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Abstract

Background: The antizyme family is a group of small proteins that play a role in cell growth and division
by regulating the biosynthesis of polyamines (putrescine, spermidine, spermine). Antizymes regulate
polyamine levels primarily through binding ornithine decarboxylase (ODC), an enzyme key to polyamine
production, and targeting ODC for destruction by the 26S proteosome. Ornithine decarboxylase
antizyme 3 (OAZ3) is a testis-specific antizyme paralog and the only antizyme expressed in the mid to late
stages of spermatogenesis.

Methods: To see if mutations in the OAZ3 gene are responsible for some cases of male infertility, we
sequenced and evaluated the genomic DNA of 192 infertile men, 48 men of known paternity, and 34
African aborigines from the Mbuti tribe in the Democratic Republic of the Congo. The coding sequence
of OAZ3 was further screened for polymorphisms by SSCP analysis in the infertile group and an additional
250 general population controls. Identified polymorphisms in the OAZ3 gene were further subjected to a
haplotype analysis using PHASE 2.02 and Arlequin 2.0 software programs.

Results: A total of 23 polymorphisms were identified in the promoter, exons or intronic regions of OAZ3.
The majority of these fell within a region of less than two kilobases. Two of the polymorphisms, -239 A/
G in the promoter and 4280 C/T, a missense polymorphism in exon 5, may show evidence of association
with male infertility. Haplotype analysis identified 15 different haplotypes, which can be separated into two
divergent clusters.

Conclusion: Mutations in the OAZ3 gene are not a common cause of male infertility. However, the
presence of the two divergent haplotypes at high frequencies in all three of our subsamples (infertile,
control, African) suggests that they have been maintained in the genome by balancing selection, which was
supported by a test of Tajima's D statistic. Evidence for natural selection in this region implies that these
haplotypes may be associated with a trait other than infertility. This trait may be related to another
function of OAZ3 or a region in tight linkage disequilibrium to the gene.
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Background

Polyamines are small, ubiquitous organic molecules
derived from arginine or methionine. They carry a positive
charge on each nitrogen atom, which allows them to
interact with polyanionic macromolecules like DNA, RNA
and some proteins [1]. Often, these interactions are very
specific, and play critical roles in normal cell growth and
function [2]. Abnormal expression of polyamines has
been associated with both apoptosis and tumor growth
[3]. Consequently, polyamine concentrations are tightly
regulated at transcriptional, translational, and post-trans-
lational levels [4].

Ornithine decarboxylase (ODC), which converts orni-
thine to the first polyamine, putrescine, is the rate-limit-
ing step in polyamine biosynthesis and the key point at
which polyamine levels are regulated [5]. In eukaryotic
cells, the most important regulator of ODC is the protein
ornithine decarboxylase antizyme (antizyme) [6]. When
polyamine levels rise to a critical level they induce a +1
ribosomal frameshift in antizyme mRNA, producing a
functional antizyme protein [7]. The antizyme protein
binds ODC, preventing formation of the enzymatically-
active ODC homodimer and targeting ODC for ubiquitin-
independent proteolysis by the 26S proteosome [6]. In
addition to inhibiting the production of intracellular
polyamines, antizyme can also inhibit the import of extra-
cellular polyamines [8].

Antizyme genes have been identified from yeast to mam-
mals. Most invertebrates have a single antizyme gene,
while there are at least three independently conserved
antizyme isoforms in vertebrates [9]. Three main
antizymes have been described in mammals. Antizyme 1
(AZ1) and antizyme 2 (AZ2) are generally thought to be
present in all tissues except haploid male germ cells, with
AZ1 mRNA being present in a 10- to 20- fold excess of AZ2
[10]. AZ1 is more active in the degradation of ODC than
AZ2, and both contribute to the negative regulation of
polyamine transport [1].

