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1 Introduction

The dynamics of QCD in the non-perturbative regime is extremely complex and difficult.

In order to simplify the problem ’t Hooft suggested a long time ago to replace the gauge

group SU(3) of QCD by an SU(N) group and to take the large-N limit, while keeping

g2N fixed [1]. In this limit the theory is expected to be controlled by a classical master

field. Yet, despite the expectation of a huge simplification, very few analytical results were

achieved by using the large-N approximation.

An important example of these is the Eguchi-Kawai volume reduction [2]. It was argued

that when a planar theory is compactified on a circle, quantities that are neutral under

the center of the gauge group should not depend on the radius of the circle and hence

calculations of neutral quantities by a reduction to an arbitrarily small volume should

be possible. Shortly after the seminal paper by Eguchi and Kawai, it was shown that

a necessary condition for the reduction is that the ZN center of the gauge group is not

spontaneously broken, namely that the theory is confining at arbitrarily small volumes [3].

Unfortunately the pure SU(N) Yang-Mills theory undergoes a confinement/deconfinement

phase transition at a certain critical radius and hence a reduction to a radius below the

critical radius is not allowed.

The idea of volume reduction was resurrected recently by Kovtun, Unsal and Yaffe [4].

They argued that the Eguchi-Kawai reduction can be used for QCD-like theories with

fermions that transform in the adjoint representation of the gauge group. They showed

that if the adjoint fermions obey periodic boundary conditions (hence opposite boundary

conditions w.r.t. the finite temperature case), the theory is confining at an arbitrarily small

radius and the condition for volume reduction is satisfied. Following their work several

papers [5–17] supporting the validity of volume reduction for theories with adjoint fermions

were published. This observation becomes particularly interesting when combined with
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another intriguing outcome of the large-N limit: a set of equivalences amongst seemingly

distinct gauge theories [18, 19]. In particular, a sector of QCD observables has a counterpart

in the theory with adjoint fermions. In principle this could open the way to computing

physical QCD quantities in the large-N limit through small volume calculations.

In this paper we consider three-dimensional gauge theories with adjoint fermions and

use volume-reduction to two-dimensions in order to calculate the k-string tension. The

k-string can be thought of as a bound state of k fundamental QCD-strings. Its tension has

been vastly discussed in the literature [20–24]. In particular, most analytic approaches in

the case of theories with adjoint fermions suggest that the k-string tension is proportional

to sin(π k
N ) [25–28].

Our derivation of the string tension is similar to the corresponding one in the 2d

Abelian (massive Schwinger model) [29] and the non-Abelian [30, 31] cases. We rely on

the fact that in two dimensions an external charge at spatial infinity is equivalent to a

θ-term [32]. The main result of this paper is

σk ∼ N sin

(

π
k

N

)

. (1.1)

The paper is organized as follows: in section 2 we review the derivation of the string

tension in the Abelian case. In section 3 we derive the k-string tension for the dimensionally

reduced theory. In section 4 we discuss the validity of our derivation. Section 5 is devoted

to a summary. In the appendix we discuss how the derivation of section 3 can be repeated

in the case of a 3d theory with a single Majorana adjoint fermion.

2 A reminder of the string tension in the massive Schwinger model

Consider two-dimensional QED with one massive Dirac fermion whose electric charge (in

units of the elementary charge) is Q. The action is

S =

∫

d2x

(

− 1

4e2
F 2
µν + Ψ̄i 6∂Ψ −mΨ̄Ψ +QAµΨ̄γ

µΨ

)

, (2.1)

where e is the gauge coupling. It is convenient to bosonize the fermion and to use the

gauge A1 = 0. Denoting the boson by ψ the resulting action takes the form

S =

∫

d2x

(

1

2e2
(∂1A0)

2 +
1

2
(∂µψ)2 +mµ cos(2

√
πψ) +

Q√
π
A0∂1ψ

)

, (2.2)

where µ = e exp γ
2π3/2

. In the massless limit diagonalization of the quadratic terms reveals

the existence of a free massive boson with m2 = e2Q2

π . When m ≪ e, namely when the

mass term is considered as a small perturbation, the vacuum configuration corresponds to

ψ = 0 for m > 0 and to 2
√
πψ = π for m < 0. The vacuum energy is negative and given

by −|m|µ.

