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Abstract In spite of the truly remarkable diversity of mod-
els of time series, there is still an evident need to develop
constructs whose accuracy and interpretability are carefully
identified and reconciled subsequently leading to highly
interpretable (human-centric) constructs. While a great deal
of research has been devoted to the design of nonlinear
numeric models of time series (with an evident objective
to achieve high accuracy of prediction), an issue of inter-
pretability (transparency) of models of time series becomes
an evident and ongoing challenge. The user-friendliness of
models of time series comes with an ability of humans to per-
ceive and process abstract constructs rather than dealing with
plain numeric entities. In perception of time series, informa-
tion granules (which are regarded as realizations of inter-
pretable entities) play a pivotal role. This gives rise to a con-
cept of granular models of time series or granular time series,
in brief. This study revisits generic concepts of information
granules and elaborates on a fundamental way of forming
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information granules (both sets—intervals as well as fuzzy
sets) through applying a principle of justifiable granularity
encountered in granular computing. Information granules are
discussed with regard to the granulation of time series in a
certain predefined representation space (viz. a feature space)
and granulation carried out in time. The granular represen-
tation and description of time series is then presented. We
elaborate on the fundamental hierarchically organized layers
of processing supporting the development and interpretation
of granular time series, namely (a) formation of granular
descriptors used in their visualization, (b) construction of
linguistic descriptors used afterwards in the generation of (c)
linguistic description of time series. The layer of the linguis-
tic prediction models of time series exploiting the linguistic
descriptors is outlined as well. A number of examples are
offered throughout the entire paper with intent to illustrate
the main functionalities of the essential layers of the granular
models of time series.

Keywords Information granularity · Granular time series ·
Principle of justifiable granularity · Linguistic description ·
Higher order granular models

1 Introduction

Time series is a sequence of real-data, with each element
in this sequence representing a value recorded at some time
moment. With regard to processed data, time series is inher-
ently associated with their large size, high dimensionality and
a stream-like nature. Time series are ubiquitous in numer-
ous domains. Recently, this data modality has attracted great
attention in the data mining research community. In the
plethora of currently available models of time series, the
accuracy of the models has been a holy grail of the over-
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all modeling. With the emergence of a more visible need for
interpretable models that are easily comprehended by users
and facilitate a more interactive style of modeling, arose an
important need to develop models that are not only accurate
but transparent (interpretable) Casillas et al. (2003) as well.
Likewise, as a part of requirements, it is anticipated that the
user should be at position to easily establish a sound trade-
off between accuracy and interpretability. Similarly, effective
mechanisms supporting a realization of relevance feedback
become an important part of the overall research agenda.

Current research in time series mining, time series charac-
terization, and prediction comes with a visible diversity and
richness of the conceptual and algorithmic pursuits. In spite
of their diversity, there is some evident and striking similar-
ity; all of these approaches dwell upon the use and processing
being realized at a numeric level.

The pursuits of perception, analysis and interpretation of
time series, as realized by humans, are realized at a cer-
tain, usually problem-related, level of detail. Instead of sin-
gle numeric entries—successive numeric readings of time
series, developed are conceptual entities over time and fea-
ture space —information granules using which one discovers
meaningful and interpretable relationships forming an over-
all description of time series. The granularity of informa-
tion is an important facet being imperative to any offering of
well-supported mechanisms of comprehension of the under-
lying temporal phenomenon. In all these pursuits, informa-
tion granules manifest along the two main dimensions (as
noted above). The first one is concerned with time granu-
larity. Time series is split into a collection of time windows
—temporal granules. One looks at time series in temporal
windows of months, seasons, years. Time series is also per-
ceived and quantified in terms of information granules being
formed over the space of amplitude of the successive sam-
ples of the sequence; one arrives at sound and easily inter-
pretable descriptors such as low, medium, high amplitude and
alike. One can also form information granules over the space
of changes of the time series. Combined with the temporal
facets, the composite information granules arise as triples of
entities, say long duration, positive high amplitude, approx-
imately zero changes, etc. Once information granules are
involved, long sequences of numbers forming time series
are presented as far shorter, compact sequences of informa-
tion granules-conceptual entities. As noted above, those are
easier to understand and process. Let us note that while tem-
poral granules are quite common (and they are of the same
length), forming and processing composite information gran-
ules built over variable length time intervals call for detailed
investigations.

Let us emphasize that information granules are sought as
entities composed of elements being drawn together on a
basis of similarity, functional closeness or spatial neighbor-
hood. The quality of such granulation (abstraction) of data

is clearly related to the ability of this abstraction process
to retain the essence of the original data (problem) while
removing (hiding) all unnecessary details. With this regard,
granularity of information (Bargiela and Pedrycz 2002, 2003,
2005, 2008, 2009; Apolloni etal. 2008; Srivastava et al. 1999;
Ślȩzak 2009; Pedrycz and Song 2011; Qian et al. 2011) plays
a pivotal role and becomes of paramount importance, both
from the conceptual as well as algorithmic perspective to the
realization of granular models of time series. Subsequently,
processing realized at the level of information granules gives
rise to the discipline of granular computing (Bargiela and
Pedrycz 2003). In granular computing, we encounter a broad
spectrum of formal approaches realized in terms of fuzzy sets
(Aznarte et al. 2010; Chen and Chen 2011; Kasabov and Song
2003; Lee et al. 2006; Pedrycz and Gomide 2007), rough sets
(Pawlak 1991, 1985; Pawlak and Skowron 2007a,b), shad-
owed sets (Pedrycz 1998, 1999), probabilistic sets (Hirota
and Pedrycz 1984), and others. Along with the conceptual
setups, we also encounter a great deal of interesting and rele-
vant ideas supporting processing of information granules.
For instance, we can refer to the algorithmic perspective
embracing fuzzy clustering (Bezdek 1981), rough clustering,
and clustering being regarded as fundamental development
frameworks in which information granules are constructed.

