
J
H
E
P
0
9
(
2
0
1
5
)
1
1
9

Published for SISSA by Springer

Received: June 15, 2015

Revised: August 24, 2015

Accepted: August 28, 2015

Published: September 17, 2015

Towards a first estimate of the gluon Sivers function

from AN data in pp collisions at RHIC

U. D’Alesio,a,b F. Murgiab and C. Pisanoc

aDipartimento di Fisica, Università di Cagliari,
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1 Introduction and formalism

The study of the 3-dimensional nucleon structure is, nowadays, one of the most interesting

and challenging topics in hadron physics. In the last decade it has become clear that even in

high-energy processes a one-dimensional picture of the nucleon in terms of collinear parton

distribution functions (PDFs) is not always satisfactory and a more complete description

involving also transverse degrees of freedom, both in spin and momentum, is necessary.

To this aim a new class of transverse momentum dependent parton distributions (TMD-

PDFs) and fragmentation functions (TMD-FFs), shortly referred to as TMDs, has been

introduced (see e.g. refs. [3, 4] for review).

Many transverse spin phenomena in hard processes, like the well-known transverse

single spin asymmetries (SSAs) observed in inclusive hadron production in hadron-hadron

collisions as well as the more recent azimuthal asymmetries measured in semi-inclusive

deeply inelastic scattering (SIDIS) processes with a transversely polarized target, have

challenged the full theoretical understanding of QCD.

At present, two main theoretical schemes have been formulated to deal with these

transverse spin asymmetries: one, originally proposed in refs. [5–9] and phenomenologi-

cally developed in refs. [10–13], is based on collinear higher-twist parton correlators. This

formalism has been proved to be valid for processes where only one hard scale is present,

like the transverse momentum of the final particles inclusively produced in pp collisions.

A second approach, based on TMD factorization theorems, was shown to be valid for pro-

cesses characterized by two energy scales: a hard one, like the virtuality of the exchanged

boson in SIDIS, Drell-Yan processes (DY) or e+e− annihilation and a soft one, comparable

to ΛQCD, like the transverse momentum of the final hadron in SIDIS, or of the lepton pair

in DY, or the transverse momentum imbalance in hadron-pair production in e+e− colli-

sions [14–18]. Expressions of azimuthal asymmetries in terms of TMDs for such processes

can be found in refs. [19, 20] (SIDIS), refs. [21–23] (DY), and refs. [24, 25] (e+e−).

The two approaches are related in the existing common region of validity [26–30],

although a formal proof of factorization in single-particle production still lacks for the

TMD approach (see e.g. ref. [31]).

Concerning the QCD scale evolution of TMDs much progress has been also done in

the last years [17, 32–41], although different phenomenological attempts and schemes have

been proposed, and a univocal unambiguous treatment is still missing.
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Much phenomenological information has been by now collected on quark TMDs; in

particular the Sivers distribution [42, 43] and the Collins fragmentation function [44] have

been extracted from SIDIS and e+e− data by different groups [25, 45–53]. Even if to a lesser

extent some information on the Boer-Mulders function [54] has been also gathered [55–61].

On the other hand, up to now, very little is known on gluon TMDs.

The gluon Sivers function (GSF), for instance, is constrained by a trivial positivity

bound (given by two times the unpolarized TMD gluon distribution), which however is

very loose and of little usefulness. A more important theoretical constraint comes from

the so-called Burkardt sum rule (BSR) [62]. It states, in a non-trivial way due to the

presence of QCD color-gauge links, the vanishing of the total transverse momentum of all

unpolarized partons inside a transversely polarized proton. Fits to the Sivers asymmetry

for SIDIS data in the TMD approach [45, 50] almost fulfil, within uncertainties, the BSR,

leaving little space for a gluon contribution. In the large-Nc limit of QCD the GSF should

be suppressed by a factor 1/Nc w.r.t. the valence quark Sivers distributions, at not too

small Bjorken-x values (x ∼ 1/Nc) (see ref. [63] and references therein). The COMPASS

Collaboration at CERN is currently studying the Sivers asymmetry in the production of

high-pT hadron pairs in muon scattering off polarized proton and deuteron targets [64].

