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Abstract

Background: Apolipoprotein E (APOE) ɛ4 and low cerebrospinal fluid (CSF) amyloid-β42 (Aβ42) levels are predictors
for developing Alzheimer’s disease (AD). The results of several studies indicate an interaction between docosahexaenoic
acid (DHA) consumption and cognitive outcomes by APOE genotype. Our objective in the present study was to examine
whether APOE ɛ4 genotype and low CSF Aβ42 levels were associated with reduced delivery of DHA to CSF in the
Alzheimer’s Disease Cooperative Study-sponsored DHA clinical trial.

Methods: Phospholipid DHA was assayed in the plasma of 384 participants and CSF of 70 participants at baseline. Forty-four
of the 70 participants completed the 18-month follow-up visit after allocation to placebo (n= 15) or DHA (n = 29). Plasma
and CSF DHA levels, CSF Aβ42, Tau, and phosphorylated Tau were measured at baseline and after the 18-month
intervention. Participants were divided into tertiles based on baseline Aβ42 CSF levels. To assess DHA delivery across the
blood-brain barrier, the ratio of CSF to plasma DHA levels was calculated.

Results: At baseline, there were no significant differences between CSF or plasma phospholipid DHA levels by CSF Aβ42
tertiles or ɛ4 status. After 18 months of DHA supplementation, participants at the lowest Aβ42 tertile had significantly
lower CSF DHA levels (p = 0.01) and lower CSF-to-plasma DHA ratios (p= 0.05) compared to the other tertiles. Baseline CSF
Aβ42 levels were significantly lower in ɛ4 carriers than in ɛ4 noncarriers (p= 0.01). Participants carrying the ɛ4 allele (n= 25)
demonstrated a less pronounced increase in CSF DHA level compared with noncarriers (n= 4), with a possible interaction
effect between treatment and APOE genotype (p= 0.07).

Conclusions: APOE ɛ4 allele and lower CSF Aβ42 levels were associated with less transport of DHA to CSF. Brain amyloid
pathology may limit the delivery of DHA to the brain in AD.

Trial Registration: Clinicaltrials.gov identifier: NCT00440050. Registered on 22 Feb 2007.
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Background
Among the genes associated with late-onset Alzheimer’s
disease (AD), the gene encoding for apolipoprotein E
(APOE) ɛ4 has the strongest correlation with disease on-
set [1–3]. The ɛ4 isoform is expressed in about 15 % of
the general population. However, it is present in about
40 % of patients with AD. Individuals with one ɛ4 allele
have a 3- to 4-fold increased propensity toward

developing AD, which increases to 12-fold for individ-
uals homozygous for the ɛ4 allele [2]. Furthermore,
APOE ɛ4 has a similar effect on age of AD onset, with
carriers of the ɛ4 allele developing AD symptoms earlier
than the ɛ3 carriers. Conversely, individuals with the ɛ2
allele have a lower risk of developing AD [3].
Docosahexaenoic acid (DHA), an omega-3 polyunsat-

urated fatty acid (n-3 PUFA) is important for brain
health, as humans may not produce enough of it de
novo. DHA is required for maintenance of neuronal
membranes, amyloid-β (Aβ) clearance, and modulation
of inflammation [4]. DHA is involved in a variety of
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physiological processes, including aging, memory forma-
tion, synaptic membrane function, photoreceptor biogen-
esis and function, and neuroprotection. The levels of
plasma DHA correlate with brain DHA content [5], and
they are reduced in AD brains [6–8]. Despite a large num-
ber of observational studies linking DHA intake to cogni-
tive health [4], randomized controlled trials in which
investigators tested the effect of DHA intake on cognitive
function presented conflicting results [9–13]. Several stud-
ies suggested that carriers and non-carriers of APOE ɛ4
respond differently to DHA supplementation [12, 14–18],
with little or no effect of DHA supplementation [12]
and no relationship between the omega-3 on erythro-
cyte membranes with measures of cognition [17, 18] in
ɛ4 carriers with cognitive impairment.
DHA crosses the blood-brain barrier after supplemen-

