
J
H
E
P
1
2
(
2
0
1
6
)
0
3
2

Published for SISSA by Springer

Received: September 25, 2016

Revised: November 11, 2016

Accepted: November 24, 2016

Published: December 12, 2016

Q-holes

E. Nugaev,a,b A. Shkerinc,a and M. Smolyakovd,a

aInstitute for Nuclear Research of the Russian Academy of Sciences,

60th October Anniversary prospect 7a, 117312, Moscow, Russia
bMoscow Institute of Physics and Technology,

Institutskii per. 9, Dolgoprudny, Moscow Region 141700, Russia
cInstitute of Physics, Laboratory of Particle Physics and Cosmology (LPPC), Ecole Polytechnique

Fédérale de Lausanne (EPFL),

CH-1015, Lausanne, Switzerland
dSkobeltsyn Institute of Nuclear Physics, Moscow State University,

Leninskie gory 1(2), 119991, Moscow, Russia

E-mail: emin@ms2.inr.ac.ru, shkerin@inr.ru,

smolyakov@theory.sinp.msu.ru

Abstract: We consider localized soliton-like solutions in the presence of a stable scalar

condensate background. By the analogy with classical mechanics, it can be shown that

there may exist solutions of the nonlinear equations of motion that describe dips or rises

in the spatially-uniform charge distribution. We also present explicit analytical solutions

for some of such objects and examine their properties.

Keywords: Solitons Monopoles and Instantons, Effective field theories

ArXiv ePrint: 1609.05568

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2016)032

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81072826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:emin@ms2.inr.ac.ru
mailto:shkerin@inr.ru
mailto:smolyakov@theory.sinp.msu.ru
https://arxiv.org/abs/1609.05568
http://dx.doi.org/10.1007/JHEP12(2016)032


J
H
E
P
1
2
(
2
0
1
6
)
0
3
2

Contents

1 Introduction 1

2 General considerations 3

2.1 Q-balls 3

2.2 Time-dependent scalar condensate, Q-holes and Q-bulges 4

3 Explicit examples 6

3.1 Scalar condensate and its stability 7

3.2 Q-holes in (1+1)-dimensional space-time 8

3.3 Q-holes in (3+1)-dimensional space-time 11

4 Classical instability of Q-holes and Q-bulges 14

5 Conclusion 16

A Limits on ω for Q-holes in (3 + 1)-dimensional space-time 17

1 Introduction

Spatially-homogeneous solutions in the complex scalar field theories with the global U(1)-

invariance have been proven to be very useful in different branches of modern physics. Per-

haps the most known example of their application to cosmology is the Affleck-Dine mech-

anism of baryogenesis [1]. Evolution of the spatially-homogeneous condensate in the Early

Universe, which is usually studied numerically, is subject to certain restrictions in order to

yield a successful cosmological scenario [2]. For instance, a possible spatial instability of the

condensate results in its fragmentation into nontopological solitons — Q-balls. The latter,

in turn, can be a crucial ingredient in the solution of the dark matter problem [3]. This

makes inhomogeneous classical solutions also of considerable interest in cosmology. Their

another application is related to the possibility of production of gravitational waves [4–6].

Emergence of localized stationary configurations was first discovered in the systems

whose evolution is governed by the Nonlinear Schrödinger Equation (NSE) [7]. In nonlinear

optics these solutions are known as bright solitons. Similar solutions in a theory of the

complex scalar field in four dimensional space-time, possessing the global U(1)-charge,

were called “Q-balls” by S. Coleman [8]. NSE admits another interesting class of solutions

corresponding to “dark solitons” in a stable medium [9]. They have the form of a dip in a

homogeneous background. It is important to note that these solutions are of the topological

nature. In particular, they cannot be deformed into the surrounding condensate by a finite

amount of energy. Therefore, the question arises about the existence and properties of the
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analogs of dark solitons in the complex scalar field theory, where they presumably can be

analyzed by the same methods as the ordinary Q-balls.

