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A new approach to Hardy-type inequalities

Adam Osȩkowski

Abstract. We introduce a new method which can be used to establish
sharp Hardy-type inequalities on the positive halfline. As an illustration,
we present a new proof of a classical result due to Bliss.
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1. Introduction. A classical Hardy inequality states that for any nonnegative
function f on the positive halfline (0,∞), we have the sharp estimate
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k − 1

)k
∞∫

0

fk(t)dt, (1.1)

for any number k > 1 (see e.g. Hardy, Littlewood, and Pólya [4]). Our moti-
vation comes from the extension established by Hardy and Littlewood [3]:
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f(s)ds
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fk(t)dt
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,

where � ≥ k > 1 and α = �/k − 1. Unfortunately, as Hardy and Littlewood
observed, the constant (k/(k − 1))k above is no longer optimal when � >
k. However, they guessed what the best value is, and their conjecture was
confirmed a few years later by Bliss [1]. Here is the precise statement.
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Theorem 1.1. Suppose that 1 < k < � are fixed, put α = �/k − 1, and let f be
a nonnegative function on (0,∞). Then we have the sharp bound
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�

dt ≤ Ck,�,α
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fk(t)dt
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�/k

, (1.2)

where

Ck,�,α =
1

� − α − 1

[
αΓ(�/α)

Γ(1/α)Γ((� − 1)/α)

]α

. (1.3)

Equipped with the above statement, one easily proves the following exten-
sion involving a power weight on the right hand side.

Theorem 1.2. Suppose that 1 < k < � are fixed constants, and let α, β be
positive numbers satisfying β < k − 1 and (1 + α)(1 + β)−1 = �/k. Then for
any nonnegative function f on (0,∞), we have
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0

tα

⎛
⎝1

t

t∫

0
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where

Ck,�,α,β =
k(k − 1)−�(k−1)/k

�(k − 1 − β)1−�(k−1)/k

[
Γ(�k/(� − k))

Γ(�/(� − k))Γ(k(� − 1)/(� − k))

]�/k−1

.

The inequality is sharp.

To see how this theorem follows from the previous one, simply apply (1.2) to
the function t �→ tβ/(k−1−β)f(t(k−1)/(k−1−β)) and change the variables under
the integrals.

There is a vast literature concerning various versions and applications of
these results. It is impossible to review it here, and we refer the interested
reader to the works [4–11] for an overview, history, and much more.

The main purpose of this paper is to introduce a novel method which
can be used to prove general Hardy-type inequalities on the positive halfline.
Roughly speaking, the method will allow to deduce a given estimate from the
existence of a certain special function, possessing appropriate domination and
monotonicity properties. In a sense, the technique is closely related to the
so-called Bellman function method, a powerful tool used widely in harmonic
analysis and probability theory: see e.g. [2,12–14] and the references therein.
The method is described in the next section. In Section 3, we illustrate the
technique by providing a novel proof of (1.2).

2. A method. Let f be a nonnegative function on (0, 1], and let k > 1 be fixed.
Define

Xt(f) =
1
t

t∫

0

f(x)dx and Yt(f) =
1
t

t∫

0

fk(x)dx (2.1)
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for t ∈ (0, 1]. A straightforward application of Hölder’s inequality shows that
the pair (Xt, Yt) takes values in the set

D = {(x, y) ∈ [0,∞) × [0,∞) : xk ≤ y}.

Next, let V : D× (0, 1] → [0,∞), G : D → [0,∞) be two given Borel functions.
Suppose that we are interested in showing the estimate

∫ 1

0

V (Xt(f), Yt(f), t) dt ≤ G(X1(f), Y1(f)) (2.2)

for all f . For instance, choose V (x, y, t) = tαx� and G(x, y) = Cy�/k: then
(2.2) becomes the “localized” Hardy inequality

1∫

0

tα−�

⎛
⎝

t∫

0

f(s)ds

⎞
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�

dt ≤ C

⎛
⎝

1∫

0

fk(s)ds

⎞
⎠

�/k

.