Let us add a heavy electron-positron pair of charge ±Q′ at x = ±L having in mind to

take the limit L→ ∞ at the end. This means adding the term

S′ =

∫

d2xQ′A0 (δ(x− L) − δ(x+ L)) (2.3)

– 2 –
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to the previous action. We can integrate out the non-dynamical field A0,

∂1A0 = e2
(

Q√
π
ψ +Q′(θ(x− L) − θ(x+ L))

)

, (2.4)

to arrive at the following action:

S =

∫

d2x

(

1

2
(∂µψ)2 +mµ cos(2

√
πψ) − e2

2

(

Q√
π
ψ +Q′Θ

)2 )

, (2.5)

where Θ ≡ θ(x− L) − θ(x+ L).

The corresponding Hamiltonian of the theory is given by

H =

∫

dx

(

1

2
Π2
ψ +

1

2
(∂1ψ)2 −mµ cos(2

√
πψ) +

e2

2

(

Q√
π
ψ +Q′Θ

)2 )

. (2.6)

Let us restrict ourselves to the limit 0 < mµ/e2 ≪ 1. In this limit the solution of the

equation of motion for ψ is

ψ = −√
π
Q′Θ

Q
+ O

(

mµ

e2

)

. (2.7)

The vacuum energy is given by substituting (2.7) in (2.6):

E = H −H0 = mµ

(

1 − cos

(

2π
Q′

Q

))

2L , (2.8)

where H0 is the Hamiltonian of the theory without the external charge. After dealing

similarly with the case of a small negative mass we find that the string tension is

σ = |m|µ
(

1 − cos

(

2π
Q′

Q

))

. (2.9)

The tension (2.9) vanishes if Q′ is a multiple of Q and, interestingly, also when the quark

mass is zero (corresponding to total charge screening).

3 The string tension in three-dimensional adjoint QCD

Consider three-dimensional adjoint QCD with one Dirac fermion, based on a gauge

group U(N):

L = Tr

(

− 1

2g2
3

FmnFmn + iψ̄ /Dψ

)

; m,n = 0, 1, 2 , (3.1)

and compactified on R
2×S1. By imposing periodic boundary conditions on both the gauge

and fermionic fields, the full action, including the Kaluza-Klein modes, is given by:

∑

q∈Z

Tr

(

− 1

2g2
Fµν−qFq µν + (Dµφ)−q(Dµφ)q −

2

gR
Aµ−q(Dµφ)q +

q2

g2R2
Aµ−qAq µ +

+iψ̄−qγ
µ(Dµψ)q −

q

R
ψ̄−qγ

2ψq − g
∑

q1

ψ̄−qγ
2[φq1.ψq−q1]

)

, (3.2)
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where g = g3/
√
R is the 2-dimensional gauge coupling, the “covariant” derivative on a

generic field ϕ is given by (Dµϕ)q = ∂µϕq + i
∑

q1
[Aµq1 , ϕq−q1 ] with µ, ν = 0, 1, and we

introduced the tower of scalars A2/g =
∑

q∈Z
φq e

iqy/R.

Usual Kaluza-Klein reduction gives a tower of states whose only massless fields are

those related to the “zero” modes with q = 0. All the others acquire a mass of order q/R,

where R is the radius of S1. This is no longer true when the scalars of the theory acquire

v.e.v.s, since these modify the mass spectra through Yukawa and gauge interactions and,

as a result, the different mass levels get shifted and split.

V.e.v.s for the scalars arise quite naturally. Let us denote the q = 0 component of the

gauge field along the circle by φ and study its vev. The vacuum configuration, obtained

by a minimization of the effective action for the Polyakov loop Tr exp(i
∫ 2π
0
φ), yields [19]:

〈φ〉nm = vnδnm ≡ (n − (N + 1)/2)

N
δnm (3.3)

and hence the center-symmetry is not spontaneously broken.

Let us focus for the moment on the zero modes only, namely let us carry out a dimen-

sional reduction down to two dimensions. As just mentioned, actually this is not necessarily

justified. The correct procedure is to to keep the lowest mass modes, which are not nec-

essarily the q = 0 modes: the lightest modes may include KK momentum or winding. We

will discuss this important issue in section 4.

