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Abstract

Background: While fluorodeoxyglucose (FDG) and amyloid PET is valuable for
patient management, research, and clinical trial of therapeutics on Alzheimer’s
disease, the specific details of the PET scanning method including the PET camera
model type influence the image quality, which may further affect the interpretation
of images and quantitative capabilities. To make multicenter PET data reliable and to
establish PET scanning as a universal diagnostic technique and a verified biomarker,
we have proposed phantom test procedures and criteria for optimizing image
quality across different PET cameras.

Results: As the method, four physical parameters (resolution, gray-white contrast,
uniformity, and image noise) were selected as essential to image quality for brain
FDG and amyloid PET and were measured with a Hoffman 3D brain phantom and a
uniform cylindrical phantom on a total of 12 currently used PET models. The
phantom radioactivity and acquisition time were determined based on the standard
scanning protocol for each PET drug (FDG, 11C-PiB, 18F-florbetapir, and 18F-
flutemetamol). Reconstruction parameters were either determined based on the
methods adopted in ADNI, J-ADNI, and other research and clinical trials or optimized
based on measured phantom image parameters under various reconstruction
conditions.
As the result, phantom test criteria were proposed as follows: (i) 8 mm FWHM or
better resolution and (ii) gray/white %contrast ≥55 % with the Hoffman 3D brain
phantom and (iii) SD of 51 small region of interests (ROIs) ≤0.0249 (equivalent to 5 %
variation) for uniformity and (iv) image noise (SD/mean) ≤15 % for a large ROI with
the uniform cylindrical phantom. These criteria provided image quality conforming
to those multicenter clinical studies and were also achievable with most of the PET
cameras that are currently used.

Conclusions: The proposed phantom test criteria facilitate standardization and
qualification of brain FDG and amyloid PET images and deserve further evaluation by
future multicenter clinical studies.
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Background
Brain PET imaging with fluorodeoxyglucose (FDG) and amyloid agents is promising for

early and differential diagnosis of Alzheimer’s disease (AD) and is valuable for clinical

research as well as for clinical trials of therapeutics [1–4].

However, PET image quality depends on the PET camera model and the specific

reconstruction and acquisition details including injected activity, scan time, and re-

construction parameters, even if the radioactivity distribution is the same [5]. The

image quality may affect image interpretation, quantitative capabilities, and even

diagnostic capabilities, which makes it a challenge to acquire reliable data in a

multicenter clinical study. To make PET a universal tool for research and thera-

peutic clinical trials as well as for patient management, the specific details of the

scanning methods used should be “optimized” so that images of equivalent quality,

both visually and quantitatively, can be obtained across different PET camera

models.

In a well-controlled multicenter clinical research using PET on AD, such as

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [6], ADNI2 [7], and J-ADNI [8],

and in industry-sponsored clinical trials [9, 10] on amyloid PET diagnostics or on ther-

apeutics using brain FDG and amyloid PET, the PET QC manager has examined and

qualified the PET cameras of each participating PET center based on phantom data.

PET scanning details such as the reconstruction parameters are often determined dur-

ing the qualification process so that images satisfying certain criteria can be obtained

with each PET camera. However, no universally accepted phantom procedures and cri-

teria have been published by academic societies. The details of the PET camera qualifi-

cation procedures and criteria in industry-sponsored clinical trials are usually not open

to the public.

In this work, we are proposing phantom procedures and criteria for qualification

across different PET cameras to be used for brain FDG and amyloid PET imaging

in multicenter studies. For that purpose, we first defined the elements of quality

that are essential for brain FDG and amyloid PET images as physical parameters

that are measurable in phantom experiments. Then, we examined the available de-

tails of PET scanning methods adopted in multicenter studies such as ADNI and J-

ADNI and measured the physical parameters used with the phantoms to determine

the “criteria,” based on which different PET cameras could be optimized. We also

measured the physical parameters under various scanning conditions on a large

number of PET camera models currently used in Japan to confirm that the criteria

could be achieved by most of the currently used PET cameras under appropriate

scanning conditions.

In terms of amyloid PET drugs, we dealt with 11C-PiB, 18F-florbetapir, and 18F-

flutemetamol, because 11C-PiB has been used as a standard PET drug for research and

the latter two 18F-labeled PET drugs are approved in many countries. 18F-florbetaben,

which is also approved in many countries, was not dealt with in the present work because

the PET camera used in the multicenter study for the efficacy of the PET drug was not

available to us for the phantom experiments. However, the standard injection activity,

scan time, % brain uptake, and other necessary information are provided in the

“Discussion” section so that the readers can plan phantom experiments to evaluate

a PET camera for 18F-florbetaben PET imaging.
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Methods
Essential image quality for brain FDG PET

Detection and evaluation of localized hypometabolism is essential for the interpretation

of FDG-PET images in research and clinical diagnosis regarding Alzheimer’s disease

(AD) and other neurodegenerative disorders. AD is known to present a so-called AD

pattern characterized by reduced FDG uptake in the temporoparietal cortex and in the

posterior cingulate and precuneus, and other neurodegenerative disorders present other

hypometabolic patterns [1]. Since FDG accumulates high in the cerebral cortex, PET

images that have sufficient resolution provide structural information and help identifi-

cation of lesion localization. The ring-shaped area along the contour of the brain on

transaxial slices is called the cortical rim, which is actually a mixture of gray and white

matter tissues interlacing each other. The apparent FDG uptake in the cortical rim re-

flects the proportion of gray matter tissue and is reduced if cortical atrophy occurs

[11]. Therefore, poor resolution may make it difficult to distinguish pathological tissue

hypometabolism from apparently decreased uptake due to atrophy.