The key objective of this paper is to develop a general
architecture of a system supporting human-centric analysis
and interpretation of time series, both through their visu-
alization as well as a linguistic description. In both cases,
we carefully exploit concepts of information granules as
being central to all faculties of description and interpreta-
tion of time series. In order to form an abstract, concise
view at temporal data, the associated information granule
is made justifiable, viz. strongly supported by experimental
evidence, and semantically meaningful (of sufficient speci-
ficity, sound level of detail). We briefly discuss data sets
used in Sect. 2. Section 3 recalls the underlying process-
ing issues of time series. The granular framework of inter-
pretation of time series is proposed in Sect. 4. A crux of a
principle of justifiable granularity is outlined in Sect. 5. The
principle gives rise to an information granulation algorithm,
which takes a collection of temporal data and transforms
them into a semantically sound information granule. It is
shown how interval granules are built and how a collection
of such nested granules are arranged into a fuzzy set. Section
6 is concerned with a formation of a collection of informa-
tion granules. Composite information granules formed in the
space of amplitude and changes of amplitude are studied. A
suite of experimental studies comprising several real-world
time series is discussed in Sect. 6. Conclusions are offered
in Sect. 7.

A certain point has to be made with regard to the formalism
of granular computing being used in this study. While most
of the detailed investigations are carried out in the setting
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of fuzzy sets (and in this way one could have contemplated
the usage of the term fuzzy time series as a more suitable
wording), which become instrumental in all the pursuits here,
offering a conceptual framework and facilitating a realization
of the sound algorithmic platform. It is emphasized that the
introduced layered approach is equally suitable to deal with
a variety of formalisms of information granules as well as the
proposed constructs (such as e.g., the principle of justifiable
granularity supporting a formation of a variety of informa-
tion granules) and hence the notion of granular time series
becomes well justified.

2 Experimental data sets—a summary

In this study, three publicly available time series coming from
the finance domain are used to visualize a way how the gran-
ular constructs are designed and emphasize their essential
aspects. More specifically, we consider here:

(1) The daily value of Taiwan Stock Exchange Weighted
Stock Index (TAIEX) time series from 4th January 2000 to
29th December 2000, see Fig. 1a (sources: http://finance.

yahoo.com/q/hp?s=%5ETWII&a=00&b=1&c=2000&d=11
&e=29&f=2000&g=d).

(2) The daily value of IBM common stock closing prices
from 29th June 1959 to 30th June 1960, see Fig. 2a (sources:
http://datamarket.com/data/set/2321/ibm-common-stocklos-
ing-prices-daily-29th-jun%e-1959-to-30th-june-1960-n255
#!display=table&ds=2321).

(3) The daily value of NASDAQ Composite Index (Nas-
daq, for short) time series from 3th January 2000 to 31th
December 2012, see Fig. 3a (sources: http://finance.yahoo.
com/q/hp?s=%5EIXIC&a=00&b=1&c=2000&d=11&e=31
&f=2012&g=d).

For each time series, the changes (first order differences)
of the amplitude are smoothed with the use of the mov-
ing average filter (Brown 2004); the obtained results is pre-
sented in Figs. 1b, 2b and 3b using a dotted line. Besides,
the temporal windows are also showed in Figs. 1, 2 and
3: the first two time series are split into 20 temporal win-
dows of the same length and the third time series is split
into 30 temporal windows of equal length. These values
of the size of the windows are selected for illustrative
purposes.
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Fig. 1 TAIEX time series and the corresponding temporal windows
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Fig. 2 IBM stock price time series and the corresponding temporal windows
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Fig. 3 Nasdaq time series and the corresponding temporal windows

3 Time series-selected underlying processing issues

For the purpose of reduction of data and facilitating all min-
ing algorithms, in most development schemes discussed is a
segmentation step. Time series segmentation can be treated
either as a preprocessing stage for a variety of ensuing data
mining tasks or as an important stand-alone analysis process.
An automatic partitioning of a time series into an optimal
(or better to say, feasible) number of homogeneous temporal
segments becomes an important problem. Quite often con-
sidered is a fixed-length segmentation process. Commonly
encountered segmentation methods include the perceptually
important points (PIP) (Fu et al. 2006; Jiang et al 2007),
minimum message length (MML) (Oliver et al. (1998)) and
minimum description length (MDL) segmentation (Fitzgib-
bon et al. 2002). A two-stage approach, in which one first uses
a piecewise generalized likelihood ratio to carry out rough
segmentation and then refines the results, has been proposed
by Yager (2009). Keogh et al. (2001) adopted a piecewise
linear representation method to segment time series. They
focused on the problem of an-online segmentation of time
series where a sliding window and bottom-up approach was
proposed. Fuzzy clustering algorithms have showed a sig-
nificant potential to address this category of problems. With
this regard, Abonyi et al. (2005) developed a modified Gath-
Geva algorithm to divide time-varying multivariate data into
segments by using fuzzy sets to represent such temporal seg-
ments. Duncan and Bryant (1996) proposed dynamic pro-
gramming to determine a total number of intervals within
the data, the location of these intervals and the order of
the model within each segment. Wang and Willett (2002)
would be the segmentation problem as a tool for exploratory
data analysis and data mining called the scale-sensitive gated
experts (SSGE), which can partition a complex nonlinear
regression surface into a set of simpler surfaces called “fea-
tures”. Fu (2011) presented a recent survey of mining time
series.

4 A granular framework of interpretation of time series:
a layered approach to the interpretation of time series

As noted so far, the notion of information granularity plays a
pivotal role in all interpretation and analysis pursuits of time
series. Our investigations of the description of time series
being cast in the setting of granular computing are presented
in a top-down fashion. We start with an overall view of the
conceptual framework by stressing its key functionalities and
a layered architecture and then move on with a detailed dis-
cussion by elaborating on the supported algorithmic aspects.

As commonly encountered in the investigations on time
series, a starting point is a collection of numeric data
(samples recorded in successive time moments) time series
{x1, x2 . . . xN }. For the purpose of further analysis, we also
consider the first-order dynamics of the time series by consid-
ering the sequences of differences (changes) observed there,
namely {�x2,�x3 . . . �xN } where �xi = xi − xi−1. Quite
often a smoothed version of these differences is sought. The
space in which time series are discussed comes as a Cartesian
product of the space of amplitude X and change of amplitude,
namely X × �X .