The key idea in the proof of (2.2) is to consider a class B(V,G) which consists
of all functions B on D × (0, 1] satisfying the following three properties.

i. (Nonnegativity) For any (x, y, t) ∈ D × (0, 1] we have

B(x, y, t) ≥ 0. (2.3)

ii. (Domination) For any (x, y, t) ∈ D × (0, 1] we have

B(x, y, 1) ≤ G(x, y). (2.4)

iii. (Monotonicity) For any nonnegative f on (0, 1], the function

t �→ B(Xt(f), Yt(f), t) +

1∫

t

V (Xs(f), Ys(f), s)ds

is nondecreasing on (0, 1]. (2.5)

Let us study the interplay between the class B(V,G) and the bound (2.2).

Lemma 2.1. If B(V,G) is nonempty, then the estimate (2.2) is valid.

Proof. For any nonnegative function f on (0, 1], we have

G(X1(f), Y1(f)) ≥ B(X1(f), Y1(f), 1),

by (2.4). Moreover, using the monotonicity property (iii), we may write

B(X1(f), Y1(f), 1) = B(X1(f), Y1(f), 1) +

1∫

1

V (Xs(f), Ys(f), s)ds

≥ B(Xt(f), Yt(f), t) +

1∫

t

V (Xs(f), Ys(f), s)ds

for any t ∈ (0, 1). Consequently, applying (2.3), we obtain
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1∫

t

V (Xs(f), Ys(f), s)ds ≤ G(X1(f), Y1(f))

for any t. Letting t → 0 yields the claim, by virtue of Fatou’s lemma. �

A very interesting feature of the method is that the implication of the
above lemma can be reversed. If the estimate (2.2) holds true, one can write
an abstract (but non-explicit) formula for a special function B.

Lemma 2.2. If (2.2) is valid, then the class B(V,G) is nonempty.

Proof. For any (x, y, t) ∈ D × (0, 1], introduce the class M(x, y, t) which con-
sists of all nonnegative measurable functions f on (0, t] such that 1

t

∫ t

0
f(s)ds =

x and 1
t

∫ t

0
fk(s)ds = y. For each (x, y, t), the class is nonempty: it contains,

for instance, the function

f(s) =

{
0 if s ∈ (0, a),
tx/(t − a) if s ∈ [a, t],

where a = (1 − xk/(k−1)/y1/(k−1)). Now, define a function B on D × (0, 1] by

B(x, y, t) = sup

⎧⎨
⎩

t∫

0

V (Xs(f), Ys(f), s)ds

⎫⎬
⎭ ,

where the supremum is taken over all f ∈ M(x, y, t). Let us verify that B

satisfies the required properties (2.3), (2.4), and (2.5). The first condition is
evident since V is nonnegative. The second property follows from (2.2): for any
f ∈ M(x, y, 1) we have

∫ 1

0
V (Xs(f), Ys(f), s)ds ≤ G(x, y). Thus, taking the

supremum over all f as above, we get (2.4). So, it remains to establish (2.5), for
which the reasoning is slightly more complicated. Pick any function f : (0, 1] →
[0,∞) and fix 0 ≤ t < u ≤ 1. Take an arbitrary f̃ ∈ M(Xt(f), Yt(f), t), and
let us “splice” f and f̃ into one function f = f̃χ(0,t] + fχ(t,1]. Observe that
for any r ∈ [t, 1],

Xr(f) =
1
r

r∫

0

fds =
1
r

⎛
⎝

t∫

0

f̃ds +

r∫

t

fds

⎞
⎠ =

1
r

r∫

0

fds = Xr(f),

where in the third equality we used the assumption Xt(f̃) = Xt(f). Similarly,
one proves that Yr(f) = Yr(f) for r ∈ [t, 1]. Denote Xt = Xt(f), X̄t = Xt(f),
X̃t = Xt(f̃) and similarly for Yt, Ȳt and Ỹt. So, by the definition of B, we get