In addition to the visual interpretation of FDG-PET images, the so-called statistical

image analysis such as 3D-SSP is often used, in which the subject brain image is

spatially normalized into a template and the relative regional uptake is compared voxel

by voxel with the normal database to generate a z-map or t-map of significant hypome-

tabolism [12, 13]. The z-map is either visually interpreted itself or further processed to

generate a “score” representing the likelihood of the AD pattern [14, 15].

Therefore, FDG-PET images should have sufficiently high resolution and contrast to-

gether with sufficiently low noise to detect mild hypometabolism visually and quantita-

tively. Furthermore, image uniformity is also important because regional FDG uptake is

evaluated as a relatively decreased activity in comparison with other areas both visually

and quantitatively.

Essential image quality for brain amyloid PET

It is essential to detect and gauge abnormal cortical uptake in amyloid PET imaging as

it reflects pathological deposition of amyloid beta plaque. A positive scan is character-

ized by such abnormal uptake and is found in most AD patients and in some cogni-

tively normal elderly subjects, while a negative scan is characterized by the absence of

such abnormal cortical uptake [16]. There are a number of PET drugs used for amyloid

PET imaging, including 11C-PiB, 18F-florbetapir, 18F-florbetaben, and 18F-flutemetamol,

but all of them accumulate non-specifically in the white matter [17–20]. Therefore, it is

necessary to detect mild cortical uptake adjacent to the non-specific uptake in the

white matter, which requires sufficiently high resolution and contrast as well as low

noise. In the case of cortical atrophy, this may often be a challenge.

Quantitative analysis of amyloid PET images is used as an adjunct to the visual inter-

pretation as well as for the evaluation of disease progression and the monitoring of

treatment. The ratio of cortex to cerebellum or pons as a reference region (SUVR) is

the most frequently used indicator [19, 21–23]. The quantitative measurement of the

regional cortical uptake is influenced by a partial volume effect due to limited reso-

lution, in which both spill-in from the white matter and spill-out into the CSF space

occur [24]. Noise degrades the quantitative precision. Furthermore, quantitative cap-

ability is essential for the reference region. Therefore, uniformity within the field of
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view is also important in amyloid PET in addition to resolution, gray-white contrast,

and noise.

Phantoms and physical parameters measured

Based on the above insights, we decided on the following four physical quality parame-

ters for the phantom criteria and the phantoms to be used for measurement.

(i) Resolution: Hoffman 3D brain phantom

(ii) Gray-white contrast: Hoffman 3D brain phantom

(iii) Uniformity: uniform cylindrical phantom

(iv) Image noise: uniform cylindrical phantom

We chose the Hoffman 3D brain phantom (Data Spectrum Corporation, Durham

North Carolina) because it is commercially available with a unique specification and be-

cause it simulates gray-matter and white-matter structures with 4:1 activity concentra-

tion, which is ideal for predicting the image quality of FDG-PET. A gray-white ratio of

4:1 is too high when it comes to detecting mild cortical uptake in amyloid PET, but it

can still provide indicators of resolution and contrast and is considered instrumental

for predicting the image quality of amyloid PET. The uniform cylindrical phantom has

an inner diameter of 16 cm and an inner length of 30 cm and is also commercially

available.

Table 1 presents the phantom radioactivity and the scan time (data acquisition time)

adopted in the proposed phantom procedures to simulate a standard PET scan with

each PET drug. They were derived from the standard injection activity, physical decay

during the accumulation time, average brain uptake, and standard scan time for each

PET drug, based on the following considerations.

Ideally, the phantom is to be filled with the amount of radioactivity that would exist

in the brain at the start of the human PET scan, which is a function of injection activity,

accumulation time (period between injection and start of emission scan, also called up-

take time), and % brain uptake, and depends on the PET drug and protocol as well as

on the pathological status of the subject. However, in view of efficiency and simplicity,

we propose to determine a unique radioactivity value for each phantom regardless of

the PET drug and the study protocol and to adjust the phantom scan time to match

the activity-time product derived from the scanning protocol for each PET drug. As

long as the injection activity is not too high for the count rate characteristics of the

PET camera, as in most of the currently used PET cameras, the activity-time product

determines the amount of available gamma ray counts. Practically, the phantom data

Table 1 Phantom activity at start of scan and the interval to be extracted from list mode phantom
data for each PET drug

Hoffman phantom Cylindrical phantom

Activity at scan start 20 MBq 40 MBq

FDG 1800 s 865 s

PiB 135 s 70 s

Florbetapir 710 s 350 s

Flutemetamol 255 s 180 s
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are acquired in a long list mode so that the interval corresponding to each PET drug

can be extracted and forwarded for image reconstruction. This allows phantom evalu-

ation for two or more PET drugs in one experiment.

