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Abstract 

Background: In spite of its great promise, metabolomics has proven difficult to execute in an untargeted and 
generalizable manner. Liquid chromatography–mass spectrometry (LC–MS) has made it possible to gather data on 
thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottle‑
neck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom 
discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those 
available in curated biochemistry databases.

Description: Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite 
databases to include molecules that have not been observed, but are likely to occur based on known metabolites and 
common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational 
Explorer (BNICE) and expert‑curated reaction rules based on the Enzyme Commission classification system to propose 
the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are 
not present in the PubChem database. However, these MINE compounds have on average higher structural similarity 
to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 
98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far 
fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC–MS accu‑
rate mass data enabled the identity of an unknown peak to be confidently predicted.

Conclusions: MINE databases are freely accessible for non‑commercial use via user‑friendly web‑tools at http://
minedatabase.mcs.anl.gov and developer‑friendly APIs. MINEs improve metabolomics peak identification as com‑
pared to general chemical databases whose results include irrelevant synthetic compounds. Furthermore, MINEs 
complement and expand on previous in silico generated compound databases that focus on human metabolism. We 
are actively developing the database; future versions of this resource will incorporate transformation rules for sponta‑
neous chemical reactions and more advanced filtering and prioritization of candidate structures.
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Background
Metabolomics, the study of the population of small mol-
ecules in a cell, has drawn intense interest in fields from 
medicine to synthetic biology because it can provide a 
fine-grain representation of cellular state and activity 
[1–4]. Of particular interest is untargeted metabolomics, 
which seeks to measure as much of the metabolome as 
possible by limiting methodological detection bias. The 
dominant analysis technique for untargeted metabo-
lomics is chromatography coupled with mass spectrome-
try (MS) but this method is hindered by a large number of 
unknown peaks [5] and the limited number of reference 
spectra available to identify the peaks [6]. A number of 
tools have been developed to propose structural matches 
for unannotated peaks [7–11] but in practice these tools 
either return too many candidates when drawing from 
large chemical databases such as PubChem [12] or miss 
compounds not yet present in curated biochemical data-
base [13, 14].This has the effect of locking untargeted 
metabolomics in a unfortunate paradox: compounds that 
are not present in biochemical databases are not identi-
fied and in the absence of experimental identification, 
new compounds cannot be added to databases [15].

There is a growing consensus that many enzymes medi-
ate undocumented side-reactions (known as promiscu-
ous activities) as a result of exposure to diverse cellular 
metabolites [16, 17]. These activities may explain unanno-
tated peaks in metabolomics datasets [18, 19] but are dif-
ficult to detect as they may be overshadowed by a known 
function [20] or be dependent on intracellular conditions 
[21]. Predicting novel chemical reactions based on broad 
enzyme specificity has been utilized by a number of tools 
for the prediction of new biochemical pathways [22–24]. 
Recently, this technique has also been used to expand 
structure databases for metabolomics by the MyCom-
poundID tool [25] the In Vivo/In Silico Metabolites Data-
base (IIMDB) [15], LipidHome [26] and others [27, 28].

Here we present Metabolic In silico Network Expan-
sions (MINEs) that utilize the Biochemical Network Inte-
grated Network Explorer (BNICE) [29, 30] to expand on 
general biochemical databases as well as organism-spe-
cific databases for Escherichia coli and yeast. The focus on 
endogenously present and organism-specific metabolites 
has been cited as critical to improving the confidence of 
compound matches [5] and thus we complement existing 
resources that focus on human metabolism. In princi-
ple, these predictions could also be made using Reaction 
Difference Matching (RDM) [23], machine learning 
methods [31, 32], or other rule-based methods such as 
ChemAxon’s Metabolizer. Each of these approaches has 
their benefits; the output really depends on the qual-
ity and coverage of the reaction rules used in the analy-
sis. We selected BNICE because we have a set of BNICE 

reaction rules that have been demonstrated to reproduce 
a large fraction of known biochemical reactions [24], 
as well as to predict enzyme reactions that were subse-
quently verified experimentally [33]. Importantly, we also 
have the right to re-distribute BNICE output. No license 
is required for academic users to access the website or 
APIs and all BNICE predicted compounds are available 
for download in SDF format from the website.

Construction and content
Construction of MINE databases follows the steps 
depicted in Fig. 1: BNICE expansion, Standardization and 
Annotation. The standardization and annotation pro-
cedure was guided by previous databases that combine 
reaction and compound data from various sources [34, 
35].