The reduced action is

S =

∫

d2xTr

(

− 1

2g2
F 2
µν + (Dµφ)2 + Ψ̄i 6DΨ + ig[φ, Ψ̄]γ3Ψ

)

, (3.4)

where the matrix γ3 = diag(1,−1) is the chiral matrix in 2d which is equal to −iγ2 in 3d

and the Yukawa coupling is g ∼ g3√
R

. Let us choose again the gauge A1 = 0. In the presence

of the v.e.v. (3.3) the gauge symmetry is broken to U(1)N , with the massless gauge fields

given by

(A0)nm ≡ Anδnm . (3.5)

Let us focus on the gauge and Yukawa interactions, since these terms in the action will

determine the 2d string tension. In the presence of the v.e.v. the terms

Tr i[φ, Ψ̄]γ3Ψ ; Tr [A0, Ψ̄]γ0Ψ (3.6)

become, respectively:

i(vn − vm)Ψ̄nmγ
3Ψmn ; (An −Am)Ψ̄nmγ

0Ψmn . (3.7)

The action for the U(1)N gauge theory, excluding the kinetic terms for the scalar and fermi

fields –which do not play any role in the calculation of the string tension– is:

S =

∫

d2x

{

∑

n

1

2g2
(∂1An)

2

+m
∑

mn

i(vn − vm)Ψ̄nmγ
3Ψmn +

∑

mn

(An −Am)Ψ̄nmγ
0Ψmn

}

. (3.8)
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As the derivation of the string tension involves terms which are not invariant under chiral

rotation, we should also incorporate the chiral anomaly in the action. In analogy with the

well-known case of QCD [33–35], the effective action can be written in the form:

Seff =

∫

d2x

{

∑

n

1

2g2
F 2
n +m

∑

mn

i(vn − vm)Ψ̄nmγ
3Ψmn (3.9)

+
∑

mn

(An−Am)Ψ̄nmγ
0Ψmn+

∑

n

Fn

[

−i
8π

∑

m

ln

(

Ψ∗
LnmΨRmn Ψ∗

RmnΨLnm

Ψ∗
LmnΨRnm Ψ∗

RnmΨLmn

)

]}

,

where Fn = ∂1An.

One can easily check that, under a chiral transformation in the ath direction of the

Cartan subalgebra,

δΨL ij = iαδiaΨLaj − iαΨL iaδaj +O(α2) (3.10)

δΨ∗
L ij = iαδiaΨ

∗
Laj − iαΨ∗

L iaδaj +O(α2) (3.11)

δΨR ij = δΨ∗
R ij = 0 , (3.12)

the effective action transforms as it should:

δaLeff =
1

2π

(

αNF a − α

N
∑

i=1

F i
)

.

Clearly the overall U(1) is not anomalous since
∑N

a=1 δaL = 0. Consequently, we have

selected indeed an SU(N), rather than a U(N), anomaly.

Let us add now a source of the form

S′ =

∫

d2x

(

k

2
Aa − k

2
Ab

)

(δ(x − L) − δ(x+ L)) (3.13)

= −
∫

d2x

(

k

2
Fa −

k

2
Fb

)

Θ , (3.14)

that corresponds to k units of fundamental charge placed at the end of the interval and

points along the SU(N) Cartan subalgebra, namely ~k = (0, . . . , 0, k, 0, . . . , 0,−k, 0, . . .).
In the presence of the external charge the relevant part of the effective action is

Seff =

∫

d2x

{

∑

n

1

2g2
F 2
n +m

∑

mn

i(vn − vm) (Ψ∗
LnmΨRmn − Ψ∗

RnmΨLmn)

+
∑

n

Fn

[

−i
8π

∑

m

ln

(

Ψ∗
LnmΨRmn Ψ∗

RmnΨLnm

Ψ∗
LmnΨRnm Ψ∗

RnmΨLmn

)

− k

2
δan+

k

2
δbn

]}

. (3.15)

In order to write the effective action in terms of bosonic fields let us introduce

Ψ∗
LnmΨRmn = µ exp(iψmn) ; Ψ∗

RmnΨLnm = µ exp(−iψnm) . (3.16)
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The bosonized action takes the form

Seff =

∫

d2x

{

∑

n

1

2g2
F 2
n − 2mµ

∑

mn

(vn − vm) sinψmn

+
∑

n

Fn

[

−i
8π

∑

m

ln exp (2i(ψmn − ψnm)) − k

2
δan +

k

2
δbn

]}

. (3.17)

Integrating out Fn the Hamiltonian density becomes:

H = 2mµ
∑

mn

(vn − vm) sinψmn

+g2
∑

n

[

1

4π

∑

m

(ψmn − ψnm) +
2πqn
8π

− k

2
δan +

k

2
δbn

]2

, (3.18)

where the multivaluedness of the logarithm is encoded into qn ∈ Z.