tation, but little is known about the factors that regulate
its delivery to the brain [19]. A preclinical study in human
APOE replacement mice demonstrated reduced delivery
of 14C -labeled DHA to the brain in the ɛ4 compared
with the ɛ3 and ɛ2 human replacement mice [20]. In
a different study, Calon et al. measured cerebral up-
take of 14C-DHA in 3xTg-AD mice that are prone to
brain amyloid deposition. Those investigators found a
25 % (p < 0.001) decrease of brain transport coefficients
of 14C-DHA in this model of AD compared with non-
transgenic littermates [21]. To our knowledge, researchers
examined the effect of DHA supplementation on cerebro-
spinal fluid (CSF) levels in humans in only two studies.
[12, 22]. In one study by Freund-Levi et al., CSF DHA
levels were increased after 6 months supplementation
with 2.3 g/day of a combination of n-3 PUFA, but
the effect of APOE genotype on CSF delivery of DHA
was not assessed. In the other study, a randomized,
placebo-controlled clinical trial sponsored by the
Alzheimer’s Disease Cooperative Study (ADCS), re-
searchers tested the effect of 2 g/day of DHA supple-
mentation on cognitive function in AD over the
course of 18 months, and reported a significant increase
in CSF DHA after supplementation [12]. The primary
study outcomes were the Alzheimer’s Disease Assessment
Scale-Cognition (ADAS-cog) and Clinical Dementia
Rating. Both cognitive scores did not improve after DHA
supplementation [12]. A preplanned secondary analysis
of the ADCS-sponsored trial demonstrated cognitive
improvements in both ADAS-cog and the Mini Mental
State Examination (MMSE) in non-carriers of the
APOE ɛ4 allele. We hypothesized that carrying the
APOE ɛ4 allele and cerebral amyloidosis as indexed by
lower CSF Aβ42 levels limit the delivery of DHA to the
brain. Therefore, we assessed the amount of DHA in
CSF after the intervention by APOE ɛ4 genotype and
baseline CSF Aβ42 levels in the placebo and treatment
arms in this ADCS-sponsored DHA trial.

Methods
Overview
The data were obtained from a completed, randomized,
double-blind, placebo-controlled trial that was spon-
sored by the ADCS, a consortium of academic medical
centers and private AD clinics funded by the National
Institute on Aging. Fifty-one U.S. centers participated in
this trial after obtaining approval from their local institu-
tional review boards.
Individuals with probable AD were eligible if (1) their

MMSE score was between 14 and 26, (2) they were med-
ically stable, (3) they consumed on average no more than
200 mg/day of DHA (as assessed by a brief 7-item food
frequency questionnaire [23]), and (4) they were not tak-
ing DHA or omega-3 fatty-acid supplements. A total of
384 of 402 study trial participants provided plasma for
DHA measurements. Participants were randomly allo-
cated to placebo or 2 g of DHA (supplied by DSM
Nutritional Products, Columbia, MD, USA) and ob-
served for 18 months. A total of 295 participants com-
pleted the trial while taking study medication (DHA
group 171, placebo group 124). All participants without
contraindications to CSF examination (e.g., anticoagula-
tion) were invited to participate in the CSF study. In
these individuals, lumbar puncture was performed the
morning after an overnight fast at baseline and
18 months following randomization.
The study drug was an algae-derived DHA (DHASCO

oil) obtained from DSM Nutritional Products, adminis-
tered as four capsules, dosed as 1 g twice per day for a
total daily dose of 2 g/day of DHA. DHASCO oil con-
tains approximately 45–55 % DHA by weight and does
not contain eicosapentaenoic acid (EPA). The DHA dose
was selected on the basis of evidence that plasma levels
increase in a dose-dependent manner up to approxi-
mately 2 g/day, while at higher DHA doses no further
increase in plasma DHA is observed [24]. Placebo (corn/
soy oil) capsules were identical in appearance.
In the fatty-acid analysis, plasma phospholipid fatty-