The bird’s-eye view of the overall architecture supporting
processing realized at several layers which stresses the asso-
ciated functionality is displayed in Fig. 4. Let us elaborate in
detail on the successive layers at which consecutive phases
of processing are positioned:
Formation of information granules The granules are formed
over the Cartesian product of amplitude and change of ampli-
tude, viz. the space X ×�X . Here for each time slice Ti (note
that the time variable is also subject to granulation as well;
in addition to the same length time intervals, their size could
be eventually optimized), we form an interval information
granule (Cartesian product) Xi × �Xi . These information
granules are constructed following the principle of justifiable
granularity, as outlined in Sect. 5.1 and discussed further in
Appendix A.
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linguistic prediction
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Fig. 4 Development of granular time series: visualization and linguis-
tic interpretation. Emphasized is a layered hierarchical approach pre-
sented in this study

Visualization of information granules The results produced at
the previous processing phase are visualized. In essence, for
each time slice (segment) Ti , one can visualize a collection
of Cartesian products of the information granules in X ×�X
obtained in successive time slices, see Fig. 4.
Linguistic description of granular time series While the visu-
alization of the granular time series could be quite appealing
highlighting the main temporal tendencies observed in the
time series, it is also worth arriving at the linguistic descrip-
tion of the time series, which is articulated in terms of some
linguistic (granular) landmarks and ensuing levels of the best
matching of these landmarks with the constructed informa-
tion granules Xi × �Xi . Having a collection of the land-
marks Ai , i = 1, 2, . . . , c where typically c � p (where
“p” stands for the number of time slices of the time series),
the linguistic description comes as a string of the landmarks
(for which the best matching has been accomplished) along
with the corresponding matching levels μ1, μ2, . . . , μp. For
instance, the linguistic description of the time series can read
as the following sequence of descriptors:

{(positive small,negative medium})(0.7)}
{(negative large,around zero)(0.9)}. . .

In the above characterization, each granular landmark
comes with its own semantics (e.g., positive small, negative
medium, etc). The triples linguistically describe the ampli-
tude and its change (expressed in terms of linguistic terms),
and the associated matching level. To arrive at the linguis-
tic description of this nature, two associated tasks are to be
completed, namely (a) a construction of meaningful (seman-
tically sound) granular landmarks, and (b) invocation of a
matching mechanism, which returns a degree of matching

achieved. The first task calls for some mechanism of clus-
tering of information granules while the second one is about
utilizing one of the well-known matching measures encoun-
tered in fuzzy sets, say possibility or necessity measures.
Linguistic prediction models of time series The descriptions
of the time series are useful vehicles to represent (describe)
time series in a meaningful and easy to capture way. Per se,
the descriptors are not models such as standard constructs
reported in time series analysis. They, however, deliver all
components, which could be put together to form granular
predictive models. Denoting by A1, A2, . . . , Ac the linguis-
tic landmarks developed at the previous phase of the over-
all scheme, a crux of the predictive model is to determine
relationships present between the activation levels of the lin-
guistic landmarks present for the current time granule Tk and
those levels encountered in the next time granule Tk+1. The
underlying form of the predictive mapping can be schemati-
cally expressed in the following way,

A1(Xk), A2(Xk), . . . , Ac(Xk) → A1(Xk+1),

A2(Xk+1), . . . , Ac(Xk+1)
(1)

where Ai (Xk) stands for a level of activation (matching)
observed between Ai and the current information granule
Xk . The operational form of the predictive model can be
realized in the form of a fuzzy relational equation

A(Xk+1) = A(Xk) ◦ R (2)

with “◦” being a certain composition operator used in
fuzzy sets (say, max-min or max-t composition where “t”
stands for a certain t-norm) completed over information
granules. Ai (Xk+1) is the activation levels of the linguis-
tic landmarks Ai caused by the predicted information gran-
ule Xk+1. Overall, the vector A(Xk) has “c” entries, namely
[A1(Xk)A2(Xk) . . . Ac(Xk)]. The granular relation R of
dimensionality c × c captures the relationships between the
corresponding entries of A(Xk) and A(Xk+1). Note that as a
result of using the model 2, Xk+1 is not specified explicitly
but rather through the degrees of activation of the linguis-
tic landmarks. In other words, the predictive granular model
returns a collection of quantified statements (the correspond-
ing entries of A(Xk+1))

–predicted information granule is A1 with degree of
activation λ1(= A1(Xk+1))

–predicted information granule is A2 with degree of
activation λ2(= A2(Xk+1))

. . .

–predicted information granule is Ac with degree of
activation λc(=Ac(Xk+1))

(3)

which offer a certain intuitive view at the prediction out-
come. Obviously, one can easily choose the dominant
statement for which the highest level of matching has
been reported, namely predicted information granule is Ai
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with degree of activation λi (= Ai (Xk+1)) where λi =
arg max j=1,2,...,c A j (Xk+1)).

Note that there might be also another relational depen-
dency as to the predicted length of the next time granule
Tk+1 (in case the sizes of temporal information granules
vary across the description of the time series)

A1(Xk), A2(Xk), . . . , Ac(Xk), Tk → Tk+1 (4)

which can be regarded as a certain granular relational equa-
tion describing dependencies among time granules Tk and
Tk+1

Tk+1 = A(Xk) ◦ Tk ◦ G (5)

In the above expression, G stands for a fuzzy relation, which
links the input and output variables while “◦” denotes a sup-t
composition operator. Alluding to expressions (1)–(5), we
can view these predictive models as granular models of order-
2 as they are described over the space of information granules
rather than numeric entries.

5 Construction of information granules

The processing activities supporting the realization of infor-
mation granules outlined in the previous section are now
discussed in detail by presenting the successive phases of
this process. We start with a brief elaboration on the prin-
ciple of justifiable granularity, which forms a conceptual
and algorithmic setup for the formation of information gran-
ules in the presence of some experimental evidence (numeric
data).