Table 2 presents the injection activity, accumulation time, and estimated brain activ-

ity at the start of scan for each PET drug that were used to derive the phantom experi-

ment protocol proposed in this article. The injection activity is specified and

standardized in most situations, and we adopted the values according to ADNI, ADNI2,

J-ADNI, clinical trials of the PET drugs, and Japanese Society of Nuclear Medicine

(JSNM) guidelines [7–10, 12, 25–27]. The accumulation time should be standardized

as much as possible because it affects the distribution of radioactivity, and we followed

the standard methods adopted by previous studies. On the other hand, the scan time

(duration of emission scan) has been variable and may even be determined specifically

for each camera within the same project by phantom experiments through the qualifi-

cation process, depending on the camera sensitivity. We adopted the standard scan

time values written in the JSNM guidelines, which were based on previous studies and

clinical trials, but they may be changed depending on the actual scan time. The % brain

uptake depends on the pathophysiology, and we adopted the average values for each

PET drug from the literature or through personal communication with investigators.

Detailed explanations for each PET drug are given below.

For FDG, we followed the protocol of ADNI and J-ADNI, in which injection activity

was 185 MBq, accumulation time was 30 min, and scan time was 30 min [28].

Formerly, the accumulation time of a typical brain FDG-PET study ranged from 45 to

60 min, when the regional uptake reflects glucose metabolism based on the tracer kin-

etics [29], which is necessary for quantitative measurement of glucose metabolism.

However, if the purpose is identification of hypometabolic pattern and differential diag-

nosis, then a shorter accumulation time is equally effective because the regional blood

flow, which the earlier scan reflects more, parallels the regional metabolism in neurode-

generative disorders [30]. The % brain uptake of FDG at 30 min post-injection was

assumed to be 13 %ID based on the time-%ID curve for the brain [29] leading to esti-

mated brain activity of 20 MBq at 30 min post-injection, with decay taken into account.

This phantom activity is comparable to the 0.5–0.6 mCi that was used in the camera

qualification process for ADNI [5].

For 11C-PiB, we also followed the protocol of ADNI and J-ADNI, in which injection

activity was 555 MBq, accumulation time was 50 min, and scan time was 20 min. The

% brain uptake was assumed to be 3 % (0.53 %IRD) based on the brain time-%IRD

curve in a previous report [31] (%IRD denotes % injected radioactive dose, which is

%ID with decay), leading to an estimated brain activity of 3 MBq.

Table 2 Scanning protocols and assumed brain activity at scan start that are used to derive the
phantom methods of Table 1

PET drug Standard injection activity Accumulation time Standard scan time Estimated brain activity at
start of scan

FDG 185 MBq 30 min 30 min 20 MBq

PiB 555 MBq 50 min 20 min 3 MBq

Florbetapir 370 MBq 50 min 20 min 12 MBq

Flutemetamol 185 MBq 90 min 30 min 3 MBq
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For 18F-florbetapir and 18F-flutemetamol, standard injection activity was 370 and

185 MBq, accumulation time was 50 and 90 min, and standard scan time was 20 and

30 min, respectively. Although the package insert of 18F-florbetapir describes 10 min as

the scan time, we have adopted a scan time of 20 min according to ADNI2 [32] and

other research protocols and the JSNM guidelines [26]. Similar situations were found

for the scan time of 18F-flutemetamol, of which the package insert indicated 20 min,

but we adopted a scan time of 30 min according to the clinical trial protocols [33] and

the JSNM guidelines [26].

The % brain uptake was assumed to be 4.5 %ID and 3.0 %ID based on the dosimetry

study for 18F-florbetapir [34] and 18F-flutemetamol [35], leading to estimated brain

activity of 12 and 3 MBq, respectively.

Amyloid-positive subjects present higher cortical uptake than amyloid-negative subjects

(around 1.5 to 2 times the cortical SUV, depending on the PET drug [12, 17, 22, 23, 36]).

However, a unique phantom protocol was determined for each PET drug, because the

intensity and extent of increased uptake is variable among subjects and because it is im-

portant to detect mild cortical uptake rather than strong extensive uptake.

Phantom data acquisition

A Hoffman 3D brain phantom was filled with 20 MBq of 18F solution (FDG) at

the start of scanning and scanned in a list mode or dynamic mode for 30 min to-

gether with a cylindrical phantom containing 80 MBq of 18F solution (FDG) placed

on the bed 30 cm apart from the end of the phantom simulating the body activity.

Data acquired during the “acquisition times” described in Table 1 were extracted

from the list mode or dynamic mode data and reconstructed with specified or vari-

ous parameters and post-filters. The scan of the uniform cylindrical phantom

started when the activity decayed to 40 MBq and lasted for 30 min in a list or dy-

namic mode. Data acquired during the “acquisition times” described in Table 1

were extracted from the list mode or dynamic mode data and reconstructed with

specified or various parameters and post-filters.