The existence of the dip-in-charge-like solutions in scalar field theories is not a mani-

festation of some specific properties of these theories. In fact, such solutions exist for the

usual “Mexican hat” scalar field potential. To see this, let us consider the complex scalar

field φ with the Lagrangian density

∂µφ∗∂µφ−
λ

2
(φ∗φ− v2)2. (1.1)

If λ > 0, the theory admits the well-known real static solution — the kink, which has the

form

φ = v tanh

(√
λ

2
vx

)
. (1.2)

It can be generalized to a class of stationary but not static solutions as follows,

φ = eiωtf(x), (1.3)

where ω is a constant parameter and

f(x) =

√
v2 +

ω2

λ
tanh

(√
λ

2

(
v2 +

ω2

λ

)
x

)
. (1.4)

Then, for the U(1)-charge density ρ we get

ρ = 2ωf2,

which clearly has a dip around the origin x = 0. The kink solution (1.2) is unstable in

this model and can be interpreted as a sphaleron in the Abelian gauged version of (1.1),

see [10] for details. Another distinctive feature of the model (1.1) is the stability of the

charged condensate as long as λ > 0. We note that the solution (1.3) requires an infinite

amount of energy to be deformed into the spatially-homogeneous condensate of the same

charge or frequency.

In this paper we present the soliton-like localized solutions in a theory of the complex

scalar field, which describe inhomogeneities in the charge distribution of the condensate and

can be deformed into the spatially-homogeneous condensate of the same frequency using a

finite amount of energy. We will refer to such solutions as “Q-holes” or “Q-bulges” in order

to stress their similarity to the ordinary Q-balls and to the “holes in the ghost condensate”

of [11]. In the next section we will argue in favor of existence of these solitons with the

help of Coleman’s overshoot-undershoot method and survey their general properties. In

section 3 we will present and examine the explicit examples of Q-holes in one and three

spatial dimensions. In section 4 we will discuss the classical stability (in fact, instability)

of Q-holes and Q-bulges. In Conclusion we will briefly discuss the obtained results.
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Q-balls in 1+1 dimensions

 Φ¤

UΩ

Q-balls in 3+1 dimensions
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Figure 1. Mechanical analogy for Q-balls in 1 + 1 and 3 + 1 dimensions respectively.

2 General considerations

2.1 Q-balls

Consider a theory of the complex scalar field φ in flat (d+ 1)-dimensional space-time, with

the action

S =

∫
dtddx (∂µφ∗∂µφ− V (φ∗φ)) . (2.1)

Suppose that the potential V (φ∗φ) has a minimum (local or global) at φ = 0. Then the

theory may admit localized configurations called Q-balls [8, 12]. They are solutions to the

corresponding equations of motion of the form

φ(t, ~x) = eiωtf(~x), (2.2)

where f(~x) is a real function such that lim
|~x|→∞

f(~x) → 0. When d > 1, it is assumed that

f(~x) = f(r), where r =
√
~x2, f(r) > 0 for any r, and ∂rf(r)|r=0 = 0.

With the ansatz (2.2), the equations of motion for the field φ reduce to the equation

for the function f ,
d2f

dr2
+
d− 1

r

df

dr
+ ω2f − 1

2

dV (f)

df
= 0. (2.3)

It is a well-known observation that the latter equation can be thought of as an equation of

motion of a point particle in classical mechanics, with the “coordinate” f and the “time”

x (or r), that moves in the effective potential

Uω(f) =
1

2

(
ω2f2 − V (f)

)
. (2.4)

For d > 1, the motion of the particle is also affected by the “friction” term ∼ 1
r
df
dr . This

mechanical analogy is illustrated in figure 1. Specifically, the particle begins to move at the

“moment of time” x = 0 (or r = 0) from the “coordinate” f = fmax and reaches the vacuum

state f = 0 at the “time” x → ∞ (or r → ∞).1 Note that for d > 1, Uω(f(0)) > Uω(0)

because of the “friction” term.
1In the one-dimensional case this analogy determines the Q-ball solution only at x ≥ 0. The full solution

is symmetric: f(−x) = f(x).
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Q-holes in 1+1 dimensions
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Figure 2. Mechanical analogy for Q-holes in 1 + 1 and 3 + 1 dimensions respectively.

The reasoning outlined above, despite being simple, can help to unveil a new class of

solutions in the case when the potential Uω(f) possesses other local (or global) maxima

except that at f = 0. In the rest of the paper we will explore this case in detail.