5.1 The principle of justifiable granularity

We are concerned with a development of a single informa-
tion granule (interval) � based on some numeric experi-
mental evidence coming in a form of a collection of a one-
dimensional (scalar) numeric data, D = {x1, x2 . . . xN }. The
crux of the principle of justifiable granularity is to construct
a meaningful information granule based on available exper-
imental evidence (data) D. The require that such a construct
has to adhere to the two intuitively compelling requirements:

(a) Experimental evidence The numeric evidence accumu-
lated within the bounds of � has to be made as high as pos-
sible. By requesting this, we anticipate that the existence of
the constructed information granule is well motivated (justi-
fied) as being reflective of the existing experimental data. The
more data are included within the bounds of �, the better—in
this way the set becomes more legitimate (justified).

(b) Semantics of the construct At the same time, the infor-
mation granule should be made as specific as possible. This
request implies that the resulting information granule comes
with a well-defined semantics (meaning). In other words,

we would like to have � highly detailed, which makes the
information granule semantically meaningful (sound). This
implies that the smaller (more compact) the information gran-
ule (lower information granule) is, the better. This point of
view is in agreement with our general perception of knowl-
edge being articulated through constraints (information gran-
ules) specified in terms of statements such as “x is A”, “y is
B”, etc. where A and B are constraints quantifying knowl-
edge about the corresponding variables. Evidently, the piece
of knowledge coming in the form “x is in [1, 3]” is more
specific (semantically sound, more supportive of any further
action, etc.) than another less detailed piece of knowledge
where we know only that “x is in [0, 12]”.

The further discusses for the principle of justifiable gran-
ularity is detailed in Appendix A.

5.2 Formation of fuzzy sets out of a family of interval
information granules

For the data contained in the time interval Ti , we consider
samples of time series {x1, x2 . . . xN } and their differences
{�x1,�x2 . . . �xN−1} out of which following the princi-
ple outlined in Sect. 5.1, we construct interval information
granules Xi and �Xi and their Cartesian product. As these
Cartesian products are indexed by the values of α, as a results
of combining a family of the Cartesian products we form a
fuzzy set-represented as a family of α-cuts (Xi × �Xi )α .

6 Clustering information granules—a formation
of linguistic landmarks

Having a collection of information granules, they are clus-
tered to form some meaningful representatives with well-
expressed semantics. The fuzzy C-Means algorithm is one
of viable alternatives to be used here. Schematically, we can
illustrate the overall process as shown in Fig. 5.

The information granules, a collection of α-cuts formed
within the time intervals are clustered to build meaningful
semantically sound descriptors of the time series. There are
two aspects of the formation of information, which deserve
attention: (a) feature space in which clustering takes place.
Given the nature of objects (information granules) to be clus-
tered, which are undoubtedly more sophisticated than plain
numeric entities, the granular data are expressed by a finite
number of their α-cuts; for the pertinent details see Appen-
dix B. The clustering is realized separately for each variable
(namely amplitude and change of amplitude). This helps us
order the obtained prototypes in a linear way and associate
with them some semantics, say low, medium, high, etc. (b)
The granular prototypes formed for the individual variables
give rise to compound descriptors such as e.g., amplitude
high and change of amplitude close to zero. This is accom-
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Fig. 5 From granular data to
linguistic landmarks
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Fig. 6 Granular prototypes of TAIEX time series in the x − �x feature space
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Fig. 7 Granular prototypes of IBM stock prices time series in the x − �x feature space

plished by forming Cartesian products of the granular pro-
totypes, say Ai × B j with Ai and B j being the granular
prototypes already constructed in the space of amplitude x
and its change �x . In general having r1 and r2 prototypes in
the corresponding spaces, forming all prototypes constructed
over the individual variables, we end up with r1r2 Cartesian
products, viz. compound information granules. Some of them

could be spurious that is there is no experimental legitimacy
behind them (a very few data associated with the cluster).
Thus once the Cartesian product has been formed, its legit-
imacy vis-à-vis experimental data needs to be checked and
quantified. The quantification is realized in the form of a
weighted counting of the number of data “covered by gran-
ular prototype”, for details to see Appendix B.
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Fig. 8 Granular prototypes of Nasdaq time series in the x − �x feature space

Table 1 TAIEX time series:
linguistic terms associated with
granular prototypes

Granular label
(amplitude)

Linguistic terms Granular label
(change of amplitude)

Linguistic terms

A1 Positive medium (PM) B1 Positive medium (PM)

A2 Positive large (PL) B2 Negative small (NS)

A3 Positive small (PS) B3 Negative medium (NM)

Table 2 TAIEX time series:
linguistic description of granular
prototypes

Prototype no. Prototype expressed in Cartesian
product of x and �x

Linguistic description of
granular prototype

Legitimacy
level μ

6 A2× B3 PL× NM 27.7

5 A2× B2 PL× NS 20.1

9 A3× B3 PS× NM 17.0

4 A2× B1 PL× PM 14.1

8 A3× B2 PS× NS 14.0

3 A1× B3 PM× NM 11.1

2 A1× B2 PM× NS 10.4

1 A1× B1 PM× PM 0.0

7 A3× B1 PS× PM 0.0

Table 3 IBM stock prices time
series: linguistic terms
associated with granular
prototypes

Granular label
(amplitude)

Linguistic
terms

Granular label
(change of amplitude)

Linguistic terms

A1 Positive small (PS) B1 Positive small (PS)

A2 Positive medium (PM) B2 Positive medium (PM)

A3 Positive large (PL) B3 Negative medium (NM)

Proceeding with the collection of the experimental data,
the resulting granular prototypes by taking Cartesian product
are displayed respectively in Figs. 6a, 7a and 8a for this three
time series, where the number of temporal windows is 20
for the first two time series (see Figs. 1, 2) and 30 for the
last time series (see Fig. 3). Besides, for the first two time
series the number of clusters is set to 3 both for the amplitude
and the change of amplitude while the last time series the
number of clusters is set to 5 both for the amplitude and the
change of amplitude. For each time series, linguistic terms

associated with granular prototypes (refer to Figs. 6, 7 and
8) are respectively reported in Tables 1, 3 and 5.