This process should be dominated by the photon-gluon fusion mechanism and therefore

allows to get information on the GSF. First results gave an asymmetry compatible with

zero for deuteron target at 〈xG〉 = 0.13. This fact, together with additional theoretical

considerations, led Brodsky and Gardner [65] to state that the gluon contribution to parton

orbital angular momentum (and the GSF) should be negligible. However, very recent

preliminary measurements of the same observable for proton target give a negative gluon

Sivers asymmetry, −0.26 ± 0.09 ± 0.08 at 〈xG〉 = 0.15 [64]. This value even if 3σ below

zero is still compatible with the deuteron result.

From the phenomenological point of view, it has been suggested to study the role of

the GSF in polarized proton-proton collisions in several processes: SSAs in inclusive pho-

ton production in the large negative xF region (measured w.r.t. the polarized proton) [66];

back-to-back azimuthal correlations in two-jet production [67]; SSAs in inclusive D me-

son production at RHIC [68]; SSAs in J/ψ electroproduction with transversely polarized

electron and proton beams [69]. A detailed and updated discussion on the gluon Sivers

function and additional references can be found in ref. [70].

Besides the gluon Sivers function, the role of linearly polarized gluons inside

(un)polarized protons in inclusive processes in proton-proton collisions has been also ac-

tively investigated in recent years, e.g. in pion-jet production [71], heavy quark and jet-

pair production at electron-ion or hadron colliders [72, 73], and Higgs production at the

LHC [41, 74, 75].

Assuming the validity of the TMD formalism for a single-scale process we show here

how the analysis of highly precise midrapidity data in single polarized pp→ πX processes

could strongly constrain the gluon Sivers function. As shown in a series of papers [20, 51,

53, 76–78] this phenomenological approach, nowadays known as generalized parton model

(GPM) is able to describe fairly well many features of several available data for such a pro-

cess and it is worth to be further investigated. Even if not supported, as already said above,
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by a formal proof of factorization in terms of TMDs, the study of these processes can be very

useful also in clarifying the role of process dependence and factorization breaking effects.

It has been already shown that, within a TMD scheme, due to strong partonic az-

imuthal phase cancellations, the backward hemisphere can be of little use to get informa-

tion on polarized TMDs, since all effects are almost washed out [78]. On the other hand,

as shown by some of us in ref. [2], a study of midrapidity AN data at high energy can be

used to constrain the gluon Sivers function. Here we will upgrade this result by using more

recent information both on the phenomenological and the experimental side.

Indeed we have now at our disposal phenomenological extractions of the quark Sivers

functions from SIDIS processes (not available at that time), one of them including also

the sea quark contributions [45, 50]. At the same time new and highly precise data from

the PHENIX Collaboration at RHIC have been made available [1]. For these reasons we

believe that such a reanalysis is timely.

As said, the issue of QCD evolution of TMDs, strongly related to factorization, is

still an open question for such single scale processes. Concerning its potential role in the

following analysis, we believe that the relatively modest range of pion transverse momentum

involved (at least for the more precise data which can significantly constrain the GSF)

prevents it to be effective for the asymmetries. Therefore, in the sequel we will keep

including QCD evolution only in the collinear factorized component of the involved TMDs

(see also below for more details).

Although in the TMD approach several terms may in principle contribute to the single

spin asymmetry AN (p↑p → πX) ≡ (dσ↑ − dσ↓)/(dσ↑ + dσ↓), in the kinematical regime

of ref. [1], as extensively discussed in ref. [2], AN is largely dominated by the Sivers effect

alone, and its numerator is given by (for details see refs. [77, 78])

Eπ dσ
↑

d3pπ
− Eπ dσ

↓

d3pπ
'

∑
a,b,c,d

∫
dxa dxb dz

π xa xb z2 s
d2k⊥a d

2k⊥b d
3k⊥π δ(k⊥π · p̂c) J(k⊥π) (1.1)

×∆f̂a/p↑(xa,k⊥a) fb/p(xb, k⊥b) ŝ
2 dσ̂

ab→cd

dt̂
(xa, xb, ŝ, t̂, û) δ(ŝ+ t̂+ û)Dπ/c(z, k⊥π) ,

where (Mp denotes the proton mass)

∆f̂a/p↑ (xa,k⊥a) ≡ f̂a/p↑ (xa,k⊥a)− f̂a/p↓ (xa,k⊥a)

= ∆Nfa/p↑ (xa, k⊥a) cosφa

= −2
k⊥a
Mp

f⊥a1T (xa, k⊥a) cosφa . (1.2)