As for the Schwinger model we should now solve the equations of motion and evaluate

H on-shell. The problem at hand is greatly simplified in the limit m/gN ≪ 1. The full set

of equations of motion, which also includes the equation of motion for the scalar,

(DµD
µφ)n = 2m

∑

l 6=n
sinψnl , (3.19)

is solved by:

ψam = π +
πk

N
, Mma < 0 , (3.20)

ψam =
πk

N
, Mma > 0 , (3.21)

ψbm = π − πk

N
, Mmb > 0 , (3.22)

ψbm = −πk
N

, Mmb < 0 , (3.23)

ψmn = 0 , m, n 6= a, b , (3.24)

ψmn = −ψnm , (3.25)

where Mmn is the mass coefficient multiplying sinψnm (we will discuss in the next section

the importance of KK modes and how they modify this mass matrix), while the scalar

fluctuations are set to zero: φ = 0.

The integers qi are chosen in such a way that the quadratic term, which is the dominant

contribution to the energy, vanishes on-shell and the only non-zero piece comes from the

sum of the mass terms.

Note that an exact solution for the equation of motion for the scalar (3.19) requires

b− a = N/2. Substituting the solution in the Hamiltonian we find the energy density

〈H〉 = 2mµ
∑

mn

(vn − vm) sinψmn =
8mµ

N

N
∑

n=0

∣

∣

∣

∣

n− N

2

∣

∣

∣

∣

sin

(

π
k

N

)

. (3.26)
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Hence

σk ∼ mµN sin

(

π
k

N

)

. (3.27)

Had we started directly with a two-dimensional theory, m would have been an arbitrary

mass parameter, thus depending on its sign we should have found either the solution just

proposed (when m > 0) or another solution shifted by π when m < 0, precisely as it

happens in the Abelian case. Independently on the sign of m the string tension will always

be σk ∼ |m|µN sin
(

π k
N

)

> 0.

4 Comments on the validity of the derivation

The main result of our paper is the string tension (3.27). In this section we discuss the

assumptions that were made in our derivation and the validity of the result.

Similarly to the Abelian case (the massive Schwinger model that we reviewed in sec-

tion 2), one needs to assume that the mass term is smaller than the gauge-interaction term.

Since the mass term is O(N2), while the gauge-interaction term is O(N3), the condition is

mµN2 ≪ g2N3 . (4.1)

By using m ∼ 1
R , µ ∼ g and the relation between the 3d gauge coupling and the 2d gauge

coupling g2R = g2
3 , we can rewrite the above condition as

λ3RN ≫ 1 , (4.2)

where λ3 is the 3d ’t Hooft coupling. We now encounter [36] the following difficulty: the

masses of the KK modes and the lightest W-bosons are both

MKK ∼MW ∼ 1

RN
, (4.3)

hence the condition that the mass term is a small perturbation implies that the W-bosons

mass (in units of the 3d ’t Hooft coupling) goes to zero, namely

MW

λ3

∼ 1

λ3RN
≪ 1 . (4.4)

If the W-bosons become massless, our assumption that the dynamics is controlled by the

Cartan sub-algebra degrees of freedom may be invalid. Note that (4.4) does not invalidate

our derivation of the string tension within the 2d framework: within 2d we can always

assume a small mass term. The problem is that the Eguchi-Kawai procedure requires a full

non-Abelian dynamics and that an “Abelianization” of the problem may not be trusted.

We will return to this issue in the summary section.

Another important issue is the inclusion of KK modes. The mass of a generic mode

that couples to the fermion bi-linear is

M l
mn =

1

R

(

l + wm − wn +
m− n

N

)

(4.5)

– 7 –
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where l is the KK momentum and w’s are integers that correspond to winding (the Polyakov

loop is defined only mod N). It means that when (m− n) ∼ O(N) there is no separation

between the lowest KK modes and higher modes. For this reason we should, in principle,

consider all the modes and dimensional reduction is invalid. In particular the lowest N

fermionic masses are in the range M l
mnRN ∈ (−N/2, . . . , N/2) and they include modes

with w = 0,±1. These are the ψij modes that we used in our derivation, not the zero

modes. The rest of the modes were set to zero.