B(Xu, Yu, u) +

1∫

u

V (Xs, Ys, s)ds

≥
u∫

0

V (X̄s, Ȳs, s)ds +

1∫

u

V (Xs, Ys, s)ds
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=

t∫

0

V (X̄s, Ȳs, s)ds +

u∫

t

V (X̄s, Ȳs, s)ds +

1∫

u

V (Xs, Ys, s)ds

=

t∫

0

V (X̃s, Ỹs, s)ds +

u∫

t

V (Xs, Ys, s)ds +

1∫

u

V (Xs, Ys, s)ds

=

t∫

0

V (X̃s, Ỹs, s)ds +

1∫

t

V (Xs, Ys, s)ds.

Taking the supremum over all f̃ , we get the desired property (iii). �
Suppose we have fixed V , G and we want to prove (2.2) with the use of the

above method. How to find an appropriate B and how do we check that it has
the desired properties? To address these issues, let us make a few comments on
the properties (2.3), (2.4), and (2.5). The first two of them are just appropriate
dominations for the function B: it can be neither too small nor too large. The
most mysterious condition is the third one, and at the first glance it seems
to be difficult to verify. Thus, it would be desirable to rephrase it in a more
convenient form. We can offer a partial result in this direction. Namely, in
many situations one can restrict oneself to showing (2.2) for continuous f only;
furthermore, the functions V and G are often smooth, and one can expect the
desired B to have this regularity as well. Note that

d
dt

Xt(f) =
f(t) − Xt(f)

t
and

d
dt

Yt(f) =
fk(t) − Yt(f)

t

for any t ∈ (0, 1). So, a direct differentiation of the function in (2.5) leads to
the following, slightly stronger form of (iii), which we state separately.

Lemma 2.3. Suppose that B is continuous, of class C1 in the interior of its
domain, and satisfies

Bx(x, y, t)
(

d

t
− x

t

)
+ By(x, y, t)

(
dk

t
− y

t

)
+ Bt(x, y, t) ≥ V (x, y, t)

(2.6)

for any (x, y, t) ∈ D × (0, 1) and d ≥ 0. Then (iii) holds true.

This lemma also indicates how to search for B: it is enough to construct a
smooth function which satisfies (2.3), (2.4), and the above differential inequal-
ity (2.6). Though the latter still looks complicated, in many cases it can be
handled due to some additional, “structural” properties of B: see below.

Before we proceed, let us mention that the above method admits many
extensions. We will give just one example, concerning bounds of the form
(2.2) with other choices of the operators X· and Y·; further modifications are
easily found by the reader. Fix Φ : [0,∞) → [0,∞), β ≥ 0 and let

Xt(f) =
1
t

t∫

0

f(s)ds and Yt(f) =
1
t

t∫

0

sβΦ(f(s))ds.
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Let D be the set in which (X·(f), Y·(f)) might take its values (it depends on
Φ and β), fix V : D × (0, 1] → [0,∞), G : D → [0,∞) and suppose that we
want to show (2.2) for all nonnegative f on (0, 1]. Then, as one easily verifies,
Lemmas 2.1 and 2.2 remain valid, but Lemma 2.3 needs to be slightly modified.
With the above X· and Y·, the stronger version of (iii) is

Bx(x, y, t)
(

d

t
− x

t

)
+ By(x, y, t)

(
tβΦ(d)

t
− y

t

)
+ Bt(x, y, t) ≥ V (x, y, t)

for (x, y, t) ∈ D × (0, 1]. This is easily checked by the differentiation in (2.5).

3. A new proof of Bliss’ result. For the sake of clarity, we have decided to
split this section into three parts.

3.1. Some special functions. We start with the following technical fact.

Lemma 3.1. For any s ∈ (1,∞) there is a unique u = u(s) ∈ (0, 1) which
satisfies the identity

(α + 1)(k − 1)
α

1∫

u

(1 − w)1/αw(k−1)/α+k−2dw = (s − uk−1)(1 − u)1/αu(k−1)/α.

(3.1)
Furthermore, the function u is of class C1.