Antizyme 3 (OAZ3) is expressed predominanty in round
and elongating spermatids. Though AZ1 is expressed in
early, diploid testicular germ cells, OAZ3 is the only
antizyme present in post-meiotic, male germ cells [11-13].
Expression of OAZ3 follows closely behind ODC expres-
sion, which is tightly regulated in the testis, with a sharp
spike in expression occurring during the late spermatocyte
and early spermatid stages [12]. Transgenic male mice that
overexpress ODC, resulting in increased synthesis of
polyamines are infertile, with an almost complete lack of
mature spermatozoa [14,15] This suggests that OAZ3
might play an important role in maintaining sperma-
togenesis by controlling ODC and polyamine levels. A
recent report indicates that OAZ3 may also interact with at
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least one additional protein in the testis, gametogenetin 1,
[16], in an unspecified manner. The function of game-
togenetin 1 is unknown, but its testis-specific expression is
similar to OAZ3 both spatially and temporally.

Infertility affects approximately 10% of couples, and in
about half of these cases a male factor problem can be
identified [17]. The etiology of male factor infertility is
poorly understood. While some can be explained due to
Y-chromosome microdeletions, endocrine disruptions,
developmental abnormalities or environmental insults,
the majority remains idiopathic and potentially genetic in
origin [18]. Multiple studies, primarily through transgenic
animal models, have helped develop a list of candidate
genes that may contribute to human, male infertility
[19,20]. Given its testis-specific expression and the clear
link between deregulation of polyamine expression and
infertility [21], OAZ3 is a clear choice for a male infertility
candidate gene.

To determine if mutations in OAZ3 account for some
cases of male infertility we screened 192 patients and 334
fertile or general population controls by either single-
strand conformational polymorphism analysis (SSCP) or
directly sequencing the exons and flanking intronic
sequence of OAZ3. In addition to screening the OAZ3
gene for possible mutations associated with infertility we
have also examined the frequency of haplotypes that
emerged and the evolutionary relationships among the
haplotypes. Finally, to examine the relationship between
variation in this gene and disease phenotype, we tested for
associations between haplotype and phenotype.

Methods

Patient and control DNA samples

After obtaining Institutional Review Board approval, a
total of 192 men presenting with primary infertility were
enrolled at the University of Utah School of Medicine
(Salt Lake City, UT) or the Weill-Cornell Medical Center
(New York, NY). The patients were either azoospermic,
having no sperm in the ejaculate (n = 143) or severely oli-
gozoospermic, having less than five million sperm/ml. of
semen (n = 49). These patients were selected because their
phenotypes match those observed in mice overexpressing
ODC, which exhibit both azoospermia, primarily due to
maturation arrest, and oligozoospermia [14,15]. To
increase the chance of identifying a mutation in the OAZ3
gene potentially responsible for male infertility or subfer-
tility, and to decrease possible confounding factors,
patients were excluded if they had any suspected or
known causes of male infertility. For example, patients
with a known Y-chromosome microdeletion, cystic fibro-
sis, varicocele, Klinefelter's, exposure to chemotherapeu-
tics or radiation etc., were not included. Venous blood was
drawn from each patient using standard techniques and
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DNA extracted using the Puregene DNA extraction kit
(Genzyme, Minneapolis, MN).

In addition to the infertile group, all or part of OAZ3 was
screened in three different control groups. The first group
(n = 48), representing men with established paternity, was
obtained from the Utah Genetic Reference Project
(UGRP). These individuals are primarily of Northern
European ancestry and are genetically very similar to the
infertile group. The second group was a sample of central
African aborigines (n = 34), all members of the Mbuti
tribe from the Democratic Republic of the Congo. The
group is predominantly male, though there are a few
females in the group. It is unknown which, if any of the
group, are infertile. They were included in the study
because they represent a group of genetically diverse indi-
viduals, geographically isolated from the infertile and fer-
tile study groups, which is useful in determining how
haplotypes may have evolved. The infertile and African
groups were screened identically to the patient group by
direct sequencing. A third and final general population
group of men (n = 250), which included 90 African and
80 Asian males, was screened by SSCP analysis, specifi-
cally for the Pro164Ser change identified in one of the
patient samples, but also for mutations in the coding
regions in the rest of the gene. To assess evolutionary rela-
tionships with non-human primates, DNA was obtained
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and sequenced for both the common chimpanzee (Pan
troglodytes) and gorilla (Gorilla gorilla).