acid levels were determined at DSM Nutritional Prod-
ucts using established methods [24] with modifications
for CSF analysis. Briefly, plasma total lipids were ex-
tracted from 400 μl of plasma using the methods of
Folch et al. [25]. The plasma phospholipids were isolated
by thin-layer chromatography using 60/40/3 vol/vol/vol
hexane/ether/acetic acid on 20 × 20 silica gel 60 plates
with 250-μm thickness. CSF total lipids were extracted
from 4 ml of CSF, also using the methods of Folch et al.
Tricosanoic free fatty acid (23:0) was added to each sam-
ple as an internal standard. The plasma phospholipids
and CSF total lipids were saponified with 0.5 N metha-
nolic sodium hydroxide, and the fatty acids were con-
verted to methyl esters with 14 % boron trifluoride/
methanol at 100 °C for 30 minutes [26]. Fatty-acid
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methyl esters were analyzed by gas-liquid chromatog-
raphy using a Hewlett Packard 6890 chromatograph
(Agilent Technologies, Santa Clara, CA, USA) equipped
with a flame ionization detector. The fatty-acid methyl
esters were separated on a 30-m FAMEWAX capillary
column (0.25-mm diameter, 0.25-μm coating thickness;
Restek, Bellefonte, PA, USA) using hydrogen at a flow
rate of 2.1 ml/minute. The chromatographic run param-
eters included an oven starting temperature of 130 °C
that was increased at a rate of 6 °C/minute to 225 °C,
where it was held for 20 minutes before being increased
to 250 °C at a rate of 15 °C/minute, with a final hold of
5 minutes. The injector and detector temperatures were
constant at 220 °C and 230 °C, respectively. Plasma
phospholipids were run at a 48:1 split flow, and the CSF
total lipids were run at a 20:1 split flow. Peaks were
identified by comparison of retention times with external
fatty-acid methyl ester standard mixtures obtained from
Nu-Chek Prep (Elysian, MN, USA). The fatty-acid pro-
files were expressed as a percentage of the total fatty
acid in micrograms (weight percent). APOE genotype
was assessed in the research laboratory. Aβ42 and Tau
in the CSF were measured by using a dual-antibody
sandwich enzyme-linked immunosorbent assay [27] at
the University of Pennsylvania Research Lab.

Statistical analysis
Mean (SD) or median (25th–75th percentile range) values
for non-normally distributed data were computed. The
study group was divided into tertiles based on CSF Aβ42
levels at baseline. The ratio of CSF to plasma DHA was
calculated as an index of DHA transport across the blood-
brain barrier. The dependent variables were (1)18 months
CSF and plasma phospholipid DHA levels, (2) ratio of
CSF to plasma DHA levels at 18 months, and (3) the dif-
ference in DHA levels in CSF and plasma phospholipid at
baseline and 18 months after supplementation. The inde-
pendent variables were Aβ group (tertiles), treatment
group, APOE genotype, and the interaction between the
treatment group and APOE genotype using a linear regres-
sion model. Pearson or Spearman correlation tests were
used to correlate the variables. Baseline plasma phospho-
lipid and CSF DHA levels by APOE groups were explained
by a linear regression model. Linear modeling was also
used to explain the relationship of baseline measures of
CSF Aβ42 (independent variable) with the 18-month
change in CSF DHA (dependent variable); this analysis
was adjusted for baseline CSF DHA and APOE genotype.
Significance was defined as p < 0.05. The data were ana-
lyzed using the program R version 3.2.3.