∆Nfa/p↑(xa, k⊥a) [or f⊥a1T (xa, k⊥a)] is referred to as the Sivers distribution function of par-

ton a inside a transversely polarized proton [79]. φa is the azimuthal angle of the intrinsic

transverse momentum k⊥a of parton a. For details and a full explanation of the notations

in eq. (1.1) see ref. [78]. It suffices to notice here that J(k⊥π) is a kinematical factor, which

at O(k⊥π/Eπ) equals 1 and dσ̂ab→cd/dt̂ is the partonic differential cross section for the

subprocess ab→ cd.
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Notice that the parton a inside the polarized proton can be a quark (or an antiquark)

and a gluon, that is the Sivers contribution to the asymmetry can be expressed as a sum

of two terms,

AN = Aquark
N +Agluon

N , (1.3)

that cannot be disentangled in this process.

For this reason in the following analysis we will take into account all available informa-

tion on the quark Sivers functions. In particular we consider two extractions. The reason

for this is twofold: from one side, in the first extraction (SIDIS1 in the following) [45]

only u and d flavours were considered, while in the second one (SIDIS2) [50] also the sea

quark contributions were accounted for; secondly, and somehow more relevant, in SIDIS1

the set of fragmentation functions of Kretzer [80] was adopted, while in SIDIS2 the set of

de Florian, Sassot and Stratmann (DSS) [81] was considered, which provides a much more

important and very different leading order gluon fragmentation. This aspect, as shown in

the following, could play a non negligible role in the present study.

2 Analysis and results

The presently available data on AN (p↑p → π0X) by the PHENIX Collaboration [1] are

extremely precise, of the order of per mil, and with tiny errors, in particular in the region

of moderate PT , where the gluon initiated processes dominate. In fact, both their central

values and the error bars are at least one order of magnitude smaller than the data analysed

in ref. [2]. For this reason, while in that work a first, very conservative, upper bound on the

gluon Sivers function was presented without entering into a more detailed analysis, here

we want to present a more careful study aiming at a first tentative estimate of the GSF

within a TMD scheme.

As stated above, in the kinematical region considered only the Sivers effect can play a

relevant role, being all the other effects suppressed by strong azimuthal phase cancellations,

as discussed in ref. [2]. If one adopts the more detailed SIDIS2 parameterizations of ref. [50],

where also the sea quark Sivers functions were considered, one would find a contribution to

AN compatible with zero. Taking into account that the data [1] are also almost compatible

with zero, one would conclude that there is no room for the gluon Sivers effect.

In the spirit of ref. [2] we adopt again a conservative attitude and investigate to what

extent, taking into account the uncertainty on the quark Sivers distributions together with

the small errors on the data, a gluon Sivers function could still play a role.

Even if the small number of data points available (ten in this case) does not allow

a full statistical analysis, namely a fit, we still try to substantiate our study adopting

a commonly used statistical criterium. We then define a proper χ2 function and, using

information available both on the experimental and the phenomenological side, we extract

a parametrization of the gluon Sivers function by minimizing it. Since we aim at extracting

the contribution to the Sivers effect from gluons, using the available phenomenological

– 4 –
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information on the corresponding contribution from quarks with its uncertainty, we define

χ2 =
∑ (Agluon

N +Aquark
N −Aexp

N )2

σ2exp + σ2quark
, (2.1)

where the sum runs over the data points, σexp is the experimental error on Aexp
N and

σquark the estimated theoretical uncertainty on the quark contribution Aquark
N , considered

as a known quantity. In such a way we can constrain the gluon contribution taking into

account both the theoretical (even if partially) and the experimental uncertainties.

Concerning the gluon Sivers function we adopt a somehow standard factorized func-

tional form, analogous to the quark case [45, 50], namely:

∆Nfg/p↑(x, k⊥) = 2Ng(x) fg/p(x)h(k⊥)
e−k

2
⊥/〈k

2
⊥〉

π〈k2⊥〉
, (2.2)

where fg/p(x) is the standard unpolarized collinear gluon distribution,

Ng(x) = Ngx
α(1− x)β

(α+ β)(α+β)

ααββ
, (2.3)

with |Ng| ≤ 1, and

h(k⊥) =
√

2e
k⊥
M ′

e−k
2
⊥/M

′2
. (2.4)

With these choices, assuming that the unpolarized TMD gluon distribution is given by

fg/p(x, k⊥) = fg/p(x)
e−k

2
⊥/〈k

2
⊥〉

π〈k2⊥〉
, (2.5)

the Sivers function automatically fulfils its proper positivity bound for any (x, k⊥) values.