Mutation screening

Primers were designed to amplify the promoter and five
coding exons of OAZ3 with its flanking intronic sequence,
using standard polymerase chain reaction (PCR) tech-
niques (Table 1). Primers were designed based on the
OAZ3 sequence contained in genomic contig NT_004487.
Thermocycling conditions were as follows: 94°C for 4
minutes followed by 35 cycles of 94°C for 30 seconds,
annealing temperature of 60°C for 30 seconds, base
extension 1 minute per kb at 72°C, and a final hold for 5
minutes at 72°C. Primary PCR products were cleaned-up
using a gaunidium HCI protocol and sequenced in the
forward and reverse directions on an ABI 3700 capillary
sequencer.

Sequence trace files generated from the ABI 3700s were
analyzed using the Phred, Phrap, and Consed software
programs [22]. Phred assigns a quantitative value to the
quality of each sequenced base. This base quality provides
a probabilistic estimate of the correctness of the base call.
The sequences were assembled, and a consensus sequence
generated from the most common base calls using the
Phrap program, and potential mutations identified using
Consed, which has the ability to search for high quality

Table I: PCR and sequencing primers for the OAZ3 gene. An "F" in the name designates a forward primer, an "R" designates a reverse
primer. The position given for each primer is that of the first nucleotide, in relation to the first nucleotide of the ATG start codon.

Region
Primer
positions
PCR size Name PCR Primers 5'-3' Name, Sequencing Primers 5'-3'
Position
Promoter F-P CTAATCAGGTCACCACTGGATCAGAGCC SF-PI,-518 ACTGGATCAGAGCC
-533, 16 R-P AACAACGAGGCAGCATCTTC SF-P2, -283 GGAGTCCTGAGGTGA
549 bp SR-PI, 16 AACAACGAGGCAGCATCTTC
EXON I-3 F-1 CTACCTCTACCCGATCTGGTCACCA SF-131, -64 GATCTGGTCACCATACGCC
-76, 1446 R-1 CCTTATGTACTATGACATGATAGAAGGG SF-132, 231 CCTGGTACTGTGTATCTTCCCACCTC
1522 bp SF-133, 788 CCTGGTTGTAACCATGGCA
SR-131, 557 CACATGCGTTCCAAGATTCCATCTACC
SR-132, 1446 CCCCTACCTATTCCCTCCCCATTC
EXON 4-5, F-4 CAATCCCGGCACCTC SF-451, 2978 CTGGCAGATCACTCGTGGTTAG
3'UTR
2951, 4841 R-4 GAATGCCCTCTTCTA SF-452, 3216 GAGGGAGAGGGAGCGGCCAAACA
1890 bp SF-453, 3831 GAATAACCATTCATAAGTGA
SF-454, 3425 GCTGAGGCAGCTGGATAACT
(PCR fragment includes 487 bp of the 3'UTR) SR-451, 3443 GTTATCCAGCTGCCTCAGCGCG
SR-452, 3966 CCTCACAGAATTTAAGA
SR-453, 4399 ATGTGTCAAGGCTTCCAGCCCCTC
SR-454, 4841 GAATGCCCTCTTCTA
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base discrepancies, based on the Phred values, in the
assembled sequence. A visual analysis was also conducted
of the trace files to confirm identified polymorphisms and
potential mutations. In addition to direct sequencing, the
five coding exons of the 192 patient samples and exon 5
of the 250-member panel were screened for variants by
SSCP. This was done according to methods described pre-
viously [23].