Compound information was obtained from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Release 
68.0) [36], the Yeast Metabolome Database (YMDB) 
(Version 1.0) [37] and EcoCyc (Version 17.0) [38]. Gen-
eralized (containing R groups), inorganic compounds, 
and disconnected fragments were removed using the 
Pybel toolkit [39]. Generalized structures are of very lim-
ited utility, as they cannot be assigned an accurate mass 
or represented in a canonical form. Where possible, we 
encourage developers to avoid ambiguity by enumerat-
ing all possible structures in their databases. Additionally, 
biochemical databases often contain numerous duplicate 
compounds [40] and these were identified by Standard 
InChIKey [41] comparison and removed for computa-
tional efficiency.

The BNICE framework has previously been used to 
explore alternate biosynthetic and xenodegradation 
pathways through the iterative application of general-
ized reaction rules. Unlike some approaches that model 
only a specific class of chemistry (e.g. cytochrome P450 
metabolism) these reaction rules span the breadth of the 
Enzyme Commission (EC) classification system and have 
been hand curated by examining reactions at the third 
level of EC specificity. Figure 2 demonstrates the process 
of encoding the common reactive site motifs as well as 
the bonds that are broken or formed. 198 of these gen-
eralized chemical reaction rules were applied to all com-
pounds in a given source database, resulting in a MINE 
database of predicted products and chemical reactions.

BNICE products may take a variety of tautomeric forms 
depending on the source structure and the nature of the 
operator applied. Therefore, products were processed 
with ChemAxon’s Standardizer & Structure Checker 
(JChem 6.0.4, 2013) to ensure canonical valences and 
placement of charge. Natural Product Likeness scores 
[42] and estimated logP values were calculated with a 
standalone Java ARchive (JAR) package and ChemAxon’s 
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Calculator Plugins (JChem 6.0.4, 2013) respectively. Esti-
mated Kováts Retention Indices were calculated using 
the NIST RI algorithm [43].

Compounds were matched to PubChem [44] and KEGG 
COMPOUND databases with the connectivity block 
of InChIKeys for annotation. Generated compounds 
are assigned identifiers based on hash of the canonical 
SMILES [45] for internal use and a numeric MINE ID for 
human readability. Finally, the exact mass and chemical 
fingerprints of structures were calculated with Pybel.

Compound and reaction data is stored as collec-
tions in a Mongo Database (v2.6.2). A compound entry 

contains the chemical formula, exact mass, InChIKey 
canonical SMILES [45], FP2 and FP4 fingerprints and 
lists of reactions in which the compound is predicted to 
participate as a reactant or product. A compound may 
also be annotated with additional information such as 
common names or database links if it matches a KEGG 
or PubChem entry. Reactions are uniquely identified by 
an ‘R’ followed by the SHA1 hash of the sorted chemi-
cal reaction. Reactions entries contain arrays of reactants 
and products as tuples of the stoichiometric coefficient 
and the compound ID as well as a list of the operators 
that predicted the reaction.

Fig. 1 MINE database construction and access methods. The process of constructing a MINE database from the curated source databases is 
depicted on the left. The methods for accessing the database are shown on the right.

Fig. 2 Generalizing a BNICE reaction rule from known biochemical reactions. The common motif of the hydrolysis of the 1,3‑diketone is shaded for 
emphasis.
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Utility and discussion
Database validation
Table  1 summarizes a few key statistics to compare 
MINEs to other commonly used databases. The most 
conservative metabolite-prediction database is IIMDB 
[15], which utilizes a combination of absolute and relative 
reasoning rules [46] based on human xenometabolism 
to constrain the size of the database. Two other methods 
using computationally-predicted metabolites, MyCom-
poundID [25] and Ridder et  al.’s green tea metabolites 
[27], begin with much smaller metabolite starting sets 
than KEGG COMPOUND but utilize broader reaction 
rules and permit more sequential transformations. MINE 
operators specify reactant substructures but involve no 
relative likeliness calculations and therefore generate 
more compounds than IIMDB, but less than MyCom-
poundID. The relative increase between the starting 
metabolite set and the resulting MINE is dependent on 
the specific compounds present in the starting database. 
For example, YMDB contains more high-molecular-
weight compounds than EcoCyc and thus contains more 
reaction sites and generates more derivatives. Like the 
IIMDB, the majority of compounds in MINE databases 
are not found in PubChem (when searching with the 
InChIKey connectivity block), which indicates MINEs 
are largely composed of novel structures. An analysis of 
the overlap in compounds represented in IIMDB was not 
performed due to licensing restrictions.