Along with the visualization of the granular prototypes, we
provide with their characterization, viz. a linguistic descrip-
tion of each of them and experimental legitimacy level μ

is reported in Tables 2, 4 and 6. Observe that there is a
varying level of legitimacy of the prototypes and some of
them could be completely eliminated as not being reflec-
tive of any data i.e. the spurious granular prototypes are
removed when its value of legitimacy level is zero or close
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Table 4 IBM stock prices time
series: linguistic description of
granular prototypes

Prototype no. Prototype expressed in Cartesian
product of x and �x

Linguistic description of
granular prototype

Legitimacy
level μ

3 A1× B3 PS× NS 42.7

1 A1× B1 PS× PS 17.4

5 A2× B2 PM× PM 12.5

6 A2× B3 PM× NS 0.4

7 A3× B1 PL× PS 0.2

8 A3× B2 PL× PM 0.2

9 A3× B3 PL× NS 0.2

2 A1× B2 PS× PM 0

4 A2× B1 PM× PS 0

Table 5 Nasdaq time series:
linguistic terms associated with
granular prototypes

Granular label
(amplitude)

Linguistic terms Granular label
(change of amplitude)

Linguistic terms

A1 Positive large (PL) B1 Zero

A2 Positive medium (PM) B2 Positive small (PS)

A3 Positive small (PS) B3 Positive medium (PM)

A4 Positive medium+ (PM+) B4 Negative small (NS)

A5 Positive large+ (PL+) B5 Negative medium (NM)

Table 6 Nasdaq time series:
linguistic description of granular
prototypes

Prototype no. Prototype expressed in Cartesian
product of x and �x

Linguistic description of
granular prototype

Legitimacy
level μ

17 A4 × B2 PM+× PS 21.1

6 A2× B1 PM× Z 16.2

13 A3× B3 PS× PM 12.3

1 A1× B1 PL× Z 10.1

7 A2× B2 PM× PS 9.4

2 A1× B2 PL× PS 8.4

11 A3× B1 PS× Z 7.1

16 A4× B1 PM× Z 6.9

25 A5× B5 PL+× NM 4.5

4 A1× B4 PL× NS 3.9

8 A2× B3 PM× PM 3.9

3 A1× B3 PL× PM 3.7

14 A3× B4 PS× NS 3.3

18 A4× B3 PM× PM 3.1

5 A1× B5 PL× NM 1

19 A4× B4 PM× NS 0.7

22 A5× B2 PL+× PS 0.6

12 A3× B2 PS× PS 0.5

15 A3× B5 PS× NM 0.5

10 A2× B5 PM× NM 0.4

24 A5× B4 PL× NS 0.3

9 A2× B4 PM× NS 0.2

21 A5× B1 PL+× Z 0.1

23 A5 × B3 PL+× PM 0.1

20 A4× B5 PM× NM 0

123



2406 W. Pedrycz et al.

Table 7 TAIEX time series: description in terms of granular prototypes (in brackets shown are the prototypes with the second highest level of
matching)

Temporal
window �

Prototypes Linguistic
descriptor

Level of
matching

Temporal
window �

Prototypes Linguistic
descriptor

Level of
matching

1 A2 × B1 PL × PM 0.37 11 A1 × B3 PM × NM 0.51

(A2 × B3) (PL × NM) (0.25) (A1 × B2) (PM × NS) (0.45)

2 A2 × B1 PL × PM 0.41 12 A1 × B3 PM × NM 0.51

(A2 × B3) (PL × NM) (0.30) (A1 × B2) (PM × NS) (0.42)

3 A2 × B3 PL × NM 0.36 13 A1 × B3 PM × NM 0.49

(A2 × B2) (PL × NS) (0.36) (A1 × B2) (PM × NS) (0.46)

4 A2 × B3 PL × NM 0.27 14 A1 × B2 PM × NS 0.39

(A2 × B1) (PL × PM) (0.29) (A1 × B3) (PM × NM) (0.36)

5 A2 × B3 PL × NS 0.37 15 A3 × B2 PS × NS 0.29

(A2 × B2) (PL × NS) (0.29) (A3 × B3) (PS × NM) (0.27)

6 A2 × B2 PL × NS 0.37 16 A3 × B2 PS × NS 0.51

(A2 × B3) (PL × NM) (0.36) (A3 × B3) (PS × NM) (0.44)

7 A1 × B2 PM × NS 0.42 17 A3 × B3 PS × NM 0.51

(A1 × B3) (PM × NM) (0.38) (A3 × B2) (PS × NS) (0.46)

8 A1 × B3 PM × NM 0.36 18 A3 × B3 PS × NM 0.51

(A1 × B2) (PM × NS) (0.31) (A3 × B2) (PS × NS) (0.46)

9 A2 × B3 PL × NM 0.25 19 A3 × B3 PS × NM 0.48

(A2 × B2) (PL × NS) (0.23) (A3 × B2) (PS × NS) (0.48)

10 A1 × B3 PM × NM 0.43 20 A3 × B2 PS × NS 0.50

(A1 × B2) (PM × NS) (0.42) (A3 × B3) (PS × NM) (0.43)

Table 8 IBM stock prices time series: description n terms of granular prototypes (in brackets shown are the prototypes with the second highest
level of matching)

Temporal
window �

Prototypes Linguistic
descriptor

Level of
matching

Temporal
window �

Prototypes Linguistic
descriptor

Level of
matching

1 A2 × B3 PM × NS 0.84 11 A2 × B3 PM × NS 0.48

(A2 × B2) (PM × PM) (0.15) (A2 × B2) (PM × PM) (0.36)

2 A2 × B3 PM × NS 0.42 12 A1 × B3 PS × NS 0.49

(A2 × B2) (PM × PM) (0.23) (A1 × B1) (PS × PS) (0.35)

3 A1 × B3 PS × NS 0.53 13 A1 × B3 PS × NS 0.61

(A1 × B1) (PS × PS) (0.39) (A1 × B1) (PS × PS) (0.33)