2.2 Time-dependent scalar condensate, Q-holes and Q-bulges

Suppose that for certain values of ω, the effective potential Uω(f) develops a maximum

point,
dUω(f)

df

∣∣∣∣
f=fc

= 0, (2.5)

at some constant fc 6= 0.2 Then a family of spatially-homogeneous time-dependent solu-

tions appears in addition to the vacuum solution f ≡ 0,

φ(t, ~x) = fce
iωt, fc 6= 0. (2.6)

Without loss of generality, we take fc to be real such that fc > 0. The solutions (2.6)

represent the scalar condensate and have an infinite total charge and energy. As will be

shown below, they can be stable under small fluctuations. Note that, in general, the

existence of extra maxima of the effective potential Uω(f) does not imply the existence of

extra minima of the initial potential V (f).

We can now use the mechanical analogy described in the previous section to advocate

the existence of inhomogeneous solutions of the form φ(t, ~x) = f(r)eiωt in addition to the

time-dependent scalar condensate (2.6).3 Here we will discuss two types of such solutions.

The mechanical analogy for the first type is presented in figure 2. The crucial feature of

these solutions, which we will refer to as “Q-holes”, is expressed by the inequality f(∞) >

f(0). That is, they can be thought of as “dips” in the homogeneous charged condensate.

The mechanical analogy for the second type is presented in figure 3. Solutions of this

type obey the inequality f(∞) < f(0). Hence they can be thought of as “rises” in the

homogeneous charged condensate. For this reason, we will call such solutions “Q-bulges”.

2In general, the constants fc are frequency-dependent. In special cases, however, they may be indepen-

dent of ω.
3Again, without loss of generality, we take f(r) to be real and such that f(r) > 0.
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Figure 3. Mechanical analogy for Q-bulges in 1 + 1 and 3 + 1 dimensions respectively.

We can see from figure 3 that the existence of Q-bulges demands a specific high energy

behavior of the effective potential. Apart from this fact, from the point of view of the

mechanical analogy, Q-bulges lie close to Q-balls.

Let us briefly discuss the main properties of Q-holes and Q-bulges. First, their asymp-

totes at infinity,

f(~x)→ fc, |~x| → ∞, (2.7)

imply that the frequency ω of the Q-hole (Q-bulge) is fixed by the frequency of the scalar

condensate of magnitude fc. Second, the charge and the energy of the Q-hole (Q-bulge)

are defined in the standard way,

Q = i

∫
(φ∂0φ

∗ − φ∗∂0φ) ddx = 2ω

∫
f2ddx,

E =

∫ (
ω2f2 +

d∑
i=1

∂if∂if + V (f)

)
ddx.

(2.8)

When being calculated at a given Q-hole (Q-bulge) configuration, the expressions (2.8) are

clearly infinite. However, since f(r) → fc as |~x| → ∞, it is reasonable to compute the

charge and the energy of the Q-hole (Q-bulge) relative to the corresponding background

solution (2.6). Hence we define the renormalized charge and energy as follows,

Qren = Q−Qc = 2ω

∫
f2ddx− 2ω

∫
f2c d

dx = 2ω

∫ (
f2 − f2c

)
ddx,

Eren = E − Ec =

∫ (
ω2
(
f2 − f2c

)
+

d∑
i=1

∂if∂if + V (f)− V (fc)

)
ddx.

(2.9)

Here Qc and Ec are the scalar condensate charge and energy. The quantities (2.9) are finite

as we will explicitly demonstrate below. Furthermore, they obey the following relation,

Eren = ωQren +
2

d

∫
ddx ∂if∂if, (2.10)
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which is analogous to that for Q-balls.4 Last, but not least, the following key property of

Q-holes (Q-bulges) can be deduced from eqs. (2.9),

dEren

dω
= ω

dQren

dω
. (2.11)

The relation (2.11) is also well known to be valid for Q-balls (with Qren and Eren substituted

by the genuine charge and energy of the Q-ball). This justifies the meaningfulness of our

notions of Qren and Eren.

Note that since for Q-holes the inequality f(~x) < fc holds for all |~x| <∞, the sign of

Qren is opposite to the sign of ω and the renormalized energy Eren is not positive definite.

To prevent possible confusion, we stress again that Eren is defined with respect to the

energy of the corresponding background solution and has no absolute meaning. Hence,

unlike Q-balls, it is not possible to select a universal ground energy level from which one

can count the energy of Q-holes (this reasoning holds for Q-bulges as well). Instead, the

energy of each Q-hole (Q-bulge) must be renormalized in a unique way. As for Q-bulges,

ωQren > 0 in this case, leading to Eren > 0.