Proof. Let s > 1 be fixed, and denote by F (u) the difference of the left-hand
side and the right-hand side of (3.1). Observe that F ′(u) equals

− (α + 1)(k − 1)
α

(1 − u)1/αu(k−1)/α+k−2 + (k − 1)uk−2(1 − u)1/αu(k−1)/α

+
s − uk−1

α
(1 − u)1/α−1u(k−1)/α − k − 1

α
(s − uk−1)(1 − u)1/αu(k−1)/α−1.

After some manipulations we check that F ′(u) has the same sign as G(u) =
(s − uk−1)u − s(k − 1)(1 − u). Now, we see that G(0) < 0, G(u) is positive
for u sufficiently close to 1, and G′(u) = k(s − uk−1) > 0. So, there is u0 such
that G is negative on (0, u0) and positive on (u0, 1), and hence, F is decreasing
on (0, u0) and increasing on (u0, 1). But we easily check that F (0) > 0 and
F (1) = 0; thus F has a unique zero inside (0, 1). The claimed regularity of the
function u follows at once from the well-known facts on implicit functions.

�

Lemma 3.2. There is an increasing function ϕ : [1,∞) → R satisfying

(k − 1)

⎡
⎣1 −

(
sϕ′(s) − �

kϕ(s)
ϕ′(s)

)1/(k−1)
⎤
⎦
(

sϕ′(s) − �

k
ϕ(s)

)
= 1 (3.2)

for s ∈ (1,∞) and the initial condition ϕ(1) = k/�.

Proof. Let u be the function introduced in the previous lemma, and put

ϕ(s) =
k

�(k − 1)
s − uk−1(s)

(1 − u(s))uk−1(s)
. (3.3)
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We compute that (for brevity, we have decided to omit the argument s and
write u instead of u(s), ϕ instead of ϕ(s), etc.)

ϕ′ =
k

�(k − 1)

[
1 − (k − 1)uk−2u′

(1 − u)uk−1
+

s − uk−1

(1 − u)2uk−1
u′ − (k − 1)(s − uk−1)u′

(1 − u)uk

]
,

which implies

(k − 1)(1 − u)uk−1ϕ′

=
k

�

[
1 − (k − 1)uk−2u′ +

s − uk−1

1 − u
u′ − (k − 1)(s − uk−1)u′

u

]
. (3.4)

Now differentiate (3.1) with respect to s, the argument of u, to get

− (α + 1)(k − 1)
α

(1 − u)1/αu(k−1)/α+k−2u′

= (1−(k − 1)uk−2u′)(1 − u)1/αu(k−1)/α− s − uk−1

α
(1 − u)1/α−1u(k−1)/αu′

+
k − 1

α
(s − uk−1)(1 − u)1/αu(k−1)/α−1u′,

or equivalently,

−�(k − 1)
k

uk−2u′ = α[1 − (k − 1)uk−2u′] − s − uk−1

1 − u
u′ + (k − 1)

(s − uk−1)u′

u
.

Plug this into (3.4): then the right-hand side becomes 1, so we get

ϕ′ =
1

(k − 1)(1 − u)uk−1
=

�

k

ϕ

s − uk−1
, (3.5)

which, in turn, implies

u =

(
sϕ′(s) − �

kϕ(s)
ϕ′(s)

)1/(k−1)

. (3.6)

Inserting this identity into (3.2) transforms it into (3.5); this shows that ϕ
[given by (3.3)] enjoys the differential equation (3.2), as desired. The monoto-
nicity of ϕ follows immediately from (3.5). It remains to show that this ϕ
satisfies lims↓1 ϕ(s) = k/�. To do this, observe that lims→1 u(s) = 1, by the
very definition of u, and consequently, using (3.1),

ϕ =
k

�

s − uk

(k − 1)(1 − u)uk−1

=
k

�

α + 1
α

u−k/α−k

(1 − u)1/α+1

1∫

u

(1 − w)1/αw(k−1)/α+k−2dw
s↓1−−→ k

�
,

by de l’Hospital rule. This completes the proof. �

The final property of ϕ is the following boundedness condition.