Haplotype analysis

Haplotypes were inferred using PHASE 2.02 [24]. Evolu-
tionary relationships among haplotypes were inferred
using Arlequin 2.0 [25] to generate minimum spanning
trees. Population genetic diversity was measured using
two standard statistics, S and pi. S is the number of varia-
ble nucleotide positions in a sample, pi is the mean pair-
wise difference (per nucleotide) between sampled
sequences. Pairwise differences among sequences were
calculated by counting the number of nucleotide posi-
tions distinguishing each possible combination of the
2*N sequences in each sample, where N is the number of
individuals in the sample. Tests of evolutionary neutrality
were performed using Tajima's D statistic [26]. Tajima's D
compares S and pi to identify departures from neutrality
and constant population size. Because much evidence
suggests that modern human populations are the product
of a major population expansion in the Upper Pleistocene
[27-29], we took population size change into account in
D tests using the method of Wooding et al. [30].

Results

Mutational analysis of OAZ3

To examine the role of OAZ3 in male infertility, genomic
DNA was obtained from 192 infertile men, 143 with non-
obstructive azoospermia and 49 with severe oligospermia
(< 5 million sperm/ml). An additional 48 subjects of
known fertility and 34 central African aborigines were also
included as controls. The entire coding sequence, pro-
moter region, and some intronic regions were analyzed
for sequence variations by direct sequencing. The coding
sequence of OAZ3 was also screened by SSCP in the infer-
tile patients. A total of 23 variations were found (Table 2).
Twenty of the variants (1-5, 7, 9-22) were single nucle-
otide substitutions, and two (6, 23) were deletions of a
single nucleotide. The final variant (8), located in intron
3, occurred as either a 31 base pair or 8 base pair alterna-
tive (Figure 1) in all but one fertile patient, who had a het-
erozygous deletion of variant 8.

Ten of the identified variants (2, 3,5, 7, 12, 14, 17-19, 23)
(Table 2) had been reported previously in dbSNPs [31].
Five of the remaining 13 nucleotide variants, numbers 1,
9, 11, 20, and 22 were unique to the infertile group while
four variants, numbers 13, 15, 16 and 21 were unique to
the aborigines. No significant differences were observed in
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allele frequencies between the infertile and control group.
Significant differences in allele frequencies were found
between the African group and both of the other two
groups for all polymorphisms identified that were present
in more than one individual (p <.001).

Assuming OAZ3 plays an integral role in spermatogenesis,
At least two of the identified variants, variants 1 and 20,
may be candidates for involvement in male infertility or
subfertility. Variant 1, -239A—G, identified in a hetero-
zygous state in the 5' untranslated region (5'UTR) of an
azoospermic patient, generates a new potential transla-
tion initiation ATG codon within a Kozak consensus
sequence and occurs two basepairs downstream from a
putative Inr binding site. Though translation initiated at
this position encounters a stop codon just prior to the
normal translation initiation site, it could potentially
reduce the amount of OAZ3 mRNA available to translate.
In this way it may reduce the total amount of OAZ3 in the
testis and affect fertility.

The second variant, variant 20 (4280C—T) in exon 5,
results in the amino acid change Pro164Ser, and was iden-
tified in the heterozygous state in a single azoospermic
patient by both direct sequencing and SSCP (Figure 2).
This proline residue is conserved in human, mouse, rat,
cow, pig, dog and opossum OAZ3. To further evaluate the
significance of this change, exon 5 was screened by SSCP
in an additional 250 controls, including 90 African and 80
Asian males. The P164S variant was not identified in this
group, or any of the other controls. The patient was also
negative for microdeletions of the Y-chromosome, the
most common genetic cause of male infertility, using the
Promega Y-chromosome microdeletion kit (Madison,
WI). The parents and family of the affected individual
were not available for screening to explore the possibility
of haploinsufficiency produced by the mutation.

Haplotype analysis

Of the 23 variants identified by direct sequencing, 16 were
used for haplotype analysis. The 7 variants not used con-
sisted of the 3 insertion/deletion polymorphisms (6, 8,
23) and 4 variants (1-4) for which complete data was not
available in all samples. Of the 16 variable nucleotides
used, separate analyses of the affected, control, and Afri-
can subsamples revealed 12, 7, and 12 variable nucleotide
positions, respectively.