We would like to point out once again that, although dUω(f)
df

∣∣
f=fc

= 0, the original

potential V (f) may not have zero derivatives everywhere except the origin. Therefore, in

general, the asymptotes of Q-holes (Q-bulges) do not approach any false vacuum state,

contrary to what our intuition says about the properties of solitons.

3 Explicit examples

In this section we consider the model allowing for analytical investigation of the scalar

condensate and Q-holes. For this purpose it is convenient to choose a simple piecewise-

parabolic potential of the model [14],

V (|φ|) = M2|φ|2θ
(

1− |φ|
2

v2

)
+M2

(
|φ|2 − 2εv|φ|+ 2εv2

)
θ

(
|φ|2

v2
− 1

)
, (3.1)

where |φ| =
√
φ∗φ, M2 > 0, ε > 0, v > 0, θ is the Heaviside step function with the

convention θ(0) = 1
2 . The potential (3.1) consists of two parabolic parts joined together at

the point |φ| = v. It possesses at least one minimum at |φ| = 0. It is easy to see that for

ε < 1 there are no other minima, while for ε > 1 the second (local or global) minimum is

located at |φ| = εv. The potential (3.1) can be generalized by using different masses for

large and small values of |φ|.
The potential (3.1) does not admit the existence of Q-bulges.5 In principle, Q-holes and

Q-bulges are of the same kind — both solutions describe inhomogeneities in the scalar con-

densate and possess the same properties described by eqs. (2.9)–(2.11). Meanwhile, a possi-

ble negativity of Eren for Q-holes seems to be their peculiar feature, which makes their anal-

ysis more interesting. For this reason, we select Q-holes for the more detailed investigation.

4The proof of eq. (2.10) is also fully analogous to that for Q-balls, the latter can be found in [13].
5One can supplement the scalar field potential (3.1) by an additional parabolic part for the large values

of |φ| to obtain Q-bulge solutions.
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3.1 Scalar condensate and its stability

First, we aim to study the time-dependent scalar condensate in the (d + 1)-dimensional

space-time. The spatially homogeneous solutions of the equation of motion (2.3) with the

potential (3.1) take the form

φ = fc e
iωt. (3.2)

For 0 < fc < v, eq. (2.3) gives |ω| = M and the magnitude fc of the condensate is

independent of ω. For fc > v, eq. (2.3) gives

fc =
vεM2

M2 − ω2
. (3.3)

From this expression it follows that 0 ≤ |ω| < M . On the other hand, the condition fc > v

implies that ω2 > M2(1− ε), if ε ≤ 1, and ω2 ≥ 0 otherwise. Combining these restrictions,

we obtain the allowed region for ω,

max[0; 1− ε]M2 ≤ ω2 < M2. (3.4)

Next we determine the charge and the energy of the condensate. When 0 < fc < v,

they take the form

Qc =

∫
ρq d

dx =

∫
2Mf2c d

dx, (3.5)

Ec =

∫
ρe d

dx =

∫
2M2f2c d

dx, (3.6)

and for fc > v we have

Qc =

∫
2ωv2ε2M4

(M2 − ω2)2
ddx, (3.7)

Ec =

∫
εv2M2

(M2 − ω2)2
(
(2− ε)M4 + (3ε− 4)ω2M2 + 2ω4

)
ddx, (3.8)

where ω is bounded by eq. (3.4). It is clear that the total charge and energy of the

condensate are infinite due to the infinite volume of space.

We see that the theory contains two series of condensate solutions. The solutions of

the series with fc < v allow to interpret them as collections of particles of mass M . Indeed,

for these solutions ρe = Mρq. The solutions with fc > v, despite being condensate, cannot

be interpreted in this way.

Let us now examine the classical stability of the condensate under small fluctuations.