Returning to the issue of the W’s, we can require that their mass MW ∼ 1
RN be fixed

in terms of λ3 which means 1/R = rλ3N with r a dimensionless number. The expansion

parameter for our previous solution ǫ = mµ
g2N

can be rewritten using all the above formulas

and it is precisely ǫ = r. The proposed solution admits a series expansion in power of ǫ and

at first order we obtained eq. (3.27) which can be rewritten in the more suggestive form:

σk ∼ λ2
3N

2 sin

(

π
k

N

)

∼ λ2N sin

(

π
k

N

)

. (4.6)

5 Summary and discussion

In this paper we used the Eguchi-Kawai large-N volume reduction to calculate the k-string

tension in 3d gauge theories with adjoint fermions. As we have elaborated in the previous

section, our derivation relies on the limit λ3RN ≫ 1. In this limit the W-bosons masses

go to zero and hence our assumption that the dynamics is governed by a U(1)N theory

may not be justified. On the other hand, we cannot exclude the option that for dynamical

reasons the 3d string tension is dominated by the contribution of the Cartan sub-algebra,

as in various other models [37].

Our work can be extended in various directions: it is natural to start from a 4d theory

with adjoint fermions and to consider it on R2 × T 2 and to calculate the string tension

in 4d by using the reduced 2d theory. Other directions would be to calculate the quark

condensate and the glueball masses by the reduced theory.

The reduction from 4d to 2d raises several conceptual problems. In particular the

understanding of the 4d running of the gauge coupling from the 2d theory. Once the

running of the coupling is understood, it will be possible to discuss issues such as asymptotic

freedom and the range of the conformal window in 4d from 2d. We hope to return to these

problems in a future work.

Acknowledgments

We wish to thank A. Cherman, M. Unsal, J. Wosiek and L. Yaffe for useful discussions.

Part of this work was done during the “large-N gauge theories” program at the GGI in

Florence. A.A. and D.D. wish to thank the Collège de France for its warm hospitality while
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A Majorana fermions

In this appendix we will briefly discuss the case in which the starting 3 dimensional theory

contains Majorana rather than Dirac fermions. This discussion makes possible the analysis

of the N = 1 supersymmetric case which after reduction will give us a N = (1, 1) SUSY

theory in 2 dimensions.

The Dirac matrices are constructed using Pauli σ matrices: γ0 = σ1, γ
1 = iσ2, γ

2 = iσ3

and satisfy the usual Clifford algebra with Minkowski signature. The Majorana condition

reads Ψ∗ = σ3Ψ, so denoting the two components of Ψ as ΨR and ΨL (with a slight abuse of

notation since clearly in 3d there is no chirality) we have simply ΨR = Ψ∗
R while ΨL = −Ψ∗

L.

Since our fermions are in the adjoint representation of the gauge group it is consistent to

impose a Majorana constraint on them and after the reduction to 2 dimensions for every

3d Majorana we get 2 Majorana-Weyl fermions.

The reduction of the action is straightforward and using the above conditions it is easy

to obtain:

µ exp(iψmn) = Ψ∗
LnmΨRmn = Ψ∗

RmnΨLnm = µ exp(−iψnm) , (A.1)

which gives us directly the antisymmetricity of the phases ψmn (modulo 2π factors).

As a consequence of eq. (A.1) the effective term for the anomaly can be simplified to

δLeff =
∑

n

Fn

[

−i
4π

∑

m

ln

(

Ψ∗
LnmΨRmn

Ψ∗
LmnΨRnm

)

]

.

Using further the Majorana condition we can rearrange the Yukawa term in the form

igTr
(

[φ, Ψ̄]γ3Ψ
)

= 2gTr ([φ,ΨL]ΨR) ,

and after rewriting this term together with the gauge iteractions and the effective anomaly

in terms of the phases ψmn we can reproduce precisely eq. (3.17) in the Majorana case

as well.

Nothing new happens when we try to solve the equation of motions, we can directly

substitute the solution presented in eq. (3.20)–(3.24) obtaining for the string tension:

σk ∼
mµ

2
N sin

(

π
k

N

)

, (A.2)

with an the extra factor 1/2 with respect to the Dirac case.
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