Lemma 3.3. Let Ck,�,α denote the constant (1.3). For any s ≥ 1,

ϕ(s) ≤ Ck,�,αs�/k. (3.7)
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Proof. By (3.6), for any s > 1 we have[
ϕ(s)
s�/k

]′
= s−1−�/k

(
sϕ′(s) − �

k
ϕ(s)

)
= s−1−�/kϕ′(s)u(s)k−1 > 0,

so we will be done if we manage to establish the identity lims→∞ ϕ(s)s−�/k =
Ck,�,α. To do this, note first that by (3.1), (3.3), and (3.5),

(α + 1)(k − 1)
α

1∫

u

(1 − w)1/αw(k−1)/α+k−2dw

=
s − uk−1

(1 − u)uk−1
· (1 − u)1/α+1u(k−1)/α+k−1

=
�(k − 1)

k
ϕ(s) · 1

(k − 1)1/α+1(ϕ′(s))1/α+1
.

This implies

lim
s→∞

ϕ(s)
(ϕ′(s))1/α+1

=
k(k − 1)1/α+1

� − k

1∫

0

(1 − w)1/αw(k−1)/α+k−2dw,

or, which is the same,

lim
s→∞

ϕ′(s)
ϕ(s)α/(α+1)

=

⎡
⎣k(k − 1)1/α+1

� − k

1∫

0

(1 − w)1/αw(k−1)/α+k−2dw

⎤
⎦

−α/(α+1)

.

A little calculation shows that the right-hand side is equal to C
1/(α+1)
k,�,α . There-

fore, if s0 > 1 is a fixed number and s > s0 is arbitrary, we may write

ϕ(s)
s�/k

=
[
ϕ1/(α+1)(s)

s

]α+1

=

⎡
⎣ϕ1/(α+1)(s0) +

∫ s

s0

(α+1)−1ϕ′(r)
ϕ(r)α/(α+1) dr

s

⎤
⎦

α+1

s→∞−−−→
(

lim
s→∞

(α + 1)ϕ′(s)
ϕ(s)α/(α+1)

)α+1

= Ck,�,α. �

3.2. Proof of (1.2). Fix �, k and let α = �/k − 1. By an easy dilation, it is
enough to prove that

1∫

0

tα−�

⎛
⎝

t∫

0

f(s)ds

⎞
⎠

�

dt ≤ Ck,�,α

⎛
⎝

1∫

0

fk(t)dt

⎞
⎠

�/k

(3.8)

for any continuous nonnegative function f on [0, 1]. This bound is of the form
(2.2), with V (x, y, t) = tαx� and G(x, y) = Ck,�,αy�/k. Thus we can apply the
method of Section 2. As we will see, the right choice for B is given by

B(x, y, t) = t1+αx�ϕ(x−ky),

where ϕ is the function of Lemma 3.2. Clearly, this function is nonnegative
and, by (3.7), we have B(x, y, 1) = x�ϕ(x−ky) ≤ Ck,�,αy�/k = G(x, y). So, the
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conditions (2.3) and (2.4) are satisfied, and we need to verify (2.5). By Lemma
2.3 and the reasoning preceding it, we will be done if we check that B satisfies
(2.6). By the direct differentiation of B, this is equivalent to

kt1+αx�−1

(
�

k
ϕ(s) − sϕ′(s)

)(
d

t
− x

t

)
+ t1+αx�−kϕ′(s)

(
dk

t
− y

t

)

+ (1 + α)tαx�ϕ(s) ≥ tαx�,

where s = y/xk. If we divide both sides by x�tα, the bound becomes

k

(
�

k
ϕ(s) − sϕ′(s)

)
(ξ − 1) + ϕ′(s)(ξk − s) + (1 + α)ϕ(s) ≥ 1, (3.9)

where ξ = d/x ≥ 0. By the previous subsection, we know that ϕ′(s) > 0
for all s. So, the left-hand side, considered as a function of ξ, attains
its minimum for ξ satisfying k