It is clear that the solutions

φ = fc e
iMt, 0 < fc < v (3.9)

are classically stable — the corresponding fluctuations satisfy the standard Klein-Gordon

equation. In order to study the stability of the second series,

φ =
vεM2

M2 − ω2
eiωt, max[0; 1− ε] ≤ ω2 < M2, (3.10)

– 7 –
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we write the scalar field in the form

φ = eiωt
vεM2

M2 − ω2
+ eiωt

(
aeik0t−i

~k~x + be−ik0t+i
~k~x
)
, (3.11)

where a and b are complex constants and ~k = (k1, . . . , kd). Then we substitute this repre-

sentation into the equation of motion for the scalar field and obtain a linearized equation

for the fluctuations above the condensate solution. The stability (instability) of the con-

densate is manifested in the absence (existence) of the solutions of the linearized equation

with imaginary k0. Straightforward calculations give the following equation on k0 and ~k,(
k20 − ~k2 −M2 + ω2

)(
k20 − ~k2

)
− 4ω2k20 = 0, (3.12)

whose solutions are given by

k20 =
M2 + 3ω2 + 2~k2 ±

√
(M2 + 3ω2)2 + 16ω2~k2

2
. (3.13)

Since (
M2 + 3ω2 + 2~k2

)2
=
(
M2 + 3ω2

)2
+ 16ω2~k2 + 4(M2 − ω2)~k2 + 4

(
~k2
)2

≥
(
M2 + 3ω2

)2
+ 16ω2~k2, (3.14)

we obtain k20 ≥ 0, i.e., the scalar condensate is stable under small fluctuations.6

3.2 Q-holes in (1+1)-dimensional space-time

Let us now study in detail Q-holes in the (1+1)-dimensional space-time. The corresponding

solutions of eq. (2.3) take the form

f(x) =


v

cosh
(√

M2 − ω2 x
)

cosh
(√

M2 − ω2X
) , |x| < X,

v
εM2

M2 − ω2
− v

(
εM2

M2 − ω2
− 1

)
e
√
M2−ω2(X−|x|), |x| ≥ X,

(3.15)

where

X =
1√

M2 − ω2
arctanh

(
(ε− 1)M2 + ω2

M2 − ω2

)
(3.16)

defines the matching point at which f(X) = v. Since the argument of the inverse hyperbolic

tangent should be less than unity and not less than zero, from eq. (3.16) one finds

(1− ε)M2 ≤ ω2 <
(

1− ε

2

)
M2. (3.17)

Note that the r.h.s. of the inequality (3.17) can be obtained using the mechanical analogy.

It is clear from figure 2 that if Uω(fc) ≥ 0, then the particle will never reach the top of

6In the general case, the scalar condensate is stable (i.e., k20 ≥ 0 for any ~k) if d2V
df2

∣∣
f=fc
− 1

fc

dV
df

∣∣
f=fc
≥ 0,

see [15].
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Figure 4. Q-hole solution in the (1 + 1)-dimensional space-time. Here ε = 1.5, ω = 0.2M , the

dashed line stands for the scalar condensate fc.

the effective potential. Hence the condition ω2f2c − V (fc) < 0 holds, and using eqs. (3.3)

and (3.1), we deduce ω2 <
(
1− ε

2

)
M2.

From eq. (3.17) it follows that Q-holes do not exist if ε ≥ 2, while for 1 < ε < 2 the

l.h.s. of eq. (3.17) can be replaced by 0 ≤ ω2. Hence the allowed region for ω in the theory

with the potential (3.1) takes the form (cf. eq. (3.4))

max[0; 1− ε]M2 ≤ ω2 <
(

1− ε

2

)
M2. (3.18)

An example of the Q-hole solution is presented in figure 4. We observe that f(x) →
fc > v as x → ±∞. It is not difficult to show that Q-holes with the asymptotes

lim
x→±∞

f(x)→ fc < v do not exist in the theory with the potential (3.1).7

For the renormalized charge and energy we get

Qren =
2ωv2

(M2 − ω2)
5
2

((
(2ε− 3ε2)M4 − 2εM2ω2

)
arctanh

(
(ε− 1)M2 + ω2

M2 − ω2

)

−3εM2
(
(ε− 1)M2 + ω2

))
, (3.19)

Eren =
2v2

(M2 − ω2)
5
2

((
ε2M4(M2 − 4ω2) + εM2(M2 − ω2)(4ω2 − 2M2)

)
×arctanh

(
(ε− 1)M2 + ω2

M2 − ω2

)
+ εM2(M2 − 4ω2)

(
(ε− 1)M2 + ω2

))
. (3.20)

Let us mention some properties of Qren and Eren following from eqs. (3.19) and (3.20).