Results
Plasma (n = 384) and CSF samples (n = 70) from partici-
pants in this ADCS trial were assayed for DHA levels at

the baseline visit. The 70 participants who consented to
lumbar puncture included carriers of ɛ2/ɛ3 (n = 2), ɛ2/ɛ4
(n = 1), ɛ3/ɛ3 (n = 16), ɛ3/ɛ4 (n = 32), and ɛ4/ɛ4 (n = 19).
Forty-four of the 70 CSF substudy participants com-
pleted the second lumbar puncture at the 18-month
visit after allocation to either the placebo (n = 15) or
DHA (n = 29) treatment group. Among those allocated
to DHA were carriers of ɛ3/ɛ3 (n = 4), ɛ3/ɛ4 (n = 17), and
ɛ4/ɛ4 (n = 7), and one participant carried the ɛ2/ɛ4 al-
lele. Baseline levels of plasma phospholipid DHA (n =
384, p = 0.61) and total CSF DHA (n = 70, p = 0.44) did
not differ between APOE ɛ4 carriers and noncarriers.
The distribution of baseline CSF DHA levels and
plasma phospholipid DHA levels, as well as the ratio of
CSF to plasma DHA, in all 70 participants is shown in
Fig. 1. These findings indicated that plasma phospho-
lipid DHA (p = 0.8) (Fig. 1a) and CSF DHA (p = 0.7)
(Fig. 1b) did not differ by APOE genotype at baseline.
The ratio of CSF to plasma DHA was significantly dif-
ferent among the APOE genotype groups (p = 0.03 for
groupwise comparison) (Fig. 1c), with the largest differ-
ences apparent between ɛ2 carriers and ɛ4 homozy-
gotes. However, the significance of this finding is
limited by the small number of ɛ2 carriers in this group
(n = 3). Baseline CSF and plasma DHA levels were
significantly correlated (r = 0.3, p = 0.01); this correl-
ation did not differ by ɛ4 status. Of the 70 participants,
44 had measurements of CSF Aβ42. APOE ɛ4 carriers
had lower CSF Aβ42 levels compared with non-carriers
(p = 0.01) (Fig. 1d).
To understand the effect of baseline CSF Aβ42 levels

on DHA levels, the study group was divided into CSF
Aβ42 tertiles (T1 = Aβ42 levels <147 pg/ml, T2 = Aβ42
levels between 147 and 174 pg/ml, T3 = Aβ42 levels
>174 pg/ml). At baseline, plasma phospholipid or CSF
DHA did not differ between the groups (Fig. 2a and b).
The participants at the lowest tertile of CSF Aβ42 had
lower mean CSF-to-plasma DHA ratios than the other
two groups; however, this difference did not reach
statistical significance (p = 0.15 for three-way group
comparison, p = 0.19 for difference between T1 and
T2, and p = 0.06 for difference between T1 and T3)
(Fig. 2c).
Plasma phospholipid DHA was assessed in 195 DHA-

treated participants at baseline and 18 months following
DHA supplementation. Among the 195, 119 carried the
ɛ4 allele and 76 were ɛ4 noncarriers. A 300 % increase
in plasma phospholipid DHA was observed (from 3.18
weight percentage at baseline to 9.82 weight percentage
at 18 months; p < 0.001). CSF DHA was assessed in 44
participants at baseline and 18 months. The increase in
plasma DHA level was greater than the increase in CSF
DHA. A 38 % increase in DHA CSF levels was observed
in participants in the DHA treatment group (2.53 weight
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percentage at baseline and 3.46 weight percentage at
18 months; p < 0.001). In participants allocated to DHA
(n = 29), the change in DHA levels from baseline to
18 months in CSF significantly correlated with the 18-
month change in plasma (r = 0.61, p < 0.001).
Participants at the lowest tertile of Aβ42 had signifi-

cantly lower mean CSF DHA levels after supplementa-
tion (p = 0.01 for three-way group comparison, p = 0.01
for difference between T1 and T2, and p = 0.007 for dif-
ference between T1 and T3) (Fig. 3a). The differences in
CSF DHA levels among the Aβ42 groups at 18 months
persisted after adjusting for APOE genotype (p = 0.03 for
three-way group comparison). In contrast, there was no
significant difference in plasma DHA levels after supple-
mentation by Aβ42 tertiles (Fig. 3b). The ratio of CSF to
plasma DHA ratio was significantly lower after
18 months of DHA supplementation in participants at
the lowest tertile of Aβ42 (p = 0.054 for three-way group
comparison, p = 0.05 for difference between T1 and T2,
and p = 0.03 for difference between T1 and T3) (Fig. 3c).
When CSF Aβ42 was analyzed as a continuous variable,