Consistently, for the unpolarized TMD fragmentation function (for a parton c) we use

Dπ/c(z, k⊥π) = Dπ/c(z)
e−k

2
⊥π/〈k

2
⊥π〉

π〈k2⊥π〉
〈k2⊥π〉 = 0.20 GeV2 . (2.6)

In the following, for the Gaussian width of the unpolarized TMD gluon distribution we

use the same value as for the quark distribution, that is 〈k2⊥〉 = 0.25 GeV2 [45]. Moreover,

we define the parameter

ρ =
M ′2

〈k2⊥〉+M ′2
, (2.7)

so that the k⊥-dependent part of the Sivers function becomes

h(k⊥)
e−k

2
⊥/〈k

2
⊥〉

π〈k2⊥〉
=

√
2e

π

k⊥
M ′

e−k
2
⊥/M

′2 e−k
2
⊥/〈k

2
⊥〉

〈k2⊥〉
=

√
2e

π

√
1− ρ
ρ

k⊥
e−k

2
⊥/ρ〈k

2
⊥〉

〈k2⊥〉3/2
. (2.8)

From eq. (2.7) it is clear how the range of variation of the parameter ρ is 0-1. In the following

analysis we will also consider ρ as a free parameter, another improvement w.r.t. ref. [2],

where a fixed value of ρ was adopted in order to maximize the gluon Sivers effect.

– 5 –
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We will then minimize the χ2 function defined in eq. (2.1) in terms of the following

four parameters: Ng, α, β entering eq. (2.3) and ρ in eqs. (2.7), (2.8). Since the integration

in eq. (1.1) is over an eight-dimensional phase space, the fit procedure over the continuous

parameter phase space would be quite CPU-time consuming. Therefore, we scan the 4-

dimensional parameter space over a discrete grid of values, fine enough for our purposes.

More precisely, we consider the following ranges: −1 ≤ Ng ≤ 1 (step value of 0.05),

0 ≤ α, β ≤ 4 (step value of 0.2), while for the ρ parameter we consider five representative

values: 2/3 (as adopted in ref. [2] maximizing the effect of the GSF), the same value as for

the quark Sivers function and three more values, 0.2, 0.3, and 0.8 (lower or larger values

would spoil the description of data).

As stated in the introduction, we will consider the results based on the more recent

DSS-SIDIS2 parameterization [50] as well as those obtained adopting the KRE-SIDIS1

set [45], being quite representative extractions of the quark Sivers functions. In both

cases, for consistency, we will adopt the GRV98-LO set [82] for the unpolarized parton

distributions.

As a first step we checked that the unpolarized cross sections in the same kinematical

regime, that is
√
s = 200 GeV and central rapidity, can be reproduced adopting the TMD

distributions and fragmentation functions discussed above. This is an important issue since

these quantities enter as denominators in AN .

After that, we performed our χ2 minimization over the discretized parameter phase-

space. The best (total) χ2 value obtained is χ2
min = 1.93 for the SIDIS2 set and 1.86 for

the SIDIS1 set. Interestingly, the corresponding best value of ρ, in both cases, is equal to

the corresponding one obtained for the quark Sivers function.

Notice that since the parameters are quite correlated among them, many sets in the

explored grid give χ2’s very close to the minimum value and therefore comparable estimates

(see below for a discussion on the uncertainties). An important remark is that about half

of the best χ2 value comes from the largest-PT data point, which has a very large error bar

and is less sensitive to the gluon distributions (largest x). Exclusion of this point would

give a total minimum χ2 of about 1.

For completeness, even if this is not the main aim of our study, and taking them with

a grain of salt (see previous comments), we give the best-fit parameter sets:

Ng = 0.05 α = 0.8 β = 1.4 ρ = 0.576 (SIDIS2) (2.9)

Ng = 0.65 α = 2.8 β = 2.8 ρ = 0.687 (SIDIS1) . (2.10)

Bearing in mind the caution raised above, it is nevertheless interesting to note that in

both cases the gluon Sivers function turns out to be positive. This is another improvement

w.r.t. the previous study [2] where no information on its sign could be extracted.