In the case of using a PET camera without list mode to acquire phantom data as the

four PET drugs in Table 1, the Hoffman phantom data were acquired with a dynamic

scan of four frames (135, 120, 455, and 1090 s). Averaged frames were provided for im-

ages to be evaluated. For example, the combination of the first (135 s) and second

(120 s) frames is for flutemetamol (255 s).

To optimize the image reconstruction parameters, we vary the resolution and noise

by changing iteration and subset combinations. In the case of particularly noisy images,

we implemented Gaussian post-filters to control image noise, i.e., a gauss filter of

4 mm FWHM.

Phantom image analysis

Spatial resolution and gray/white contrast were computed from the Hoffman phantom

images in the following manner. Spatial resolution was estimated from visual similarity

between the Hoffman phantom image and the digital phantom obtained from the

vendor treated with a 3D Gaussian filter of various FWHMs [37]. To derive the gray/

white contrast, the JSNM region of interest (ROI) templates were defined on the digital

Hoffman phantom that would provide a true gray-to-white ratio of 4 and were applied
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to the phantom image co-registered to the digital phantom (Fig. 1) [26, 38]. The

%contrast was calculated as follows:

%contrast ¼ GMp=WMp−1
� �

GMd=WMd−1ð Þ � 100

where GMp and WMp were the ROI activity of gray matter and white matter measured

on the phantom PET image, respectively, and GMd and WMd were the ROI activity of

gray matter and white matter on the digital phantom, respectively.

The JSNM ROI templates were provided from gray/white sections in the Hoffman

Digital Phantom Image and scraped along boundary voxels in order to avoid partial vol-

ume effect.

Uniformity and noise were evaluated in the uniform cylindrical phantom images in

the following manner. For uniformity evaluation, 17 circular ROIs of 500 mm2 (uROI)

were placed on the central slice and on two other slices ±40 mm apart from the central

slice, making a total of 51 uROIs. The SDuROI mean was calculated as follows:

SDuROI mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

uROImean

uROITOT
−1

� �2
s

where uROImean was the mean activity of each uROI, n = 51, and uROITOT was the

average of the 51 uROImean.

Fig. 1 ROI template (red for gray matter, yellow for white matter) defined on the digital Hoffman phantom
for evaluation of gray/white contrast
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For noise evaluation, a large circular ROI of 130 mm in diameter (nROI) was placed

on the central slice. The coefficient of variation (CV) was calculated as follows:

CV ¼ SDnROI

nROImean
� 100 %½ �

where SDnROI was the standard deviation of the voxel values within the nROI and

nROImean was the mean nROI activity.

Phantom evaluation under previous clinical protocols

Details of PET scanning methods of previous multicenter clinical study projects that

had been carried out using FDG, PiB, 18F-florbetapir, or 18F-flutemetamol were col-

lected from the literature, presentations at scientific meetings, or through personal

communications from the investigators and PET QC managers of those projects. As a

result, information about the PET camera model, injection activity, accumulation time,

scan time, and reconstruction conditions were obtained for ADNI, J-ADNI, and clinical

trials on efficacy of 18F-labeled amyloid PET drugs.

The phantom images were acquired based on the procedures described above using

the PET cameras of the same model under the same scanning protocols as were used

in those previous clinical studies, including injection activity, accumulation time, scan

time, reconstruction conditions, and post-filters. The physical quality parameters

(spatial resolution, gray-white contrast, uniformity, and image noise) were measured on

the phantom images.

Phantom evaluation for currently used PET cameras

Phantom data were acquired on 19 PET cameras of 12 different models from 15 PET

centers that participated in the J-ADNI2 project according to the procedures described

above. The data for the four intervals corresponding to the four PET drugs described

in Table 1 were extracted and reconstructed with various parameters and post-filters.

Table 4 shows the optimized reconstruction conditions that were selected and the

physical parameters that were measured in this study. The detailed method for deter-

mining the optimized reconstruction parameters for an individual PET camera is re-

ported by Akamatsu et al. [38].

Determination of phantom criteria

The phantom criteria were proposed based on these data so that it conforms to the

image quality and quantitative capability provided by ADNI, J-ADNI, and clinical trials

and so that most PET camera models could meet the criteria by selecting appropriate

reconstruction parameters.

Results
Table 3 summarizes the scanning conditions including the reconstruction parameters

for each PET camera model used in PET scans with FDG, PiB, 18F-florbetapir, and 18F-

flutemetamol in ADNI, ADNI2, J-ADNI, and clinical trials on 18F-florbetapir and 18F-

flutemetamol. The phantom data were obtained according to the corresponding proto-

col, and the physical parameters measured on the phantom images were also presented.