Analysis using the PHASE computer program indicated
that the nucleotide variants were partitioned into 15 hap-
lotypes (Figure 3). Most haplotypes were observed just
once or twice in the sample, and haplotype frequencies
were similar among the affected, control, and African sub-
samples. Three haplotypes (5, 9, and 12) accounted for
more than 90% of observations and these were the most
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Table 2: Nucleotide variants detected in the human OAZ3 gene

Variant Region Nucleotide Amino acid change NCBI Allele frequency Allele frequency Allele frequency
Number change Infertile Fertile African

| Promoter -239A-G - NEW [A] .997 [G] .003 [A] ] [G] O -

2 Intron 2 1079 A-G - rs12066445 [A] .66 [G] .34 - -

3 Intron 3 2992 G- C* - rs| 1204884 [G] .99 [C] .01 - -

4 Intron 3 3043A-G - NEW [A] .99 [G] .01 - -

5 Intron 3 3068 G- A - rs6667249 [G] .35 [A] .65 [G] .33 [A] .67 [G] .23 [A] .77
6 Intron 3 3079C -0 - NEW [C] .65 [DEL] .35 [C] .67 [DEL] .33 [C] .81 [DEL] .19
7 Intron 3 3I53A-G - RS4995159 [A] .51 [G] 49 [A] .48 [G] .52 [A] .81 [G].I9
8 Intron 3 See Figure | - NEWV** [Long] .51 [Short] .49 [Long] .49 [Short] .5 [DEL] .01 [Long] .76 [Short] .24
9 Intron 3 3280T-A - NEW [T]1.997 [A] .003 [T11 [A]O [T]1 [A]0
10 Intron 4 3420T-G - NEW [T].994 [G] .006 [T]1 [G] O [T].94 [G] .06
I Intron 4 3427 T-G - NEW [T].997 [G] .003 [T]1 [G] O [T]1 [G] O
12 Intron 4 3457 T-C - rs3748612 [T] .65 [C] .35 [T] .65 [C] .35 [T] .86 [C].14
13 Intron 4 3595G-T - NEW [G] | [T]10 [G] | [T10 [G] .96 [T].04
14 Intron 4 36I19G-A - rs|1781424 [G] .52 [A] .48 [G] 49 [A] .51 [G].75 [A] .25
15 Intron 4 3710 A-G - NEW [A] ] [G] O [A] ] [G] O [A] .98 [G] .02
16 Intron 4 3735C-T - NEW [C]1 [T]10 [C]1 [T]10 [C] .98 [T].02
17 Intron 4 3802C-T - rs1781423 [C] .52 [T] .48 [C] 49 [T].51 [C].77 [T].23
18 Intron 4 3934T-G - rs6673002 [T] .91 [G] .09 [T] .88 [G].I2 [T] .61 [G] .39
19 Intron 4 4023 C-A - rs1781420 [C] .52 [A] .48 [C] .49 [A] .51 [C].75 [A] .25
20 Exon 5 4280C-T P164S NEW [C].997 [T].003 [C]1 [T10 [C]1 [T10
21 3'UTR 4394 A-C - NEW [A] ] [C]0 [A] ] [C]0 [A] .95 [C] .05
22 3'UTR 4487 G-C - NEW [G] .99 [C] .01 [G] | [C]0 [G] I [C]0
23 3'UTR 4531 A-0 - rs3833528 [A] .52 [DEL] .48 [A] 49 [DEL] .51 [A] .72 [DEL] .28

* NCBI database shows a G/A SNP
* NCBI shows two SNPs within the alternate region, rs4995158, rs12750154

common haplotypes in all subsamples. However, while haplotype 12 was the most com-
mon haplotype in the affected and control subpopulations, followed by haplotype 5 and
then haplotype 9, haplotype 9 was the most common haplotype in the African subsample.

When haplotypes 5, 9, and 12 were aligned, it was apparent that haplotype 9 was derived
from haplotypes 5 and 12. This appears to have taken place as the result of a gene conver-
sion event coupled with a recombination event (Figure 1). No intermediary haplotypes
between 5 and 9 or 12 and 9 were detected, suggesting that the gene conversion and
recombination event from which 9 was derived must have occurred very close together
historically.