CSF Aβ42 levels at baseline were associated with the 18-
month change in CSF DHA (r = 0.37, p = 0.05) (Fig. 4).
This relationship remained significant after we adjusted
for baseline DHA levels (p = 0.037) but was attenuated
after we excluded the two CSF Aβ42 values greater than
250 pg/ml (r = 0.35, p = 0.07). After adjusting these
models for APOE genotype, we found that the relation-
ship of the 18-month change in DHA and baseline Aβ42
levels became less significant (p = 0.1).
There was a suggestion that APOE ɛ4 status modified

the DHA effect on the 18-month change in CSF, but not
plasma phospholipid DHA levels. The 18 months, the
increase in plasma phospholipid DHA did not differ by
APOE ɛ4 allele (p = 0.8). In contrast, a possible inter-
action between APOE genotype and treatment at the 18-
month time point in CSF DHA (p = 0.07) was observed
(Fig. 5). In the DHA treatment group, over 18 months,
the ɛ4 noncarriers’ DHA levels increased by 68 %,
whereas the ɛ4 carriers’ CSF DHA levels increased by
37 % (Table 1). All four ɛ4 noncarriers showed increased
CSF DHA levels after allocation to DHA treatment. In

Fig. 1 Baseline CSF DHA levels by APOE status. The distributions of baseline plasma phospholipid and CSF DHA, as well as the ratio of CSF to
plasma DHA, are demonstrated by APOE genotype (n = 70). There were no significant differences in (a) plasma phospholipid or (b) CSF DHA
levels by APOE genotype. c The ratio of CSF to plasma DHA by APOE genotype at baseline significantly differed between the APOE genotype
groups (p = 0.03 for group comparison). d CSF Aβ42 levels were significantly lower in ɛ4 carriers at baseline (p = 0.01 for group comparison). DHA
levels are reported as a percentage by weight. The groups were compared using linear regression with DHA level or CSF-to-plasma DHA ratio as
the dependent variable and groups as the covariate.*p < 0.05 for group comparison. Aβ42 amyloid-β42, APOE apolipoprotein E, CSF cerebrospinal
fluid, DHA docosahexaenoic acid, PL Phospholipids
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contrast, 6 of 25 ɛ4 carriers did not have increased
CSF DHA levels after supplementation. Tau and
phosphorylated Tau (p-Tau) levels in the CSF did not
differ between carriers and noncarriers of the ɛ4 allele.
Allocation to DHA treatment did not alter the decline in
CSF Aβ42 or the change in Tau or p-Tau compared with
placebo. Additional information on CSF DHA, Aβ42,
Tau, and p-Tau by treatment group is summarized in
Table 1.
DHA treatment changed the percentage of CSF arachi-

donic acid (AA). We observed a significant decrease in
CSF AA in participants assigned to DHA treatment
compared with placebo (change in DHA vs. placebo
−2.27 vs. −0.64, p = 0.002). The 18-month change in AA
did not correlate with the 18-month change in CSF
Aβ42 or CSF Tau/p-Tau, and it did not differ by APOE

group. A previous study indicated that DHA supple-
mentation was associated with decreases in AA trans-
port to the brain [22]. Brain AA uptake determined by
positron emission tomography is increased in people
with AD [28], and AA is a precursor for inflammatory
mediators [29]. The change in CSF EPA did not differ
between the placebo and treatment arms in the present
study (p = 0.2). The change in CSF EPA by APOE
groups at baseline and after DHA supplementation did
not reach statistical significance (p = 0.13). These find-
ings were expected, as the DHA product we used did
not contain EPA.