The spatial resolution was 9 mm FWHM or better in all cases and 7 mm FWHM or
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Table 3 PET camera models and protocols used in clinical studies and physical parameters measured with phantoms

PET agent Vendor, model Reconstruction parameters Study Spatial resolution
(mm)

%contrast Uniformity (SD) Image noise
(CV [%])

FDG GE, Advance FORE + OSEM, subset = 20, iteration = 4, Z-axis; none J-ADNIa 7 61 0.0249 13.7

Shimadzu, Eminence GM HDE, FORE-DRAMA, filter cycle = 0, iteration = 4 7 55 0.0249 8.8

Shimadzu, HeadtomeV FORE + OSEM, subset = 16, iteration = 4, Ramp × BW cf = 8 o = 2 7 61.6 0.0200 9.6

Shimadzu, HeadtomeV FORE + OSEM, subset = 16, iteration = 4, Ramp x BW cf = 8 o = 2 7 65.5 0.0230 9.7

SIEMENS, biograph Hi-Rez FORE + OSEM, subset = 14, iteration = 4 7 64.4 0.0130 7.6

SIEMENS, biograph Hi-Rez FORE + OSEM, subset = 16, iteration = 4 7 63.1 0.0150 6.9

SIEMENS, biograph truePoint FORE + OSEM, subset = 14, iteration = 4 6 61.3 0.0100 7.1

SIEMENS, biograph Hi-Rez FORE + OSEM, subset = 16, iteration = 4, Gaussian (XxYxZ = 5.5 × 5.5 × 5.5) ADNIa 9 52.8 0.0120 2.73

SIEMENS, ECAT Accel FORE + OSEM, subset = 16, iteration = 6, Gaussian (XxYxZ = 2.0 × 2.0 × 3.0) 7 54.6 0.0200 6.03

Florbetapir GE, Discovery690 3D-iteration, subset = 16, iteration = 4, Gaussian (XxYxZ = 5 mm) *1 7 56.9 0.0120 6.2

GE, Discovery690 3D-iteration, subset = 18, iteration = 3, Gaussian (XxYxZ = 2 mm), PSF (+) *2 6 58 0.0110 11.7

SIEMENS, biograph Hi-Rez FORE + OSEM, subset = 16, iteration = 4, Gaussian (XxYxZ = 5.5 × 5.5 × 5.5) ADNIa 7 62.8 0.0120 11

SIEMENS, ECAT Accel FORE + OSEM, subset = 16, iteration = 6, Gaussian (XxYxZ = 2.0 × 2.0 × 3.0) 7 55.4 0.0200 10

Flutemetamol GE, Discovery690 3D-iteration, subset = 32, iteration = 3, Gaussian (XxYxZ = 5 mm), TOF (+) *3 6.5 55.7 0.0230 8.8

PiB GE, Advance FORE + OSEM, subset = 20, iteration = 4, Z-axis; none, Gaussian (XxYxZ = 4 mm) J-ADNIa 7 58 0.0249 17.9

Shimadzu, Eminence GM HDE, FORE-DRAMA, filter cycle = 0, iteration = 4, Gaussian (XxYxZ = 4 mm) 8 51 0.0249 13.7

Shimadzu, HeadtomeV FORE + OSEM, subset = 16, iteration = 4, Ramp × BW cf = 8 o = 2,
Gaussian (XxYxZ = 4 mm)

8 53.7 0.0200 18.4

Shimadzu, HeadtomeV FORE + OSEM, subset = 16, iteration = 4, Ramp × BW cf = 8 o = 2,
Gaussian (XxYxZ = 4 mm)

7 57.7 0.0230 16.1

SIEMENS, biograph Hi-Rez FORE + OSEM, subset = 14, iteration = 4, Gaussian (XxYxZ = 4 mm) 8 59.5 0.0130 12.4

SIEMENS, biograph Hi-Rez FORE + OSEM, subset = 16, iteration = 4, Gaussian (XxYxZ = 4 mm) 8 58.3 0.0150 11.8
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Table 3 PET camera models and protocols used in clinical studies and physical parameters measured with phantoms (Continued)

SIEMENS, biograph truePoint FORE + OSEM, subset = 14, iteration = 4, Gaussian (XxYxZ = 4 mm) 8 56.4 0.0100 10.9

SIEMENS, biograph Hi-Rez FORE + OSEM, subset = 16, iteration = 4, Gaussian (XxYxZ = 5.5 × 5.5 × 5.5) ADNIa 9 52.1 0.0120 7.78

SIEMENS, ECAT Accel FORE + OSEM, subset = 16, iteration = 6, Gaussian (XxYxZ = 2.0 × 2.0 × 3.0) 9 51.8 0.0200 20.49

Italic numbers represent performances deviated from the proposed criteria of phantom test. For *1 and *2, injection activity, accumulation time, and scan time are 370 MBq, 50 min, and 10 min, respectively, in clinical
trials with florbetapir. For *3, injection activity, accumulation time, and scan time are 185 MBq, 90 min, and 30 min, respectively, in clinical trial with flutemetamol. See text and cited literatures
aIn ADNI and J-ADNI, injection activity, accumulation time, and scan time are 185 MBq, 30 min, and 30 min for FDG, 555 MBq, 50 min, and 20 min for PiB, 370 MBq, 50 min, and 20 min for florbetapir, respectively
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better in most of them. The %contrast ranged from 51.0 to 65.5 and was inversely asso-

ciated with the FWHM values. The uniformity (SD) was below 0.0249, and the image

noise ranged from 2.7 to 20.5.