The two most common haplotypes in the sample, 5 and 12 (which together accounted for
more than 75% of all observations) differed at six nucleotide positions (Figure 4). For this
reason, the mean pairwise difference among sequences was relatively high: 3.2nt in the
sample as a whole and 3.1nt, 3.2nt, and 3.0nt in the infertile, control, and African sub-
samples, respectively.

Tests of evolutionary neutrality were performed using Tajima's D statistic (Figure 5), which
is conservative in the presence of recombination, revealed that D did not depart signifi-
cantly from neutral expectation under the assumption of constant population size except

in the control population. However, under the more realistic assumption that the human
population expanded 100-fold from an initial effective size of 10,000, 100,000 years ago,
the hypothesis of neutrality was rejected in all cases with p < 0.01.

Discussion

The population of infertile patients we screened displayed phenotypes consistent with
what we expected to observe if they harbored debilitating mutations in OAZ3. Our results
indicate that mutations in the OAZ3 gene are not strongly associated with human male
infertility, though they may contribute to infertility in isolated instances. It is also possible
that mutations in OAZ3 result in a phenotype different than the one we selected for. If that
is the case, information from the OAZ3 knockout mouse, currently in progress, may pro-
vide a clue as to which human phenotype should be screened. One patient had a hetero-
zygous change of a single, nonpolar proline residue to a charged, polar serine residue in
exon five, Pro164Ser. It is not known if the proline residue is part of a functional domain
or how its alteration might affect the function of the OAZ3 protein. It is conserved in all
of the other OAZ3 sequences examined (Gorilla, chimpanzee, rat, mouse). We are aware
of at least four proteins that interact with OAZ3 (unpublished data) and the proline resi-
due may be important for correct protein interaction. The variation was not identified in
any of the additional 191 infertile or 332 control individuals screened, indicating it is very
rare. Currently, there is no direct evidence that the Pro164Ser mutation affects OAZ3 func-
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A.
GORILLA GTGG-- ==-====m== ==;cccccee ceeemeaa- G GAG
HUMAN L. GTGGAG AGAGAGGGAG AGGGAGACCA TGGGGAGACG GAG
HUMAN S. GTGGAG ------ GGAG AG-=--===== ==eceeen- G GAG
CHIMPANZEE GTGGAG AGAGAGGGAG AGGGAGACCA TGG------ G GAG

B.
HAPLOTYPE 5. GAETTTEGBACETECAG
HAPLOTYPE 9. liiiT GGACEGECAG
HAPLOTYPE 12. TTHGEACHTECAG
Figure |

Alignment of nucleotide variant 8 (Table |) and major haplotypes. A) Variant 8, located in intron 3 of OAZ3 was present in the
long form (HUMAN L) in haplotype 5, and the short form (HUMAN S) in haplotype 12. Gorilla and chimpanzee sequences
shown for reference. B) Alignment of the three major haplotypes, 5, 9, and 12. The position of the long or short allele shown
in A is inserted as an "L" or "S" at the appropriate position. The positions unique to haplotypes 5 and 12 are colored in green
or red, respectively. The figure depicts how the third major haplotype, 9, may have originated from both gene conversion and
recombination between haplotypes 5 and |2. The alternate nucleotides present in each haplotype are identified in Figure 3.

tion. Additional studies will need to be conducted to
determine how this mutation affects OAZ3 and sperma-
togenesis. Variant 1, a -239A—G change in the 5' UTR of
one infertile patient may also be of significance, as it was
not identified in the fertile control group and might lead
to reduced levels of OAZ3 being translated. The -239A—G
variant also occurs two basepairs downstream from a
potential Inr transcription factor binding site [13], which
may possibly attenuate the transcription factor's interac-
tion with the binding sequence.

Based on the NCBI SNPs database, at least 10 additional
SNPs, which we did not identify, are located in the region
we screened. Only one of these, rs 5777784, appears to
have potential clinical significance. It shows the deletion
of a guanidine in exon three, which would cause a
frameshift mutation in OAZ3 and a truncated protein. As
we did not detect this SNP in any of our samples, we can-
not verify its existence.