Discussion
The main finding of the ADCS-sponsored DHA trial
was that the allocation to DHA treatment did not

Fig. 2 Baseline plasma phospholipid and CSF DHA levels by CSF Aβ42 tertiles. Baseline phospholipid and CSF DHA measurements were compared in
three groups of participants based on CSF Aβ42 tertiles at baseline (n= 44, T1 = Aβ42 levels <147 pg/ml, T2 = Aβ42 levels between 147 and 174 pg/ml,
and T3 = Aβ42 levels >174 pg/ml). The ratio of CSF to plasma DHA was calculated as an index of DHA transport across the blood-brain barrier (a and b).
There was no significant difference in plasma phospholipid of CSF DHA by Aβ42 tertiles at baseline. c A trend was observed for lower baseline CSF to
plasma DHA (p= 0.15 for three-way group comparison, p= 0.19 for difference between T1 and T2, and p= 0.06 for difference between T1 and T3) in the
lowest tertile of Aβ42. Aβ42 amyloid-β42, CSF cerebrospinal fluid, DHA docosahexaenoic acid
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influence the rate of cognitive decline in patients with
dementia [12]. A secondary analysis suggested benefit in
ADAS-cog scores in noncarriers of the ɛ4 genotype [12].
We hypothesized that the DHA-associated cognitive im-
provement in ɛ4 noncarriers could be related to greater
CSF DHA delivery. Our hypothesis was based on two re-
cent findings in human ɛ4 allele replacement mice
[20] and 3xTg-AD transgenic mouse models with brain
amyloid deposition [21] demonstrating less delivery of
14C labeled DHA across the blood-brain barrier com-
pared with ɛ4 non-carriers or littermate controls,
respectively. The results of the present analysis suggest

that (1) individuals with lower pretreatment CSF Aβ42
(both ɛ4 carriers and ɛ4 non-carriers) had reduced CSF
DHA levels after supplementation, and (2) carriers of the
ɛ4 allele had less pronounced increases in CSF DHA levels
following DHA treatment compared with ɛ4 non-carriers.
Therefore, it is possible that the lack of cognitive effect of
DHA in this study was a result of poor brain delivery in
participants with brain amyloid pathology and in those
carrying the APOE ɛ4 allele.
The major limitation of this study was the small num-

ber of ɛ4 noncarriers (n = 4). However, the differences in
CSF DHA response between carriers and noncarriers of

Fig. 3 Plasma phospholipid and CSF DHA at 18 months. The distribution of phospholipid and CSF DHA measurements at 18 months by baseline
CSF Aβ42 tertiles in participants allocated to DHA (n = 29) is illustrated. a There was no significant difference in plasma phospholipid DHA by Aβ42
tertiles after 18 months of DHA. b and c After 18 months of DHA supplementation, there was a significant decrease in CSF DHA levels in participants
in the the first Aβ42 tertile (p = 0.01 for three-way group comparison, p = 0.01 for difference between T1 and T2, and p = 0.007 for difference between
T1 and T3) and a significantly lower increase in the CSF-to-plasma DHA ratio (p = 0.05 for three-way group comparison, p = 0.05 for difference between
T1 and T2, and p = 0.03 for difference between T1 and T3). The groups were compared using a linear regression model. *p < 0.05 for group comparison.
Aβ42 amyloid-β42, CSF cerebrospinal fluid, DHA docosahexaenoic acid
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the APOE ɛ4 allele may also be represented by the lower
CSF Aβ42 levels observed in ɛ4 carriers. Taken to-
gether, our results support the concept that the dimin-
ished response in the APOE ɛ4 carriers could be the
result of more severe disease with significant brain
amyloidosis.