Figure 2 plots the %contrast measured with the Hoffman phantom against the image

noise (CV) measured with the cylindrical phantom for the 12 PET camera models that

were acquired with the protocol for each PET drug and reconstructed with the condi-

tions that were considered appropriate in terms the trade-off between %contrast and

image noise. For most PET cameras, optimized reconstruction conditions were found

that provided %contrast 55 % or higher and image noise (CV) 15 % or lower. However,

in three PET camera models, which were rather old types, no reconstruction conditions

provided %contrast and image noise within the above range under the phantom proto-

col for one or more PET drugs. Figure 3 depicts such a case, in which changing the re-

construction parameters (subjects and iterations) and post-filter resulted in a trade-off

between %contrast and image noise and did not reach an image that satisfies both

criteria.

Based on these results, we decided to propose “55 % or higher” as the criteria for the

%contrast and “15 % or lower” as the criteria for CV. We also propose 8 mm FWHM

as the criteria for the spatial resolution, because the spatial resolution was 8 mm

FWHM or better whenever %contrast was 55 % or higher. As for uniformity (SD), we

adopted 0.0249 or lower.

In contrast with Table 3 of values obtained from national projects and clinical

trials, Table 4 summarizes the optimized image results provided by optimized re-

construction parameters for 12 PET cameras. Most PET cameras met the criteria

except for some old ones. The spatial resolution was 8 mm FWHM or better, and

the uniformity (SD) was below 0.0249 in all models. The SD of 0.0249 corresponds

to 95 % of the uROI mean values within 5 % of the mean assuming normal

distribution.

Fig. 2 Scatter plots of %contrast and image noise (CV [%]) of phantom images reconstructed with
optimized parameters for each camera and PET drug. Each point stands for each camera with adapted
reconstruction parameter. Some camera needed to select parameters that were different from clinical
settings. There was the trade-off between %contrast and image noise (CV [%])
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Discussion
To make multicenter PET data reliable and to establish the PET scan as a universal tool

for brain studies, we have proposed phantom test procedures and criteria to optimize

the image quality across different PET cameras.

It should be emphasized that no theoretical absolutes exist as reference values for

those physical parameters of the phantom test. If the reference values are set at a high

level, then the PET images acquired in the multicenter study will be of higher quality,

which may possibly lead to a result demonstrating higher diagnostic capability of the

PET imaging for the study population. However, only a few PET camera models will

meet the criteria and can be used for the study project, which may reduce the number

of participating PET centers and, accordingly, limit the number of study cases. If a new

PET drug is approved by the regulatory authorities based on the multicenter study data,

and if the phantom criteria become a requirement for the PET camera to be used, the

PET scan may not be readily available to the public. On the other hand, if the reference

values are set at a low level, then all PET camera models will meet the criteria, and all

PET centers will be able to participate in the multicenter study from the viewpoint of

PET camera performance. However, the quality of the PET images may not be high

enough to demonstrate the efficacy of a new PET drug.

It is desirable that the proposed criteria should conform to the image quality level at

which multicenter clinical studies have been performed in order to obtain evidence of

the efficacy of a PET drug or to build databases in the academic community, such as

ADNI, ADNI2, J-ADNI, and clinical trials of 18F-florbetapir and 18F-flutemetamol.

Therefore, phantom experiments were carried out to obtain the parameter values on

the PET camera models that were used in the multicenter clinical studies under the

scanning conditions specified for each camera. In such well-organized multicenter

studies, the designated PET QC manager examines and qualifies the PET camera of

each participating center with the phantoms by determining appropriate reconstruction

Fig. 3 Relationship between %contrast and image noise (CV) with the reconstruction parameter (96 iterative
updates: iteration = 6 and subset = 16) and different post-filters (2, 4, and 6 mm FWHM Gaussian filter) for an
old PET camera model measured with the phantoms under flutemetamol condition. Ninety-six iterative updates
and other iterative updates (80 and 128, data not shown) did not satisfy the criteria (shaded region)
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Table 4 Phantom image performances acquired with reconstruction parameters optimized for each PET camera and for each PET drug

Vendor, model PET drug Reconstruction parameters Spatial resolution
(mm)

%contrast (%) Uniformity (SD) Image noise
(CV [%])

GE, Advance FDG FORE + OSEM, subset = 20, iteration = 4, Z-axis; none 7.0 61.0 0.0245 13.7

Florbetapir FORE + OSEM, subset = 20, iteration = 4, Z-axis; none, Gaussian 4 mm 7.0 56.2 0.0245 10.7

Flutemetamol FORE + OSEM, subset = 20, iteration = 4, Z-axis; none, Gaussian 4 mm 7.0 58.0 0.0245 13.7

PiB FORE + OSEM, subset = 20, iteration = 4, Z-axis; none, Gaussian 4.5 mm 7.0 55.5 0.0245 14.1

GE, Discovery 600a FDG 3D-iteration, subset = 16, iteration = 5 5.3 72.9 0.0103 7.7

Florbetapir 3D-iteration, subset = 16, iteration = 5 5.3 73.3 0.0103 12.0

Flutemetamol 3D-iteration, subset = 16, iteration = 5, Gaussian (XxYxZ = 4 mm) 6.7 68.8 0.0103 9.1