4 A1 × B3 PS × NS 0.66 14 A1 × B1 PS × PS 0.59

(A1 × B1) (PS × PS) (0.28) (A1 × B3) (PS × NS) (0.39)

5 A1 × B3 PS × NS 0.54 15 A1 × B1 PS × PS 0.63

(A1 × B1) (PS × PS) (0.38) (A1 × B3) (PS × NS) (0.32)

6 A1 × B3 PS × NS 0.56 16 A1 × B1 PS × PS 0.38

(A1 × B1) (PS × PS) (0.36) (A1 × B3) (PS × NS) (0.24)

7 A1 × B3 PS × NS 0.47 17 A2 × B2 PM × PM 0.46

(A1 × B1) (PS × PS) (0.46) (A2 × B3) (PM × NS) (0.38)

8 A1 × B1 PS × PS 0.66 18 A2 × B2 PM × PM 0.58

(A1 × B3) (PS × NS) (0.28) (A2 × B3) (PM × NS) (0.35)

9 A1 × B1 PS × PS 0.51 19 A2 × B2 PM × PM 0.55

(A1 × B3) (PS × NS) (0.40) (A2 × B3) (PM × NS) (0.34)

10 A2 × B3 PM × NS 0.31 20 A3 × B2 PL × PM 0.61

(A2 × B2) (PM × PM) (0.30) (A3 × B1) (PL × PS) (0.21)
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Table 9 Nasdaq time series: description in terms of granular prototypes (in brackets shown are the prototypes with the second highest level of
matching)

Temporal
window �

Prototypes Linguistic
descriptor

Level of
matching

Temporal
window �

Prototypes Linguistic
descriptor

Level of
matching

1 A5 × B4 PL+ × NS 0.23 16 A4 × B3 PM+ × PM 0.13

(A5 × B5) (PL+ × NM) (0.21) (A4 × B2) (PM+ × PS) (0.13)

2 A5 × B4 PL+ × NS 0.21 17 A4 × B2 PM+ × PS 0.17

(A5 × B5) (PL+ × NM) (0.20) (A4 × B1) (PM+ × Zero) (0.16)

3 A1 × B5 PL × NM 0.15 18 A1 × B2 PL × PS 0.17

(A1 × B4) (PL × NM) (0.14) (A1 × B3) (PL × PM) (0.17)

4 A2 × B4 PM × NS 0.23 19 A1 × B4 PL × NS 0.22

(A2 × B1) (PM × Zero) (0.20) (A1 × B1) (PL × Zero) (0.19)

5 A2 × B1 PM × Zero 0.16 20 A4 × B1 PM × Zero 0.25

(A2 × B2) (PM × PS) (0.16) (A4 × B2) (PM × PS) (0.24)

6 A3 × B4 PS × NS 0.17 21 A3 × B5 PS × NM 0.16

(A3 × B1) (PS × Zero) (0.16) (A3 × B4) (PS × NS) (0.16)

7 A3 × B2 PS × PS 0.18 22 A3 × B3 PS × PM 0.25

(A3 × B1) (PS × Zero) (0.18) (A3 × B2) (PS × PS) (0.21)

8 A3 × B3 PS × PM 0.19 23 A2 × B3 PM × PM 0.32

(A3 × B2) (PS × PS) (0.19) (A2 × B2) (PM × PS) (0.23)

9 A2 × B3 PM × PM 0.13 24 A4 × B2 PM+ × PS 0.28

(A2 × B1) (PM × Zero) (0.13) (A4 × B3) (PM+ × PM) (0.28)

10 A2 × B1 PM × Zero 0.38 25 A4 × B1 PM+ × Zero 0.25

(A2 × B2) (PM × PS) (0.31) (A4 × B2) (PM+ × PS) (0.23)

11 A2 × B1 PM × Zero 0.20 26 A1 × B3 PL × PM 0.22

(A2 × B1) (PM × Zero) (0.19) (A1 × B2) (PL × PS) (0.20)

12 A2 × B2 PM × PS 0.20 27 A1 × B1 PL × Zero 0.23

(A2 × B1) (PM × Zero) (0.19) (A1 × B2) (PL × PS) (0.21)

13 A2 × B2 PM × PS 0.22 28 A1 × B2 PL × PS 0.17

(A2 × B3) (PM × PM) (0.20) (A1 × B3) (PL × PM) (0.17)

14 A4 × B2 PM+ × PS 0.13 29 A1 × B1 PL × Zero 0.16

(A4 × B1) (PM+ × Zero) (0.12) (A1 × B2) (PL × PS) (0.16)

15 A4 × B1 PM+ × Zero 0.53 30 A1 × B2 PL × PS 0.15

(A4 × B2) (PM+ × PS) (0.27) (A1 × B1) (PL × Zero) (0.21)

to zero, results of which are represented in Figs. 6b, 7b
and 8b.

7 Matching information granules and a realization
of linguistic description of time series

For the linguistic description of granular time series, it
becomes essential to match the fuzzy relations Xi × �Xi

(their α-cuts) with the corresponding prototypes obtained
during fuzzy clustering. The essence is to complete match-
ing of Xi × �Xi and the prototype VI × �VI by comput-
ing the possibility measure Poss(Xi × �Xi , VI × �VI ).
These calculations are straightforward as we find a maximal
value of α for which the corresponding α-cuts of Xi × �Xi

and VI × �VI overlap. We repeat the calculations for all
I = 1, 2 . . . c and choose the index of the prototype λI 0 with
the highest possibility value. Denote this value by λI 0. The
process is carried out for successive information granules
Xi ×�Xi thus giving rise to a series of linguistic descriptors
along with their levels of matching,

(VI 1 × �VI 1, λ1)(VI 2 × �VI 2, λ2) . . . (VI p × �VI p, λp)

(6)

The details about the realization of the matching process
are covered in Appendix C.

Proceeding with the time series discussed so far, in Tabels
7, 8 and 9, we report linguistic descriptions of the time series
as a sequence of the linguistic terms, which match the seg-
ments of the data to the highest extent. Furthermore we report
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those linguistic terms whose matching is the second the high-
est to gain a better sense as to the discriminatory capabilities
of the linguistic terms used in the description of the time
series.