7This statement remains true in the (d+ 1)-dimensional case.
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Figure 5. Qren(ω) and Eren(ω) for ε = 1.7 in the (1 + 1)-dimensional case.
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Figure 6. Qren(ω) and Eren(ω) for ε = 1 in the (1 + 1)-dimensional case.

1. |Qren| → ∞ and |Eren| → ∞ as |ω| → M
√

1− ε/2. Indeed, in this case X → ∞,

whereas f(x) tends to the vacuum solution f ≡ 0 at |x| < X.

2. For ω = 0 (if allowed, i.e., if ε > 1), Qren = 0 and Eren > 0 due to eq. (2.10).

3. For ω = M
√

1− ε and ε < 1, we get Qren = 0 and Eren = 0. Indeed, in this case

X = 0 and f(x) ≡ fc = v.

Some typical examples of Qren(ω) and Eren(ω) dependencies are presented in figures 5–7.

We see that the renormalized energy Eren can take positive as well as negative and zero

values. As was explained in section 2.2, this result is expected and should not surprise.

As a useful check of validity of our calculations, one can show numerically that eq. (2.11)

fulfills for Qren and Eren given by eqs. (3.19) and (3.20).

Let us pause here to make a general comment on a choice of regularization scheme

for Q-holes (and Q-bulges). Eqs. (2.9) give a natural way to obtain finite values for the

charge and energy of the Q-hole (Q-bulge). The corresponding quantities Qren and Eren

satisfy all the relations they are expected to satisfy as the “charge” and the “energy” of

the soliton. We can expect, therefore, that any consistent regularization must lead to

the same expressions for Qren and Eren. One such scheme corresponds to putting the

system in a box of size 2L (with the natural boundary conditions f(−L) = f(L) and
df
dx

∣∣
x=−L = df

dx

∣∣
x=L

= 0), computing Qren and Eren as differences of finite quantities, and
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Figure 7. Qren(ω) and Eren(ω) for ε = 0.75 in the (1 + 1)-dimensional case.

taking the limit L → ∞. This procedure endows eqs. (2.9) with the precise meaning. We

conclude that the negativity of Eren at some ω is an inherent property of Q-holes and not

a consequence of a particular choice of regularization.

3.3 Q-holes in (3+1)-dimensional space-time

The analysis of Q-holes in three spatial dimensions lies closely to that in the (1 + 1)-

dimensional case. The spherically symmetric ansatz for the scalar field reads as follows,

φ(t, ~x) = f(r)eiωt, (3.21)

where r =
√
~x2. The solutions to the equation of motion (2.3) with the potential (3.1) take

the form

f(r) =


v

sinh
(√

M2 − ω2 r
)

sinh
(√

M2 − ω2R
)R
r
, r < R,

v
εM2

M2 − ω2
− v

(
εM2

M2 − ω2
− 1

)
R

r
e
√
M2−ω2 (R−r), r ≥ R,

(3.22)

where R is defined by√
M2 − ω2 coth

(√
M2 − ω2R

)
=

1

R
+

(
εM2

M2 − ω2
− 1

)(√
M2 − ω2 +

1

R

)
. (3.23)

Contrary to the (1 + 1)-dimensional case, the latter equation has no analytical solutions

for R. However, it can be solved numerically.

Acting exactly as in the (1 + 1)-dimensional case, with the use of the mechanical

analogy one can obtain the relation ω2 <
(
1− ε

2

)
M2 leading together with eq. (3.4) to

max[0; 1− ε]M2 ≤ ω2 <
(

1− ε

2

)
M2. (3.24)

Again, from the latter equation it follows that Q-holes do not exist if ε ≥ 2. Although

eq. (3.23) is more complicated than eq. (3.16) in the (1 + 1)-dimensional case, the restric-

tion (3.24) can also be obtained directly from eq. (3.23), see appendix A for details. It
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is interesting to note that both in 1 + 1 and 3 + 1 dimensions the model admits Q-ball

solutions.8 As can be easily shown using the mechanical analogy, they exist if(
1− ε

2

)
M2 < ω2 < M2. (3.25)

An example of the Q-hole solution in 3 + 1 dimensions is presented in figure 8.