PiB 3D-iteration, subset = 16, iteration = 5, Gaussian (XxYxZ = 4 mm) 6.7 67.9 0.0103 12.3

GE, Discovery 690/710a FDG 3D-iteration, subset = 16, iteration = 4 5.3 65.6 0.0107 7.8

Florbetapir 3D-iteration, subset = 16, iteration = 4 5.3 65.0 0.0115 12.3

Flutemetamol 3D-iteration, subset = 16, iteration = 4, Gaussian (XxYxZ = 4 mm) 6.3 61.2 0.0107 9.2

PiB 3D-iteration, subset = 16, iteration = 4, Gaussian (XxYxZ = 5 mm) 6.2 56.9 0.0110 8.2

GE, Discovery ST Elite FDG 3D-iteration, subset = 35, iteration = 2, Z-axis; standard 5.5 68.9 0.0140 7.8

Florbetapir 3D-iteration, subset = 35, iteration = 2, Z-axis; standard 5.5 70.5 0.0140 12.2

Flutemetamol 3D-iteration, subset = 35, iteration = 2, Z-axis; standard, Gaussian (XxYxZ = 4 mm) 6.0 67.2 0.0140 9.9

PiB 3D-iteration, subset = 35, iteration = 2, Z-axis; standard, Gaussian (XxYxZ = 4 mm) 6.0 67.0 0.0140 13.3

GE, Discovery ST
(upgraded for 3D-IR)

FDG 3D-iteration, subset = 21, iteration = 4, Z-axis; standard 6.0 73.0 0.0120 7.1

Florbetapir 3D-iteration, subset = 21, iteration = 4, Z-axis; standard 6.0 75.0 0.0120 10.8

Flutemetamol 3D-iteration, subset = 21, iteration = 4, Z-axis; standard, Gaussian (XxYxZ = 4 mm) 6.0 67.6 0.0120 9.6

PiB 3D-iteration, subset = 21, iteration = 4, Z-axis; standard, Gaussian (XxYxZ = 4 mm) 6.0 65.8 0.0120 13.2
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Table 4 Phantom image performances acquired with reconstruction parameters optimized for each PET camera and for each PET drug (Continued)

Shimadzu, HeadtomeVb FDG FORE + OSEM, subset = 16, iteration = 4, Ramp × BW cf = 8 o = 2 7.0 63.6 0.0215 9.7

Florbetapir FORE + OSEM, subset = 16, iteration = 4, Ramp × BW cf = 8 o = 2 7.0 63.1 0.0215 11.5

Flutemetamol FORE + OSEM, subset = 16, iteration = 4, Ramp × BW cf = 8 o = 2, Gaussian (XxYxZ = 4 mm) 7.5 56.3 0.0215 13.2

PiB FORE + OSEM, subset = 16, iteration = 4, Ramp × BW cf = 8 o = 2, Gaussian (XxYxZ = 4 mm) 7.5 55.7 0.0215 17.3

Shimadzu, Eminence BX FDG HDE, FORE-DRAMA, filter cycle = 0, iteration = 4 6.0 72.4 0.0180 6.5

Florbetapir HDE, FORE-DRAMA, filter cycle = 0, iteration = 4 6.0 72.3 0.0180 9.7

Flutemetamol HDE, FORE-DRAMA, filter cycle = 0, iteration = 4, Gaussian (XxYxZ = 4 mm) 7.0 66.0 0.0180 8.5

PiB HDE, FORE-DRAMA, filter cycle = 0, iteration = 4, Gaussian (XxYxZ = 4 mm) 7.0 65.4 0.0180 11.3

Shimadzu, Eminence GM FDG HDE, FORE-DRAMA, filter cycle = 0, iteration = 4 7.0 55.0 0.0249 8.8

Florbetapir HDE, FORE-DRAMA, filter cycle = 0, iteration = 4 7.0 56.0 0.0249 13.4

Flutemetamol HDE, FORE-DRAMA, filter cycle = 0, iteration = 4, Gaussian (XxYxZ = 4 mm) 8.0 50.0 0.0249 10.5

PiB HDE, FORE-DRAMA, filter cycle = 0, iteration = 4, Gaussian (XxYxZ = 4 mm) 8.0 51.0 0.0249 13.7

SIEMENS, biograph Hi-Reza FDG FORE + OSEM, subset = 14 (16), iteration = 4 7.0 64.0 0.0140 6.5

Florbetapir FORE + OSEM, subset = 14 (16), iteration = 4 7.0 63.6 0.0140 10.0

Flutemetamol FORE + OSEM, subset = 14 (16), iteration = 4, Gaussian (XxYxZ = 4 mm) 8.0 57.8 0.0135 9.7

PiB FORE + OSEM, subset = 14 (16), iteration = 4, Gaussian (XxYxZ = 4 mm) 8.0 58.2 0.0140 12.2

SIEMENS, biograph mCT-X 3R FDG 3D-iterative, subset = 12, iteration = 4 6.0 71.0 0.0150 9.8

Florbetapir 3D-iterative, subset = 12, iteration = 4 6.0 71.0 0.0150 14.9

Flutemetamol 3D-iterative, subset = 12, iteration = 4, Gaussian (XxYxZ = 4 mm) 7.0 64.0 0.0150 8.5