The presence of two divergent haplotype clusters in our
sample suggested that either balancing natural selection
or population subdivision has been active in our study
population. Both of these factors can maintain divergent
alleles for extended periods of time [32]. Balancing natu-
ral selection, for example, can maintain divergent alleles
when heterozygotes have a fitness advantage, while popu-
lation subdivision can maintain divergent alleles in differ-
ent populations. However, the presence of the two
divergent haplotypes at high frequencies in all three of our

subsamples (infertile, control, and African) shows that
subdivision cannot account for the presence of these
divergent lineages. A better explanation is that balancing
natural selection has historically been active in this region
of the genome, or in some region in tight linkage disequi-
librium with it.

To test whether balancing selection might be occurring in
aregion connected to OAZ3, we reviewed SNPs identified
in OAZ3s nearest neighbors that might have functional
implications for the protein. Only one SNP, an A—G that
converts a histidine residue to arginine in the final exon of
the tudor and KH domain containing (TDRKH) gene, was
identified. The 3' end of TDRKH, located on the opposite
strand of OAZ3, overlaps with the 3' end of OAZ3, and the
SNP in question lies in close proximity to the region from
which the haplotypes were derived. The region containing
the TDRKH SNP was amplified by PCR in 12 samples, six
from each of the two major haplotypes and sequenced.
While the SNP was identified in several of the patients, it
appeared in both major haplotypes, indicating a different
allele in the region is the one being maintained by balanc-
ing selection.

Evidence that balancing natural selection may have been
active in the OAZ3 region is further supported by tests of
Tajima's D statistic [26]. Tajima's D compares estimates of
diversity based on S and pi, which are affected differently
by natural selection. Positive natural selection, for
instance, which drives a new favored variant rapidly to
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Figure 2

Segregation of SSCP bands for exon 5 of OAZ3. The arrow
identifies the band representing the C—T, Prol64Ser poly-
morphism in a single azoospermic patient. Lanes 2—4 are
infertile patients with the C nucleotide. All SSCP results
were further confirmed by direct sequencing.

high frequency, tends to reduce pi relative to S, causing
negative values of D. In contrast, balancing natural selec-
tion tends to increase pi relative to S, causing positive val-
ues of D.

Initial tests of Tajima's D statistic showed that the D val-
ues observed in our sample, while positive, were not sig-
nificantly different from neutral expectation (Figure 5).
However, these initial tests were performed under the
assumption that human population sizes have been con-
stant. This assumption is likely inappropriate, because
archaeological and genetic evidence suggest that human
populations expanded greatly — more than 100-fold -
beginning roughly 100,000 years ago [33,34]. For this rea-
son, we retested Tajima's D statistic under the conservative
assumption that the human population increased 100-
fold, from an initial effective population size of 10,000 (a

http://www.biomedcentral.com/1471-2350/7/27

typical estimate; [28]), 100,000 years ago. Under this
assumption, the observed values of D departed from
expectation in every subsample, and in the sample as a
whole. Thus, patterns of variation in this region are con-
sistent with the hypothesis that balancing natural selec-
tion has been active.

One possible explanation for balancing selection is heter-
ozygote advantage, which can result from increased
homozygote mortality or increased heterozygote repro-
ductive success. To test for this possibility we performed
Chi-squared tests of Hardy-Weinberg equilibrium on each
SNP in our sample. Only two variants, variant 18 in the
infertile group and variant 7 in the African group were sig-
nificantly different than expected (p < .01). These tests
show no evidence of a heterozygote excess and suggest
that balancing selection in OAZ3 would be better
explained by differences in pure reproductive success than
by differences in survivorship. In the case of favored
reproductive success, no excess of heterozygotes is
expected, as random matings will return the population to
Hardy-Weinberg equilibrium.