The renormalized charge and energy are given by

Qren =
v2

M2
8πω̃

(
R̃

2(1− ω̃2)

(
R̃2(1− ω̃2) +

1

4
−
(
f̃c +

√
1− ω̃2R̃(f̃c − 1)− 1

2

)2
)

−R̃
3f̃2c
3

+
R̃2(f̃c−1)2

2
√

1−ω̃2
−2f̃c(f̃c−1)

(
R̃2

√
1−ω̃2

+
R̃

1−ω̃2

))
, (3.26)

Eren =
v2

M
8π

(
(4ω̃2 − 1)R̃

6(1− ω̃2)

(
R̃2(1− ω̃2) +

1

4
−
(
f̃c +

√
1− ω̃2R̃(f̃c − 1)− 1

2

)2
)

− ω̃
2R̃3f̃2c

3
+

(4ω̃2−1)R̃2(f̃c−1)2

6
√

1−ω̃2
− (7ω̃2−1)f̃c(f̃c−1)

3

(
R̃2

√
1−ω̃2

+
R̃

1−ω̃2

))
, (3.27)

where the notations ω̃ = ω
M , R̃ = MR and f̃c = εM2

M2−ω2 are introduced to shorten the

formulas.

Some general properties of Qren and Eren defined by eqs. (3.26) and (3.27) are in order.

1. |Qren| → ∞ and |Eren| → ∞ as |ω| → M
√

1− ε/2. Indeed, in this case R → ∞,

whereas f(r) tends to the vacuum solution f ≡ 0 at r < R.

8The explicit (3 + 1)-dimensional solutions can be found in [14].
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Figure 9. Qren(ω) and Eren(ω) for ε = 1.7 in the (3 + 1)-dimensional case.
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Figure 10. Qren(ω) and Eren(ω) for ε = 1 in the (3 + 1)-dimensional case.
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Figure 11. Qren(ω) and Eren(ω) for ε = 0.75 in the (3 + 1)-dimensional case.

2. For ω = 0 (if allowed, i.e., if ε > 1), Qren = 0 and Eren > 0 due to eq. (2.10). This is

an expected result for the solution with ω = 0, which is just a sphaleron.

3. For ω = M
√

1− ε and ε < 1, we have Qren = 0 and Eren = 0. Indeed, in this case

R = 0 and f(r) ≡ fc = v.

Some typical examples of the Qren(ω) and Eren(ω) dependencies are presented in fig-

ures 9–11. Again, we see that the renormalized energy Eren can be positive, negative9 or

9The negativity of Eren poses the question about possible spontaneous creation of Q-holes. However,

at the moment it is not clear what can carry the rest of the charge and energy (in comparison with the

condensate, i.e., −Qren and −Eren), taking into account the nonstandard form of excitations above the

condensate, see subsection 3.1. This problem will be briefly discussed below.
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zero. As in the (1+1)-dimensional case, one can check numerically that the relation (2.11)

fulfills for Qren and Eren given by eqs. (3.26) and (3.27).

4 Classical instability of Q-holes and Q-bulges

There is a well-known classical stability criterion for Q-balls [16, 17], which states that Q-

balls with dQ
dω < 0 are classically stable.10 It is easy to see that the method used to obtain

this criterion (as well as the similar approach used in [18] for obtaining the stability criterion

for NSE) cannot be generalized straightforwardly to the case of Q-holes and Q-bulges with

the (renormalized) charge and energy given by Qren and Eren. Indeed, contrary to the case

of ordinary Q-balls, whose asymptotics at r → ∞ are the same for any value of ω, for

Q-holes and Q-bulges the asymptotic behavior is different for different ω. Moreover, their

total charge and energy are infinite. Despite these obstacles, one can give some arguments

in favor of classical instability of these solitons, to which we now proceed.