PiB 3D-iterative, subset = 12, iteration = 4, Gaussian (XxYxZ = 4 mm) 7.0 64.0 0.0150 11.5

SIEMENS, biograph truePoint FDG FORE + OSEM, subset = 14, iteration = 4 6.0 61.3 0.0100 7.1

Florbetapir FORE + OSEM, subset = 14, iteration = 4 6.0 61.3 0.0100 10.1

Flutemetamol FORE + OSEM, subset = 14, iteration = 4, Gaussian (XxYxZ = 4 mm) 8.0 56.4 0.0100 8.1

PiB FORE + OSEM, subset = 14, iteration = 4, Gaussian (XxYxZ = 4 mm) 8.0 56.4 0.0100 10.9
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Table 4 Phantom image performances acquired with reconstruction parameters optimized for each PET camera and for each PET drug (Continued)

SIEMENS, ECAT Accel FDG FORE + OSEM, subset = 16, iteration = 6 7.0 56.0 0.0210 6.6

Florbetapir FORE + OSEM, subset = 16, iteration = 6 7.0 55.3 0.0210 9.9

Flutemetamol FORE + OSEM, subset = 16, iteration = 6, Gaussian (XxYxZ = 4 mm) 8.0 50.5 0.0210 11.4

PiB FORE + OSEM, subset = 16, iteration = 6, Gaussian (XxYxZ = 4 mm) 8.0 49.4 0.0210 16.2

Italic numbers represent performances deviated from the proposed criteria of phantom test for the specific PET drug condition
aThe parameters are the mean values of three cameras of the same model
bThe parameters are the mean values of two cameras of the same model
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conditions. Therefore, the scanning details adopted in such studies would provide cred-

ible information about the level of image quality that the PET images acquired with

each PET drug should satisfy in general. One of the primary limitations of this method

is that the gray-white ratios that are central to amyloid analysis are not well or directly

tested with the Hoffman phantom. The Hoffman phantom may have applicable com-

plexity in terms of anatomy, but not in terms of distributions, especially for amyloid

PET scans. The distributions of the Hoffman phantom are not directly applicable to the

method, in particular, the cerebellum and pons typically used as reference tissues.

It is also desirable that most of the currently used PET cameras should be able to

meet the phantom test criteria under appropriate scanning conditions so that most

PET centers can participate in a multicenter study that adopts the criteria. Therefore,

the phantom experiments were also carried out on most PET camera models used in

Japan to confirm that the criteria are achievable by selecting appropriate reconstruction

conditions for most of them (Table 4). Naturally, the reference values in the criteria

might change in the future according to the development and advent of new PET cam-

eras with higher physical performance when older cameras are replaced by newer

models.

To optimize the PET image quality between PET centers and between PET cameras

in a multicenter study, the investigator is supposed to find such appropriate reconstruc-

tion parameters that will generate phantom images satisfying the criteria. The scan time

(data acquisition time) may be adjusted depending on the sensitivity of the PET camera

so that sufficient gamma ray counts are collected. For PET cameras with poor intrinsic

performance, it may be difficult to find reconstruction parameters that will satisfy both

resolution (%contrast) and noise, as depicted in Fig. 3, due to a trade-off between image

resolution and noise. In this particular case, lengthening the scan time may suppress

the noise without degrading the contrast. However, since Fig. 3 represents a case for
18F-flutemetamol, in which the standard clinical scan time is as long as 30 min, it may

be practically difficult to make it any longer. If no reconstruction parameters or scan

time are found for a certain PET camera that can generate phantom images satisfying

the criteria, then the investigator may decide not to use the PET camera for a multicen-

ter project. It is, of course, up to the investigator whether to conform strictly to the cri-

teria or to allow some deviation.

As an 18F-labeled amyloid PET drug, 18F-florbetaben has also been developed and is

commercially available in the USA, South Korea, and Europe [19]. The distribution of
18F-florbetaben in the brain is similar to 18F-florbetapir [39]; however, a difference be-

tween 18F-florbetapir and 18F-florbetaben, which is a nitrogen atom in the chemical

structure, affects the pharmacokinetic properties and retention of the tracer in the tar-

get region. The imaging window for 18F-florbetaben providing the highest contrast be-

tween gray matter and white matter begins at 90 min post-injection. According to the

sponsor company (Piramal Imaging), the standard injection activity, accumulation time,

and scan time for 18F-florbetaben are 300 MBq, 90 min accumulation, and 20 min scan,

respectively, and the average % brain uptake at 90 min post-injection was 3.5 %ID,

based on the data of clinical trials in Japan, leading to the estimated brain activity of

6 MBq at scan start [26]. Therefore, the phantom data interval to be extracted for list

mode data acquisition is 355 s for the Hoffman phantom (20 MBq at start) and 180 s

for the cylindrical phantom (40 MBq at start) under standard scanning conditions.
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Conclusions
Based on these considerations, we have proposed phantom criteria that will guarantee

sufficient quality for multicenter brain PET studies and that can be met by most cur-

rently used cameras. The proposed criteria will help raise the quality of multicenter

brain PET studies.
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