Figure  3 displays the Natural Product (NP) Likeness 
scores [42] for 500,000 randomly sampled PubChem 
compounds, and the entirety of the KEGG COMPOUND 
and KEGG MINE databases. NP Likeness is calculated by 
scoring characteristic atomic signatures, which are pre-
sent in the query molecule. Scores range from −3 to 3 
with higher scores indicating a compound that contains 
more natural than synthetic structural features. Despite 
being a common source of candidate structures for anno-
tating metabolomics data, the PubChem sample is clearly 
skewed towards synthetic compounds. In contrast, 

KEGG is primarily Natural Product-like compounds and 
the average KEGG MINE compound is even more so. 
This shift is due to the action of reaction rules in BNICE 
that mimic detoxification metabolism acting on the least 
natural compounds in KEGG and additional reactivity of 
operators with high NP likeness (see Additional file  1). 
This bias toward NP-like compounds makes it a prefer-
able source for candidate structures for unknown path-
way intermediates and peaks in untargeted experiments.

Web interface description
The web interface for the MINE databases has been 
designed for a range of user needs such as (a) investiga-
tion of potential enzymatic transformations, (b) annota-
tion of accurate masses and (c) chemical structure search. 
Users may access a compound of interest with a variety of 
identifiers such as InChI Keys, database IDs or common 
names, or with structure based tools like substructure and 

Table 1 Comparison of MINEs generated from various source databases and other databases containing computationally 
predicted metabolites

Original database  
compounds

Final database  
compounds

Fold increase Compounds found 
in PubChem (%)

KEGG MINE 13,307 571,368 43 6.99

EcoCyc MINE 1,832 54,719 30 11.27

YMDB MINE 1,978 100,755 51 7.26

IIMDB [15] 23,035 400,414 18 5.11

MyCompoundID [25]
(2 generations)

8021 375,809
(10,583,901)

47
(1,320)

Unknown

Green Tea metabolites [27] 75 27,170 363 1.58

Fig. 3 Histogram of Natural Product Likeness. This plot shows the 
distribution of Natural Product Likeness Scores for the KEGG Database 
(mean score 0.77), the KEGG MINE (mean score 0.98) and a random 
sample of 500,000 PubChem compounds (mean score −0.52). A 
more positive score indicates more natural atomic features.
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structural similarity searching. Compound pages display 
a set of name, pathway and enzyme annotations inferred 
from KEGG as well as the in silico predicted reactions 
that a compound may take part in as a reactant or prod-
uct. Additionally, we provide a web interface for the anno-
tation of accurate mass LC–MS data as shown in Fig. 4. 
This utility provides users a way to search for potential 
matches for a large number of mass-to-charge ratios and 
a color-coded interface that enables users to rapidly focus 
on the most probable putative identifications.

Use case: annotation of accurate mass datasets
As a demonstration of the potential of MINEs for anno-
tation of accurate mass data, a diverse test set of 667 
unique compounds was compiled from MassBank [47]. 
The databases were searched by exact precursor mass to 
charge (m/z) ratio with 2 mDa precision and with [M+]+, 
[M+H]+, [M+Na]+, [M−H]− and [M+CH3COO]− 
adducts. The results of this validation are displayed in 
Table 2. Using KEGG as source database, structures were 
suggested for 84.5% of the m/z. The KEGG MINE data-
base annotated an additional 14% of compounds while 
maintaining a similar accuracy to the KEGG annota-
tions. PubChem annotates a comparable number of these 

known compounds to the KEGG MINE but does so at 
the expense of returning a bin of candidates that is two 
orders of magnitude larger than the MINE. While the 
MINE database has a higher median number of struc-
tures per peak than the KEGG database, the number 
remains feasible to examine manually. The web interface 
facilitates this process by distinguishing compounds that 
are present in user specified KEGG genome reconstruc-
tions from those generated by computational means, 
hence allowing users to consider the most probable iso-
mers first. Additionally, users may restrict structures to a 
range of partition coefficients or Kováts retention index 
values. Candidate structures can then be downloaded as 
a Microsoft Excel compatible CSV file for further review.

Finally, to demonstrate the practical utility of MINE 
databases, we utilized the EcoCyc MINE to annotate 

Fig. 4 Screenshot of Metabolomics search results. This screenshot displays features of the metabolomics results including filtering by attributes and 
highlighting (blue) of compound present in a specified KEGG genome reconstruction.