In the spirit of being conservative and including potential sources of uncertainties, we

will consider also two possible uncertainty bands, generated respectively by the envelope of

the AN values obtained adopting all parameter sets in the parameter-space grid leading to

an increase in the χ2 value of 2% and 10% w.r.t. the χ2
min, that is ∆χ2 = (2−10%)χ2

min. We

notice here that a tolerance of 5% would give results very similar to the 10% uncertainty

– 6 –
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Figure 1. Best estimate of the SSA AN , red solid line, compared with PHENIX data [1] at√
s = 200 GeV and at midrapidity, as a function of PT and adopting the SIDIS2 extraction for the

quark Sivers functions [50]. The red band represents a tolerance of 10% in χ2 (see text for details).
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A
N
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DSS - SIDIS2

∆χ
2
 = 10% χ
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∆χ
2
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2
min

gluon -0.004
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A
N

PT (GeV)

KRE - SIDIS1

∆χ
2
 = 10% χ

2
min

∆χ
2
 = 2% χ

2
min

gluon

Figure 2. Best estimate of the SSA AN , red solid line, compared with PHENIX data [1] at√
s = 200 GeV and at midrapidity, as a function of PT (in the lower PT range), obtained adopting

the SIDIS2 set [50] (left panel) and the SIDIS1 set [45] (right panel) for the quark Sivers functions.

The red(green) band represents a tolerance of 10%(2%) in χ2 (see text for details). The gluon

contribution to AN , blue dotted line, is also shown.

band. As stated above, given the limited number of experimental data, we cannot claim

to have a statistically significant best fit. Therefore, it would not make sense defining and

showing statistical error bands. On the other hand, it is useful to quantify the level of

accuracy in the description of the data and the corresponding gluon Sivers function when

the χ2 varies within these ranges.

In figure 1 we present our results for AN (quark plus gluon contributions) at
√
s =

200 GeV and midrapidity, compared with PHENIX data [1] and adopting the SIDIS2 [50]

extraction of the quark Sivers functions. Here we show the full PT range, together with our

best estimate (solid red line) and a red band corresponding to a tolerance of 10% in χ2, as

explained above. As one can see the description of data is extremely good, even if the scale

adopted in the plot and the tiny data values hide some details. Almost undistinguishable

results are obtained for the SIDIS1 set.
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 Ref. [2]
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Figure 3. First k⊥-moment of the gluon Sivers function as defined in eq. (2.11) for the SIDIS2 set

(left panel) and SIDIS1 set (right panel) at Q2 = 2 GeV2. The best estimates (red solid lines) are

shown together with the tolerance bands corresponding to a 2% (narrower, green) and 10% (wider,

red) variation in the χ2. The former bound on the gluon Sivers function (magenta dotted line),

obtained in ref. [2], is also shown.

To better visualize the data description and the differences between the two sets, in

figure 2 we show the results for AN in the lower PT range for the SIDIS2 (left panel) and

the SIDIS1 (right panel) sets. Quite importantly, this is the region that better constrains

the gluon Sivers contribution. In this case, we also show the narrower tolerance green band

corresponding to a 2% increase in χ2, together with the contribution coming from the best

estimate of the gluon Sivers function (blue dotted line).

Notice that for the full-PT range, the Bjorken x explored varies, roughly, between

6 · 10−3 and 0.6, while in the lower-PT range (up to 5 GeV) the maximum value of x is

around 0.4-0.5. This has to be taken into account, together with the fact that the adopted

quark Sivers functions are constrained by available SIDIS data only in the region up to

x ∼ 0.3. In other words, the present analysis, which aims at constraining the gluon Sivers

function adopting the information on the quark Sivers contribution and the midrapidity

data in pp collisions, is sound only up to x ∼ 0.3−0.4. On the other hand, this is the most

interesting region for a study of gluon distributions.