8 Conclusions

In this study, we have proposed the concept of granular mod-
els of time series (granular time series, for short) and elabo-
rated on the ensuing descriptions of the temporal data carried
out at the level of information granules. Two conceptual lev-
els of interpretation were clearly identified. It is shown how
they endow the model with interpretation capabilities and
facilitate interaction with the user. The first one, based on
justifiable information granules is oriented towards support-
ing a graphic vehicle visualizing the nature of time series
through a sequence of information granules reported in suc-
cessive time windows.

In all endeavors, it has to be stressed that information
granularity and information granules play a pivotal role by
casting all temporal data in a setting, which is easily compre-
hended by users. The level of detail can be easily adjusted
by specifying the number of information granules. The study
is focused on the description of time series and the granular
models aimed at prediction tasks are only highlighted as they
occur at the highest level of the hierarchical structure in Fig.
4. The use of the temporal information granules of variable
width (specificity) can bring a unique feature of predictive
models when not only the results of prediction are generated
but those are supplied with the time horizon over which they
are valid.

While the study has offered some conceptual and method-
ological framework, it is apparent that in the overall dis-
cussion information granules are formalized as intervals and
fuzzy sets. The principle of justifiable granularity comes with
sufficient level of generality where one is able to engage
other formalisms of information granularity thus making the
overall framework sufficiently general. Furthermore the rep-
resentation of time series, viz. the feature space could be
very diversified. The study used on the simple temporal rep-
resentation of the time series (information granules built for
information granules in the space of amplitude and change
of amplitude) however information granules can be equally
well formed in some other feature spaces (such as e.g., those
resulting from a spectral representation of time series).
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Appendix A

In what follows, we briefly highlight the concept of justifiable
information granularity concentrating on the computational
aspects in case of interval and fuzzy set-based formalisms of
information granules.

It is apparent that two requirements discussed in Sect. 5.1
are in conflict: the increase of the criterion of experimental
evidence (justifiable) comes with a deterioration of the speci-
ficity of the information granule (specific). As usual, we are
interested in forming a sound compromise. The requirement
of experimental evidence is quantified by counting the num-
ber of data falling within the bounds of �. More generally,
we may consider an increasing function of this cardinality,
say f1(card{xk |xk ∈ �}), where f1 is an increasing func-
tion of its argument. The simplest example is a function of
the form f1(u) = u. The specificity of the information gran-
ule � associated with its well-defined semantics (meaning)
can be articulated in terms of the length of the interval. In
case of � = [a, b], any continuous non-increasing func-
tion f2 of the length of this interval, say f2(m(�)), where
m(�) = |b − a| can serve as a sound indicator of the speci-
ficity of the information granule. The shorter the interval
(the higher the value of f2(m(�))), the better the satisfac-
tion of the specificity requirement. It is evident that two
requirements identified above are in conflict: the increase
in the values of the criterion of experimental evidence (jus-
tifiable) comes at an expense of a deterioration of the speci-
ficity of the information granule (specific). As usual, we are
interested in forming a sound compromise between these
requirements.

Having these two criteria in mind, let us proceed with
the detailed formation of the interval information granule.
We start with a numeric representative of the set of data D
around which the information granule � is created. A sound
numeric representative of the data is its median, med(D).
Recall that the median is a robust estimator of the sample
and typically comes as one of the elements of D. Once the
median has been determined, � (the interval [a, b]) is formed
by specifying its lower and upper bounds, denoted here by
“a” and “b”, respectively. The determination of these bounds
is realized independently. Let us concentrate on the optimiza-
tion of the upper bound (b). The optimization of the lower
bound (a) are carried out in an analogous fashion. For this
part of the interval, the length of � or its non-increasing
function, as noted above. In the calculations of the cardinal-
ity of the information granule, we take into consideration
the elements of D positioned to the right from the median,
that is card{xk ∈ D|med(D) ≤ xk ≤ b}. As the require-
ments of experimental evidence (justifiable granularity) and
specificity (semantics) are in conflict, we resort ourselves to
a maximization of the composite index in which a product of
the two expressions governing the requirements. This is done
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independently for the lower and upper bound of the interval,
that is:

V (b) = card{xk ∈ D|med(D) ≤ xk ≤ b}
∗ f2(|med(D) − b|) (7)

V (a) = card{xk ∈ D|a ≤k≤ med(D)}
∗ f2(|med(D) − a|) (8)

We obtain the optimal upper bound bopt , by maximizing
the value of V (b), namely V (bopt ) = maxb>med(D)V (b).
Among numerous possible design alternatives regarding
functions f1 and f2, we consider the following alternatives

f1(u) = u (9)

f2(u) = exp(−αu) (10)

where α is a positive parameter delivering some flexibility
when optimizing the information granule �. Under these
assumptions, the optimization problem takes on the follow-
ing form

V (b) = card{xk ∈ D|med(D) ≤ xk ≤ b}
∗ exp(−α|med(D) − b|) (11)

Its essential role of the parameterα is to calibrate an impact
of the specificity criterion on the constructed information
granule. Note that if α = 0 then the value of the exponen-
tial function becomes 1 hence the criterion of specificity of
information granule is completely ruled out (ignored). In this
case, b = xmax with xmax being the largest element in D.
Higher values of α stress the increasing importance of the
specificity criterion.

The maximal value of α, say αmax , is determined by
requesting that the optimal interval is the one for which
bopt = x1, where x1 is the data point closest to the median and
larger than it. More specifically we determine αmax so that it
is the smallest positive value of α for which the satisfaction
of the following collection of inequalities holds,

1 ∗ exp(−α|med(D) − x1|) > 2 ∗ exp(−α|med(D) − x2|)
1 ∗ exp(−α|med(D) − x1|) > 3 ∗ exp(−α|med(D) − x3|)
. . .