Table 2 Annotation of MassBank data

KEGG KEGG MINE PubChem

Features annotated 84.5% 98.6% 98.5%

Correct annotation present 68.6% 66.8% 89.8%

Median # of candidates 3 46 1714.5



Page 6 of 8Jeffryes et al. J Cheminform  (2015) 7:44 

untargeted metabolomics data from an E. coli knock-
out study analyzed by LC–MS. The protocols for sample 
extraction, data acquisition and post processing are avail-
able in the supplementary information. 493 distinct exact 
MS features were extracted, 30 of which were identified 
following a traditional annotation workflow using NIST 
MSPepsearch (see Additional file  2); in contrast, the 
EcoCyc MINE database proposed candidates for 132 of 
the accurate masses when searching with 5 mDa preci-
sion and with [M+]+, [M+H]+, [M+Na]+ adducts. The 
resulting MINE candidates were consistent with 93% of 
the NIST MSPepsearch results.

Of these 132 features, 79 matched at least one of 
the metabolites proposed in the MINEs by the BNICE 
method. We selected one of these features, which also 
exhibited statistically significant variation in peak height 
across our experimental samples, for further study. The 
EcoCyc MINE database returned one potential hit for this 
metabolite, a phosphoethanolamine (PE) lipid that we 
were not able to identify with our traditional workflow. 
LipidBlast [11] was used to confirm that the MS–MS frag-
mentation pattern, presented in Fig.  5, is consistent with 
PE (32:1), more specifically, PE (16:0/16:1), which is also 
present as a predicted but unidentified lipid in the Lipid-
Home database [26]. Detection and verification of novel 
metabolites is ongoing but beyond the scope of this article.

Further development
In addition to the existing web tools, the underlying 
MINE databases are accessible through free, developer-
friendly APIs. Clients are available for integration into 
Python, Perl and JavaScript frameworks at https://github.
com/JamesJeffryes/MINE-API. This API allows the data-
bases to be integrated into existing candidate ranking 
algorithms and pipelines. Future versions of these data-
bases will incorporate transformation rules for sponta-
neous chemical reactions of metabolites, and improved 
filtering and prioritization of candidate structures.

In addition to expanding the scope for the metabolome, 
the MINE framework also offers a pipeline for illuminat-
ing the synthesis and degradation of poorly annotated 
secondary metabolites. While applied very broadly to 
nearly all of metabolism in this study, BNICE expan-
sions may be focused on a region of interest in the meta-
bolic network by adjusting the starting compounds and 
permissible transformations in a manner similar to that 
recently demonstrated by Ridder et  al. [27]. These tar-
geted MINEs will integrate the generation of plausible 
pathways by BNICE with the tools to detect the presence 
of predicted pathway intermediates with accurate mass 
spectrometry thereby accelerating the process of pro-
posing and evaluating hypothetical enzymatic synthesis 
routes for a number of compounds of interest.

Conclusions
Here we have presented Metabolic In silico Network 
Expansions (MINEs) that utilizes generalized biochemi-
cal transformations to propose structures for use in 
untargeted metabolomics. The resulting compounds 
are rarely found in PubChem but are structurally simi-
lar to natural products. We have demonstrated the util-
ity of these databases for proposing correct metabolite 
structures that stymied a standard annotation workflow. 
MINE data are accessible without licensing restrictions 
for non-commercial users through a user-friendly web 
interface and API for developers in several common 
scripting languages.

Fig. 5 Positive MS spectrum (a), positive MS/MS spectrum (b) and 
negative MS/MS spectrum (c). The positive MS spectrum provides 
the mass of the precursor ion [M+H]+ = 690.5099 Da and its isotopic 
abundance pattern. The prominent ion in the positive MS/MS spec‑
trum corresponds to the neutral loss of the phosphoethanolamine 
head group. The negative MS/MS spectrum shows the molecular ion 
[M−H]− as well as a pair of ions corresponding to the (16:0) and (16:1) 
side chains.

https://github.com/JamesJeffryes/MINE-API
https://github.com/JamesJeffryes/MINE-API
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Availability and requirements
MINE databases are freely accessible at: http://minedata-
base.mcs.anl.gov and API clients are available at https://
github.com/JamesJeffryes/MINE-API. There are no 
restrictions for Academic Use. Commercial users must 
obtain a license from Pathway Solutions Inc. (www.path-
way.jp) and explicit permission from the authors.
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