In figure 3 we present the corresponding results for the first k⊥-moment of the gluon

Sivers function, defined as

∆Nf
(1)

g/p↑
(x) ≡

∫
d2k⊥

k⊥
4Mp

∆Nfg/p↑(x, k⊥) = −f⊥(1)g1T (x) . (2.11)

More precisely we show (SIDIS2 set in the left panel and SIDIS1 set in the right panel)

the best estimates, red solid line, together with the two tolerance bands of 2% (green, the

narrower one) and 10% (red, the wider one) and the previous upper bound obtained in

ref. [2] (magenta dotted line). Notice that the two results (old vs. new bound) for both sets

are not directly comparable due to the deep differences in the two analyses. Nevertheless

from this new study one can appreciate the tiny role left to the gluon Sivers function when

one tries to describe the latest AN data at midrapidity. This is confirmed even assuming

a relatively large tolerance in χ2, like those considered here.
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From these results one can quantify the role played by the indeterminacy on the quark

Sivers functions and on the fragmentation function sets. This is definitely an important

source of uncertainty in the GSF extraction. In particular, as shown in figure 3, we see that

the GSF is much smaller (but with larger uncertainties) for the KRE-SIDIS1 case in the low

x region, while on the contrary is more constrained for the DSS-SIDIS2 case in the large-x

region. For 0.05 . x . 0.3 the two extractions are almost compatible, considering the un-

certainty bands, with the DSS-SIDIS2 bands narrower than the corresponding bands for the

KRE-SIDIS1 set in the low-x region, while the viceversa is true in the large-x region. This

is related to the fact that the SIDIS2 set has also a more constrained sea quark component

and the DSS fragmentation set enhances the role played by the gluon distribution.

Another potential source of uncertainty of this analysis is related to the direct use

of the quark Sivers functions as extracted from SIDIS data. As already remarked in the

introduction, we do not have a proof of TMD factorization and universality of TMD PDFs

for inclusive processes like the one under consideration. Nevertheless, one could speculate

about the possible impact of initial and/or final state interactions.

A way to implement these effects in pp → πX processes was proposed few years ago

in ref. [83], and applied to inclusive pion jet production in pp collisions in ref. [84], in the

framework of the so-called color gauge-invariant (CGI) GPM approach. We recall here that

the authors of these works focused only on the quark initiated processes and that nothing

has been done so far on the gluon sector. To account also for this source of uncertainty we

have reconsidered the contribution of the quark Sivers functions adopting the CGI-GPM.

It is important to note that differently from what happens in the forward rapidity region,

where one gets a contribution of almost the same size but opposite in sign w.r.t. the GPM,

in the midrapidity region the overall effect is a strong reduction in size, but keeping the

same sign. This is due to the fact that in this kinematical region many partonic channels

play a comparable role, leading to relative cancellations among their contributions. The

use of this result in the present analysis would imply a reduction of the GSF and a relative

larger indeterminacy towards its smaller values.

In the spirit of further pursuing this issue we explore a somewhat more extreme sce-

nario, maybe less realistic, but worth of being considered. We repeat the procedure de-

scribed above, adopting a quark Sivers function reversed in sign w.r.t. the one extracted

from SIDIS, even if we are aware that for the process under consideration one would expect

a more involved structure. We think that this attempt should give a clear indication of the

most extreme variation of the GSF uncertainty.

In figure 4 we show the results for the SIDIS2 case, that corresponds to the most

striking effect. In the left panel, one can easily see that the description of AN is now

given in terms of the quark Sivers function alone and that the GSF contribution is almost

negligible. This reflects also in the first moment of the GSF, right panel. Here, beside its

stronger suppression (red solid curve) compared to the GPM result (left panel of figure 3),

the uncertainty bands, even for a tolerance of 2%, extend to very low values, compatible

with zero. Analogous considerations concerning the stronger suppression of the GSF in the

effectively explored region apply also to the SIDIS1 case.
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Figure 4. Left panel: best estimate of AN , red solid line, compared with PHENIX data [1] at√
s = 200 GeV and at midrapidity, as a function of PT (in the lower PT range), obtained adopting

the SIDIS2 set [50] for the quark Sivers functions reversed in sign. The red(green) band represents a

tolerance of 10%(2%) in χ2 (see text for details). The gluon contribution to AN , blue dotted line, is

also shown. Right panel: first k⊥-moment of the gluon Sivers function as defined in eq. (2.11) for the

SIDIS2 set (with the quark parameterizations reversed in sign) at Q2 = 2 GeV2. The best estimate

(red solid line) is shown together with the tolerance bands corresponding to a 2% (narrower, green)

and 10% (wider, red) variation in the χ2. The former bound on the gluon Sivers function (magenta

dotted line), obtained in ref. [2], is also shown.