1 ∗ exp(−α|med(D) − x1|) > p ∗ exp(−α|med(D) − x p|)
(12)

where the data x1, x2 . . . x p form a subset of D and are
arranged as follows med(D) ≤ x1 ≤ x2 ≤ · · · ≤ x p. Once
the largest value of αmax has been determined, the range of
these values [0, αmax ] can be normalized to [0, 1] and then the
corresponding intervals [a, b] indexed by α can be sought as
a union of α-cuts of a certain fuzzy set of information granule
A whose membership function reads as

A(x) =
⋃

α∈[0,1]
αχ[a,b](α)(x) (13)

whereχ is the characteristic function of the interval [a, b](α).
In this way, the principle of justifiable granularity gives rise
to a fuzzy set.

The concept of justifiable information granule has been
presented in its simplest, illustrative version. In case of mul-
tivariable data, each variable is treated separately giving rise
to the corresponding information granules and afterwards a
Cartesian product of them is formed. The principle of justi-
fiable granularity can be applied to experimental data being
themselves information granules rather than numeric data. In
these situations, some modifications of the coverage criterion
are required.

Appendix B

The FCM clustering algorithm has been commonly used to
cluster numeric data. Here we are concerned with fuzzy
sets represented as a family of α-cuts. To accommodate
this format of objects to be clustered, it is essential to
come up with their representation such that the geometry
of the nested hyper boxes is captured to guide the clus-
tering of the objects. The clustering is realized for a sin-
gle variable, x and �x . The organization of the feature
space for the amplitude (x) involves a series of the lower
and upper bounds of the intervals (α-cuts) in the form
[m− m+ x−(α1) x+(α1) x−(α2) x+(α2) . . . x−(αp) x+(αp)].
The representation of granular data in the x space as an exam-
ple is illustrated in Fig. 9. The organization of the data in the
�x space is realized in the same way.

As the result of clustering done individually for the space
of amplitude and change of amplitude, we arrive at a num-
ber of prototypes (as families of α-cuts) defined in the indi-
vidual spaces. The prototypes can be associated with some
semantics such as low amplitude, medium amplitude, high
amplitude, small positive change of amplitude, etc. We form
composite descriptors by taking Cartesian products of the
prototypes. Those come with the semantics associated with
the components of the products, say high amplitude and small
negative change (for short, High × Small). In the formation
of these compound information granules the point has to be
stressed, though. This concerns an emergence of so-called

Fig. 9 Representation of granular data to be used in fuzzy clustering
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spurious prototypes. While the granular prototypes formed
in the individual spaces are well-supported (legitimized) by
the granular data, the formation of the Cartesian products of
some of them might not. This is caused by the fact that some
Cartesian products arise in the region of the x − �x space
where there are no granular data or a very limited number
of them, see Fig. 10. Emergence of spurious granular proto-
types in the regions sparsely populated by data. To account
for this phenomenon and evaluate the legitimacy of the gran-
ular prototypes, we count the number of data contained in
the α-cut of the prototype formed in the x − �x space and
compute the expression (legitimacy level) μ:

μ =
∑

α

(α ∗ number of data covered byAi (α) × B j (α))

(14)

where Ai (α) and B j (α) are the α-cuts of the prototypes in
the space of amplitude and change of amplitude and forming
the Cartesian product Ai × B j whose legitimacy is evaluated.

Appendix C

To quantify the closeness (matching) of two granular con-
structs, a certain prototype Vi and given information granule
X , both described as a family of α-cuts, there are several
alternatives that could be considered. Computing possibility
measure, Poss(X, V ) is one among them. If 0-cuts of both
X and V are disjoint, this measure returns zero and might
be that in many situations we end up with a zero degree
of matching. Another more sensible alternative is outlined
below. The idea is outlined for a given α-cut of Vi and X . Let
us assume that for the j-th variable the bounds of the granular
prototype Vi form the interval [v−

i j , v
+
i j ]. For the j-th coordi-

nate of X , X j = [x−
j , x+

j |], we consider two situations: (i)

[x−
i , x+

i ][v−
i j , v

+
i j ]. In this case, it is intuitive to accept that

the distance is equal to zero (as X j is included in the interval
of the Vi j ) disti j = 0; (ii) [x−

i , x+
i ] �⊂ [v−

i j , v
+
i j ]. Here we

determine the minimal and the maximal distance between
the bounds of the corresponding intervals, say

d−
i j = min((x−

j − v−
i j )

2, (x−
j − v+

i j )
2, (x+

j − v−
i j )

2, (x+
j − v+

i j )
2)

d+
i j = max((x−

j − v−
i j )

2, (x−
j − v+

i j )
2, (x+

j − v−
i j )

2, (x+
j − v+

i j )
2)

The distance being computed on a basis of all variables
‖X −Vi‖2 is determined coordinatewise by involving the two
situations outlined above. The minimal distance obtained in
this way is denoted by dmin(X, Vi ) while the maximal one is

Fig. 10 Granular prototypes in x −�x space formed by taking Carte-
sian products of granular prototypes of x and �x feature space

denoted by dmax (X, Vi ). More specifically we have,

dmin(X, Vi ) =
n∑

j=1

d−
i j (15)

dmax (X, Vi ) =
n∑

j=1

d+
i j (16)

Having the distances determined, we compute the two
expressions

w1(X) = 1
∑c

j=1(
dmin(X,Vi )
dmin(X,Vj )

)
1

(m−1) )
(17)

w2(X) = 1
∑c

j=1(
dmax (X,Vi )
dmax (X,Vj )

)
1

(m−1) )
(18)

Notice that these two formulas resemble the expression used
to determine the membership grades in the FCM algorithm.
In the sequel we compute the levels of matching as follows

μ−
i (X) = min(w1(X), w − 2(X)) (19)

μ+
i (X) = max(w1(X), w − 2(X)) (20)

In essence, we arrive at the interval-valued matching degree
Ui (X) = [u−

i (X), u+
i (X)].

The degree of matching λ is a function of α so in order
to come up with a numeric representation, one determines
a numeric representative of the interval, say its average
u∗

i (X) = [u−
i (X) + u+

i (X)]/2 and aggregates these values
over λ that is

λ =
1∫

0

u∗
i (X)dα (21)
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