a uniform upper bound, which means that the sequence zλ(x, t)

http://www.boundaryvalueproblems.com/content/2012/1/96
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is equicontinuous on K (see [, , ]). So, we can get that there exist a subsequence
zλ′ (x, t) and a function z(x, t) ∈ C(ST ) such that

zλ′ (x, t)→ z(x, t)

as λ′ → ∞ uniformly on K . Therefore, we have as λ′ → ∞, omitting the primes,

∫∫
Sτ
T

[
ξt(uλ –wλ) +�ξ (uλ –wλ)

]
dt dx →

∫∫
Sτ
T

[ξt +�ξ ]zdt dx.

Combining this with (.)-(.), we obtain that

∫∫
ST

[ξt +�ξ ]zdt dx = .

Therefore, it follows from the uniqueness of the solutions of the heat equation that

z(x, t) =  for all (x, t) ∈ ST .

Thus the entire sequence zλ converges to z = . Therefore, we have proved that for any
 < t < T < ∞,

uλ(x, t) –wλ(x, t)→  as λ → ∞

uniformly on any compact subset of RN . Thus, taking t =  and λ = s 
 , we obtain

lim
s→∞ s–

σ

∥∥u(

s

 ·, s) –w

(
s

 ·, s)∥∥L∞

loc(R
N ) = . (.)

From (.) and  ≤ u ∈ L∞(ρσ ), we have

w
t


(x, ) = t–

σ
 S(t)u

(
t

 x

) ≤ C
(
t–


 +  + |x|) σ

 .

So, for any x ∈R
N , by Lebesgue’s dominated convergence theorem, we have

w
t


(x, ) = t–

σ
 S(t)u

(
t

 x

)

= (π )–
N


∫
RN

exp

(
–

|x – y|


)
t–

σ
 u

(
t

 y

)
dy→ S()ϕ(x) (.)

as t → ∞. The uniform upper bound of w
t


(x, ) on any compact subsetM of RN implies

that the sequence w
t


(x, ) is equicontinuous onM, see [, , ]. Therefore, from (.),

we have

wt/ (x, ) = t–
σ
 S(t)u

(
t

 x

) → S()ϕ(x)

uniformly on any compact sets of RN as t → ∞. By (.), we thus have (.). So we com-
plete the proof of this theorem. �
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Appendix
Lemma A. Let M,M >  and  < σ < ∞. If

M
(
 + |x|) σ

 ≤ u ≤ M
(
 + |x|) σ

 , (A.)

then there exist two constants C(M,σ ),C(M,σ ) >  such that

C(M,σ )
(
 + t + |x|) σ

 ≤ S(t)u(x)≤ C(M,σ )
(
 + t + |x|) σ

 . (A.)

Proof Consider the following problem:

∂v
∂t

–�v = , in R
N × (,∞),

v(x, ) = v(x) =M|x|σ , in R
N ,

whereM >  is a constant. For λ > , from (.), we can get

λ– σ

[
S(λt)v

](
λ


 x

)
= S(t)

[
λ– σ

 v
(
λ


 ·)](x) = S(t)v(x). (A.)

By existence and regularity theories for solutions, we can obtain that for t > ,

 < S(t)v ∈ C∞(
(,∞)×R

N)
,

see [, ]. Now taking t = , λ = s and g(x) = S()v(x) in the expression (A.), we have

S(s)v(x) = s
σ
 g

(
s–


 x

)
. (A.)

The fact that S(s)v(x) ∈ C([,∞)×R
N ) clearly implies that for |x| = ,

s
σ
 g

(
s–


 x

)
= S(s)v(x)→ v(x) =M|x|σ =M

as s→ . Let

y = s–

 x.

So

|y| → ∞ as s → .

Therefore,

|y|–σ g(y) –M → 

as |y| → ∞. So, there exist constants  < C(M) ≤ C(M) < ∞ satisfying

C(M)
(
 + |x|) σ

 ≤ g(x) ≤ C(M)
(
 + |x|) σ

 .
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By (A.), we thus have

C(M)
(
s + |x|) σ

 ≤ S(s)v(x)≤ C(M)
(
s + |x|) σ

 . (A.)

Let ϕ(x) =M( + |x|) σ
 . So there exist two constants C(M,σ ),C(M,σ ) >  such that

C(M,σ )
(
 + v(x)

) ≤ ϕ(x)≤ C(M,σ )
(
 + v(x)

)
.

Therefore, by the comparison principle and (A.), we can get that for all t ≥ , there exist
constants C(M,σ ),C(M,σ ) >  such that

C(M,σ )
(
 + s + |x|) σ

 ≤ S(t)ϕ(x)≤ C(M,σ )
(
 + s + |x|) σ

 .

By (A.) and the comparison principle, we have (A.). So we complete the proof of this
lemma. �
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