The results of our study suggest an effect of CSF Aβ42
on baseline CSF DHA levels and CSF-to-plasma DHA
ratio. We observed 25 % lower CSF-to-plasma DHA ra-
tio between the first and third tertiles of CSF Aβ42. This
observation did not reach statistical significance, likely
due to the small sample size (Fig. 2c). After the DHA

Fig. 4 Association of CSF Aβ42 with the change in CSF DHA. Baseline CSF Aβ42 was significantly associated with the change in CSF DHA after
supplementation (r = 0.37, p = 0.05). The change in DHA was calculated as the difference between 18-month CSF DHA levels and the levels at
baseline. The correlation was obtained using Spearman’s correlation test. Aβ42 amyloid-β42, CSF cerebrospinal fluid, DHA docosahexaenoic acid

Fig. 5 Change in CSF DHA by APOE status and treatment arm. The effect of DHA treatment vs. placebo on CSF DHA levels by APOE genotype is
illustrated. The increases in DHA levels in the CSF were less pronounced in carriers of the ɛ4 allele. All ɛ4 noncarriers had increased CSF DHA
levels after allocation to DHA treatment. In contrast, 6 of the 25 ɛ4 carriers did not increase DHA levels after DHA supplementation. There was a
suggestion for an interaction effect between APOE genotype and treatment arm on CSF DHA levels (p = 0.07). The data were modeled using
multivariate linear regression with the change in CSF DHA as the dependent variable and APOE and treatment arm as the independent variables.
Aβ42 amyloid-β42, APOE apolipoprotein E, CSF cerebrospinal fluid, DHA docosahexaenoic acid
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intervention, however, these differences in CSF DHA
levels by CSF Aβ42 groups were significant. The advan-
tage of the DHA intervention is that it reduces variation
resulting from potential confounders with baseline mea-
surements (such as differences in seafood consumption
or supplement use before the study) and provides a uni-
form dose of DHA supplementation using a controlled
study design. The lower CSF-to-plasma DHA ratio in
participants with lower CSF Aβ42 levels suggests a de-
fect in DHA transport to the brain in AD.
One potential mechanism for these findings includes

activation of phospholipase A2 (PLA2). Upon entry into the
brain, DHA is trapped by long-chain fatty-acid coenzyme
A synthase activity, thereby facilitating its targeting to
specific lipid pools, where it is esterified to phospholipid
membranes [30]. In the adult brain, DHA is no longer
accreted (accretion refers to accumulation of DHA during
development [31]), and plasma DHA replaces brain con-
sumption [32]. DHA is esterified to phospholipids at the
sn-2 position and deesterified by PLA2. Brain DHA is
highly conserved, but at an energy cost [33]. Upon release
by PLA2 activity, DHA is immediately reesterified into
brain phospholipids. A decrease in both nonesterified
DHA and total DHA in the CSF is observed in mild cogni-
tive impairment and AD, as compared with cognitively
healthy participants, and is associated with increased PLA2

activity [34]. PLA2 is a complex family of phospholipases
that include calcium-independent phospholipase A2 and
calcium-dependent phospholipase A2 (cPLA2). cPLA2 can
target DHA, AA, and other lipids (such as plasmalogens).
Several lines of evidence suggest that calcium-dependent
signaling pathways are dysregulated in the neurons of
hAPP (amyloidosis-prone) mice, particularly in the hippo-
campus [35]. We hypothesize that amyloid pathology
induces the activity of cPLA2 [36, 37] in AD brain regions,
reducing brain DHA consumption through liberation of
free DHA from CSF and brain phospholipids [38]. These
changes have significant implications for AD pathology, as
DHA is critical in hippocampal neuronal development and
synaptic function [39].

The effect of APOE genotype on peripheral DHA me-
tabolism is not clear. One study demonstrated a less
pronounced increase in DHA associated with triglycer-
ide or cholesterol ester after 6 weeks of DHA + EPA sup-
plementation in ε4 carriers vs. noncarriers [40].
However, changes in DHA associated with triglyceride-
rich particles by APOE genotype were not observed in
the SATgenε study [41]. Our results did not reveal that
plasma phospholipid DHA levels differed by APOE ɛ4
status at baseline or following DHA supplementation. In
a population study with a larger sample size (n = 1135),
however, greater fish consumption was associated with
greater increases in plasma phospholipid DHA only in
ɛ4 noncarriers [42].
There is evidence in several studies other than the