Signatures of natural selection can only arise when some
sort of variation with phenotypic consequences, upon
which selection can act, is present. Thus, evidence that
balancing natural selection has been active in OAZ3 sug-
gests that some kind of functional variation is present in
or near this region. This variation is likely in linkage dise-
quilibrium with the genetic variants that distinguish the
two major haplotypes, which seem to have been main-
tained by selection. While the similar frequencies of these
divergent haplotypes in our affected and control samples
suggests that they are not likely associated with the pheno-
type examined here, they could be associated with other
phenotypes related to OAZ3.

Conclusion

Polymorphisms in OAZ3 are not strongly associated with
human male infertility, though some of the identified
SNPs, like Pro164Ser in exon 5, may contribute to isolated
cases of infertility. The presence of two divergent haplo-
type clusters in OAZ3, in all subsamples tested (infertile,
control, African), implies the haplotypes are being main-
tained by balancing natural selection. Natural selection in
this area indicates these haplotypes may be associated
with a trait other than infertility. This trait may be related
to either a different function of OAZ3 or a region in tight
linkage disequilibrium to the OAZ3 gene.
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Haplotype

Figure 3

Summary of inferred haplotype data. In the left panel, each column represents a variable nucleotide position and the row indi-
cates the nucleotide found at that position in the given haplotype. Dots indicate identity with the reference haplotype (arbitrar-
ily chosen from among the haplotypes inferred in our sample). In the right panel, numbers indicate the number of occurrences
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Position
3333333333334444
0124445677890234 Occurrences (%)
6582259113032898
8300775905243047 Infertile Control African Total
GATTTTGGACCTCCCG 0 (0.0) 0 (0.0) 2 (3.3) 2 (0.4)
.......... T...A. 0 (0.0) 0 (0.0) 1 (1.7) 1 (0.2)
........ G.T...A. 0 (0.0) 0 (0.0) 1 (1.7) 1 (0.2)
...... 0 (0.0) 0 (0.0) 1 (1.7) 1 (0.2)
..... Covvveu..A. 130 (34.4) 32 (34.8) 8 (13.3) 170 (32.1)
..... C...T....A 0 (0.0) 0 (0.0) 1 (1.7) 1 (0.2)

GCrvrrnnns A. 1 (0.3) 0 (0.0) 0 (0.0) 1 (0.2)
Beveennnnnnnns A. 14 (3.7) 1 (1.1) 4 (6.7) 19 (3.6)
- W G..A. 44 (11.6) 12 (13.0) 24 (40.0) 80 (15.1)
BeGarvrnnrnnss A (0.5) 0 (0.0) 3 (5.0) 5 (0.9)
BeBerrnnnnnss A 1 (0.3) 0 (0.0) 0 (0.0 1 (0.2)
AG..... A..T.A.A. 181 (47.9) 47 (51.1) 14 (233) 242 (45.7)
-V J A..T.A.AC 4 (1.1) 0 (0.0) 0 (0.0 4 (0.8)
AG..... A..T.ATA. 1 (0.3) 0 (0.0) 0 (0.0) 1 (0.2)
AG. TA..T.A.A. 0 (0.0) 0 (0.0 1 (1.7) 1 (0.2)

378 92 60 530

G ssv wiois o T...A
BG.ssssoss T...AC

of each haplotype in each subsample. Ch = chimpanzee, Go = gorilla.

Figure 4

Minimum spanning tree relating inferred haplotypes. Each numbered node (circle) represents a haplotype, and the area of the
node represents the haplotype's frequency. Edges (lines between nodes) represent nucleotide differences. Each edge repre-
sents one nucleotide difference unless indicated otherwise in parentheses. Ch = chimpanzee, Go = gorilla.
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P<
Tajima's D Constant Size Growth
Affected 1.55 0.07 0.01
Control 3.08 0.01 0.01
African 0.29 0.30 0.01
All 0.86 0.18 0.01

Figure 5

Results of Tajima's D test. The column labeled "Constant Size" shows the one-sided p-value of Tajima's D under the assump-
tion that human population size has been constant. The column labeled "Growth" shows the one-sided p-value of D under the
more realistic assumption that the human population expanded 100-fold, 100,000 years ago.
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