It is evident that such an extreme scenario would imply an even more negligible role

of the GSF, that could result almost compatible with zero.

In summary, and with all the cautions discussed above, in the x region explored by

pp data the gluon Sivers function can be effectively constrained. It results to be positive,

strongly suppressed with respect to the previous bound [2] and much smaller than its

positivity bound.

3 Conclusions

In this paper we have analyzed the impact of recent, highly precise, data for the transverse

single spin asymmetry AN (p↑p→ π0X) at central rapidity and moderately large transverse

momentum measured by the PHENIX Collaboration at RHIC on our knowledge of the

gluon Sivers function.

To this aim we have utilized the so-called transverse momentum dependent generalized

parton model which takes into account intrinsic parton motion and spin effects, extending

the well-known collinear leading order parton model.

Adopting the most recent phenomenological information, within the same approach,

on the (sea) quark Sivers distributions, coming from SIDIS data, we have shown how the

PHENIX data allow us to constrain the GSF considerably, as compared to the positivity

bound as well as to a previous bound based uniquely on less precise AN data.

We have found that the new constraint is particularly significant, within theoretical

uncertainties, in the region of gluon momentum fraction 0.05 . x . 0.3, that is the

presently explored SIDIS region, where the quark Sivers distributions are well constrained.
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At lower-x values the bound is still effective but theoretical uncertainties become large, as

expected. At larger-x values the bound is looser; on the other hand this is the region where

the relevance of gluon contributions is small due to dominance of quark channels.

We have also considered midrapidity data measured by the STAR collaboration for

pp → jetX processes [85], where one can access directly the TMD-PDFs. On the other

hand these data do not improve the constraint on the GSF due to the PT region explored

and their relatively large error values. We have nevertheless checked that the new bound

is consistent with these data.

We can then say that the present analysis, constraining the GSF in size and sign (a new

aspect w.r.t. ref. [2]), strongly reduces the possible role of the GSF in spin and azimuthal

asymmetries for processes covering x regions similar to those explored here.

Some words of caution are however required: factorization has not been proven in

the context of the TMD-GPM for single inclusive processes in proton-proton collisions. In

our approach TMDs keep their partonic interpretation and universality. However, initial

and/or final state interactions, required to preserve color gauge invariance, might spoil the

factorization for these processes, leading to process dependence and universality breaking

effects. It is not easy to figure out only from theoretical considerations the phenomeno-

logical relevance of these possible effects for currently accessible processes. As a matter of

fact, nowadays the TMD-GPM model is able to reproduce fairly well, within uncertainties,

the majority of experimental data available on azimuthal and single spin asymmetries in

SIDIS and proton-proton collision processes. Moreover, from presently available data there

is no clear and unambiguous evidence of sizable universality breaking effects.

However, to investigate, even in an approximate way, the potential role of the process

dependence of the quark Sivers functions, we have also considered an extreme scenario,

adopting the quark Sivers function as extracted from SIDIS but reversed in sign. In such a

case in the explored region one would get an even more suppressed GSF, with uncertainty

bands extending to values compatible with zero.

For these reasons, we believe that, even if with some caution, the constraints on the

GSF resulting from this analysis are sound within uncertainties and must be taken into

account in further phenomenological analyses involving such TMD distribution.

Less involved processes from the point of view of color gauge links, where proving

factorization might be easier, need to be considered to further clarify the issues concerning

process dependence and test the smallness of the GSF. For example, processes like ep↑ →
QQ̄X, or ep↑ → jet jetX, where only final state interactions (like in SIDIS) are involved,

could be studied at future electron-ion colliders (EIC) [86]. Analogously, in p↑p→ γγ X [87]

or p↑p→ J/ψ γ X processes only initial state interactions are involved like in DY. Moreover,

factorization has been already proved, at the next-to-leading order, for p↑p → ηc,bX [88]

and AN for this process might be measurable at the proposed AFTER@LHC set-up [89, 90].

In refs. [83, 84] a first attempt to compute initial and final state interactions for SSAs

in hadronic collisions within the TMD-GPM approach, focusing on quark initiated sub-

processes, and studying their phenomenological consequences, has been made. It would be

very interesting to extend this kind of analysis to gluon initiated subprocesses, relevant to

the present case, and study its effects on the bounds for the gluon Sivers function.
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