ADCS-sponsored DHA trial [12] that the APOE ɛ4 allele
can modulate the response to DHA supplementation. In
an Alzheimer’s Disease Neuroimaging Initiative study
that included cognitively healthy persons, patients with
mild cognitive impairment, and patients with AD, the
association of fish oil with ADAS-cog and brain volume
was observed only in ɛ4-negative patients [16]. In 2005,
Huang et al. [17] examined fish oil use in the Cardiovas-
cular Health Cognition Study (n = 2233) among partici-
pants who developed dementia after several years of
follow-up. Their study demonstrated that APOE status
was an important determinant in modulating the effect
of n-3 intake on cognitive status, with only ɛ4 non-
carriers being responsive to n-3 intake. In another longi-
tudinal study, Whalley et al. reported a stronger associ-
ation of red blood cell n-3 index with cognitive scores in
ɛ4 non-carriers compared with carriers [18]. In contrast,
three studies of participants without AD (Bordeaux
sample of the three-city study [1999–2006, n = 1228] [43],
Chicago Health and Aging Project [1993–2000, n = 818]
[44], and the Memory and Aging Project clinical neuro-
pathological cohort study [2004–2013, n = 286] [45]) sug-
gest cognitive benefit in ε4 carriers with greater n-3 levels,
or less brain AD neuropathology with weekly seafood
consumption.

Table 1 Eighteen-month changes with docosahexaenoic acid or placebo treatment by apolipoprotein E ε4 status on CSF DHA,
Aβ42, Tau and p-Tau levels

DHA treated, APOE ɛ4 non-carriers
(n= 4)

Placebo treated, APOE ɛ4 non-carriers
(n= 4)

DHA treated, APOE ɛ4 carriers
(n= 25)

Placebo treated, APOE ɛ4 carriers
(n= 11)

Baseline 18 months Baseline 18 months Baseline 18 months Baseline 18 months

DHA,a % by weight 2.21 (0.44) 3.71 (0.71) 2.66 (0.81) 1.95 (0.28) 2.46 (0.59) 3.38 (0.90) 2.28 (0.6) 2.18 (0.50)

Aβ42, pg/ml 208 (55) 189 (51) 190 (36) 183 (36) 150 (30) 140 (30) 151 (35) 145 (33)

Tau, pg/ml 120 (110) 121 (125) 118 (42) 129 (35) 112 (53) 108 (136) 133 (94) 126 (88)

p-Tau,b pg/ml 39 (43) 40 (43) 47 (23) 53 (28) 47 (18) 44 (17) 53 (37) 51(33)

Abbreviations: Aβ42 amyloid-β42, APOE apolipoprotein E, CSF cerebrospinal fluid, DHA docosahexaenoic acid, p-Tau phosphorylated Tau
Data are presented as mean (SD). Two-way analysis of variance was used to compare placebo and treatment groups by genotype
ap = 0.07 for an interaction between treatment arm and APOE genotype
bp = 0.04 for the difference in p-Tau by APOE groups
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In summary, these studies indicate an interaction be-
tween ɛ4 allele and DHA efficacy, with the ɛ4 allele poten-
tially limiting the effectiveness of DHA supplementation on
cognition later in the disease process. It would be important
to assess the delivery of DHA to the brain by APOE ε4 sta-
tus before the onset of detectable brain amyloidosis and
AD. These studies would then clarify whether cognitively
healthy younger APOE ε4 carriers have a chronic defect in
DHA brain delivery years before the onset of neurodegen-
eration, presenting with an opportunity for DHA supple-
mentation to prevent or slow the progression of AD.

Conclusions
To our knowledge, this is the first study to demonstrate
changes in CSF DHA levels in relation to APOE geno-
types and CSF Aβ42 peptide levels. Our main finding
suggests decreased DHA delivery to CSF in participants
with lower CSF Aβ42 peptide and in carriers of the
APOE ε4 allele. These findings can help explain the lack
of efficacy of DHA in participants with established AD.
Future studies are needed to clarify if differences in
DHA transport in participants carrying the APOE ε4 al-
lele appear earlier in life, before the onset of cognitive
decline.
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