(
�
kϕ(s) − sϕ′(s)

)
+ kϕ′(s)ξk−1 = 0, or

ξ =
(
s − �

kϕ(s)/ϕ′(s)
)1/(k−1)

. But for this ξ both sides of (3.9) are equal:
indeed,

k

(
�

k
ϕ(s) − sϕ′(s)

)
(ξ − 1) + ϕ′(s)(ξk − s) + (1 + α)ϕ(s) − 1

= (k − 1)

⎡
⎣1 −

(
sϕ′(s) − �

kϕ(s)
ϕ′(s)

)1/(k−1)
⎤
⎦
(

sϕ′(s) − �

k
ϕ(s)

)
− 1,

(3.10)

which is zero, due to (3.2). This proves that B belongs to the class B(V,G).

3.3. On the search for B and the optimality of Ck,�,α. Let us sketch steps
which led us to the discovery of the function B. As we have already ob-
served above, the inequality (1.2) follows once we have established the lo-
calized bound (3.8), which is of the form (2.2), with V (x, y, t) = tαx� and
G(x, y) = Ck,�,αy�/k. Write down the corresponding special function B:

B(x, y, t) = sup

⎧⎪⎨
⎪⎩

t∫

0

sα

⎛
⎝1

s

s∫

0

f(r)dr

⎞
⎠

�

ds

⎫⎪⎬
⎪⎭ ,

where the supremum is taken over all f ∈ M(x, y, t). Let us infer some “struc-
tural” properties of B, directly from this definition. Observe that f ∈ M(x, y, t)
if and only if the dilated function δtf : s �→ f(ts) belongs to M(x, y, 1). By
direct substitutions in the integrals defining B(x, y, t), we get

B(x, y, t) = t1+α sup

⎧⎪⎨
⎪⎩

1∫

0

⎛
⎝1

s

s∫

0

δtf(r)dr

⎞
⎠

k

ds

⎫⎪⎬
⎪⎭ = t1+α

B(x, y, 1).

The next property comes from the observation that for any λ > 0, we have
f ∈ M(x, y, 1) if and only if λf ∈ M(λx, λky, 1). So, by the definition of B,
we get B(λx, λky, 1) = λ�

B(x, y, 1). Hence, taking λ = 1/x, we get B(x, y, t) =
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t1+α
B(x, y, 1) = t1+αx�

B
(
1, y

xk , 1
)

for all (x, y, t). Putting ϕ(s) = B(1, s, 1),
we get the explanation for the special form of the function B used above. How
can we find ϕ? The indication is contained in the structure of the above proof.
Namely, the work with the condition of Lemma 2.3 leads us to (3.9), and the
further optimization over ξ shows that the minimum, given by (3.10), should
be nonnegative. Assuming that this minimum is zero for all s, we obtain the
differential equation (3.2). To get the initial value ϕ(1) = B(1, 1, 1), note that
the class M(1, 1, 1) contains only one element (up to a set of Lebesgue measure
0): the constant function f ≡ 1. Plugging this function into the definition of
B(1, 1, 1), we get that this value must be �/k, and hence ϕ(1) = �/k. This
gives us the above special function ϕ. Finally, the constant Ck,�,α is just the
smallest number such that the inequality (3.7) holds true.

The above approach also gives an indication about the extremal functions
in (3.8) (i.e., about the functions for which the equality, or almost equality,
is attained). We would like to stress here that the arguments presented below
will not be strict, as their goal is to lead us to the right guess for the extremal
functions. The idea is very simple: we want to find an f such that all the inter-
mediate inequalities appearing during the application of the method become
equalities. Let us be more specific. As we already know, for a given smooth f :
(0, 1] → [0,∞), the function t �→ B(Xt(f), Yt(f), t)+

∫ 1

t
V (Xs(f), Ys(f), s)ds is

nondecreasing. This, by the direct differentiation, gives (3.9) with the parame-
ters s = Yt(f)/Xk

t (f) and ξ = f(t)/Xt(f). Then the optimization over ξ leads
to (3.2): the extremal choice for ξ is (s − �

kϕ(s)/ϕ′(s))1/(k−1), as we already
computed above. Thus, it is natural to suspect that the extremal function f
satisfies the equality

ξ = ξ(t) =
f(t)

Xt(f)
=
(

s − �

k

ϕ(s)
ϕ′(s)

)1/(k−1)

= u(s)

for all t ∈ (0, 1], where s = Yt(f)/Xk
t (f). Plugging this into (3.1), we obtain

(α + 1)(k − 1)
α

1∫

f(t)/Xt(f)

(1 − w)1/αw(k−1)/α+k−2dw

=
(

Yt(f)
Xk

t (f)
− fk−1(t)

Xk−1
t (f)

)(
1 − f(t)

Xt(f)

)1/α(
f(t)

Xt(f)

)(k−1)/α

.

Assuming that f is smooth, let us differentiate both sides with respect to t.
We obtain an equality equivalent to I + II = 0, where

I =
(

Yt(f)
Xk

t (f)
− fk−1(t)

Xk−1
t (f)

)(
ξ′(t) +

αξ(t)(1 − ξ(t))
t

)
k − 1 − kξ(t)

α
,

II = α−1(k − 1)ξk−1(t)(1 − ξ(t))
(

ξ′(t) +
αξ(t)(1 − ξ(t))

t

)
.

We see that the factor ξ′(t)+αξ(t)(1 − ξ(t))/t is present in both terms: thus, let
us find f for which it vanishes. The general solution to the differential equation
ξ′(t) = −αξ(t)(1 − ξ(t))/t, t ∈ (0, 1), is given by ξ(t) = (1 + dtα)−1, as one
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easily proves by the separation of variables. Here d is an arbitrary constant.
Hence, from the definition of ξ, we get f(t) = (1 + dtα)−1Xt(f), or, using the
identity f(t) = t d

dtXt(f) + Xt(f),

d
dt

Xt(f) =
Xt(f)

t(1 + dtα)
− Xt(f)

t
.

This equation is also easy to solve: the general solution is Xt(f) = c(1 +
dtα)−1/α, where c is an arbitrary constant. This yields the following candidate
for the extremizer: f(t) = c(1 + dtα)−(1+α)/α. This is indeed the right choice:
letting d → ∞ and carrying out some easy manipulations, we see that

∫ 1

0
tα
(

1
t

∫ t

0
f(s)ds

)�

dt
(∫ 1

0
fk(t)dt

)�/k
→

∫∞
0

tα(1 + tα)−�/αdt∫∞
0

(1 + tα)−k(1+α)/αdt
= Ck,�,α.

We conclude the paper with the following comment.

Remark 3.4. There is a natural question about other Hardy-type inequalities
which can be successfully treated with the above method. As an example (a
partial answer to this question), one can show that the estimate of Theorem
1.2 can be proved with the use of a certain special function B. However, we
have decided not to include any details here, since, as we have noted in the
introductory section, the result follows at once from Theorem 1.1.
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École d’Eté de Probabilités de Saint-Flour XIX—1989, pp. 1–66, Lecture Notes

in Math., 1464, Springer, Berlin, 1991.

[3] G. H. Hardy and J. E. Littlewood, Notes on the theory of series (XII): On

certain inequalities connected with calculus of variations, J. London Math. Soc.

5 (1930), 34–39.

[4] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd edn. (Cam-
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Adam Osȩkowski

Faculty of Mathematics,
Informatics and Mechanics,
University of Warsaw,
Banacha 2, 02-097 Warsaw,
Poland
e-mail: ados@mimuw.edu.pl

Received: 26 June 2014

http://sashavolberg.wordpress.com

	A new approach to Hardy-type inequalities
	Abstract
	1. Introduction
	2. A method
	3. A new proof of Bliss' result
	3.1. Some special functions
	3.2. Proof of (1.2)
	3.3. On the search for B and the optimality of Ck,ell,α

	Acknowledgement
	Open Access
	References