As was mentioned in section 3.2, one can put the system in a box of finite size and

regard Qren as a difference Q−Qc between the charges of soliton and condensate computed

in this box. The box implies boundary conditions to be imposed on the solutions. For

example, in 1 + 1 dimensions with the size of the spatial dimension 2L, one can demand

the periodic boundary conditions f(−L) = f(L) and df
dx

∣∣
x=−L = df

dx

∣∣
x=L

= 0. The solution

obeying these conditions can be easily obtained for the potential (3.1). It is also easy to

check that this solution does not have nodes and tends to (3.15) for L → ∞. Hence one

can expect that, as long as the characteristic scale of the soliton l is much smaller than the

size of the box L, the value of Qren lies very close to its limit at L → ∞. Since Qren

Q � 1

for l� L, for such solutions one can write Q ≈ Qc.
Since Q is finite in the box, we have no obstacles in the derivation of the Q-criterion [16,

17] that would forbid us to apply it to our case. Choosing the size of the box to be

sufficiently large, we have
dQ

dω
≈ dQc

dω
. (4.1)

We see that the sign of dQ
dω , determining the (in)stability of the solution, follows from the

sign of dQc

dω . We now ask what the sign of dQc

dω is.

We will be interested in the case of a stable scalar condensate, like the one in eq. (3.10),

for which the condition
d2V

df2

∣∣∣∣
f=fc

− 1

fc

dV

df

∣∣∣∣
f=fc

≥ 0 (4.2)

holds [15]. The condensate charge is Qc = 2ωf2c V
(d), where V (d) ∼ Ld is the space volume.

Thus,

dQc
dω

= 2V (d)

(
f2c + 2ωfc

dfc
dω

)
. (4.3)

10Speaking more precisely, this condition must be supplemented by an additional requirement on the num-

ber of negative eigenvalues of some operator, which arises when considering perturbations above the Q-ball.
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Now, differentiating eq. (2.5) with respect to ω, using eq. (2.4) and multiplying the result

by dfc
dω , we get

2ωfc
dfc
dω

=
1

2

(
d2V

df2

∣∣∣∣
f=fc

− 1

fc

dV

df

∣∣∣∣
f=fc

)(
dfc
dω

)2

. (4.4)

Substituting eq. (4.4) into eq. (4.3), we arrive at

dQc
dω

= 2V (d)

(
f2c +

1

2

(
d2V

df2

∣∣∣∣
f=fc

− 1

fc

dV

df

∣∣∣∣
f=fc

)(
dfc
dω

)2
)
. (4.5)

We see that whenever the condensate stability criterion (4.2) fulfills, the relation dQc

dω > 0

holds (for eq. (3.7), this can be checked explicitly). The latter inequality means that

solutions for which eq. (4.1) holds may be (and probably are) classically unstable.11 Namely,

most probably there exists a mode of the form ϕ(~x)eiωteγt among the excitations above

the Q-hole or Q-bulge, where γ is a real constant. Finally, it is reasonable to suppose that

Q-holes and Q-bulges remain classically unstable in the limit V (d) →∞.

An important remark is in order here. The inequality dQc

dω > 0 holds for the classically

stable condensate, which may seem confusing as the stability criterion for the Q-solitons

dictates dQ
dω < 0. However, there is no contradiction here — the method of [16, 17] is based

on the existence of a negative eigenvalue of the already mentioned operator (more precisely,

it is the operator hR defined by eq. (3.39) of [17]), which arises when one considers pertur-

bations above the Q-ball. One can check that for the scalar condensate satisfying eq. (4.2),

this operator can not have negative eigenvalues at all. The latter makes this method and,

consequently, the Q-criterion not applicable to the spatially-homogeneous solutions.

The conclusion about classical instability of Q-holes and Q-bulges is also supported

by the explicit solutions presented in section 3. Indeed, for some values of the parameters

there exist sphalerons — the solutions with ω = 0 and Eren 6= 0 that are always classically

unstable [19]. Hence we expect that at least the solutions, whose values of ω are close to

0, are also classically unstable.

The classical instability of Q-holes and Q-bulges is a very important property of these

solutions. It is related to the already mentioned problem of the condensate fragmentation.

For example, in the model with the potential (3.1) there exist classically stable Q-balls [14],

along with the classically stable condensate. Therefore, one can expect that Q-holes and Q-

bulges represent an important intermediate step in the process of condensate fragmentation

(i.e., “stable condensate”→“unstable Q-hole/Q-bulge”→“stable Q-balls”). In this case, Q-

holes or Q-bulges may form due to interactions of the scalar condensate with other particles

existing in the theory.

It would be nice to examine analytically the classical instability of the Q-holes and

Q-bulges, obtained above for the scalar field potential (3.1), by considering the linearized

theory on top of the background solution. However, contrary to the case of a simpler poten-

tial used in [13, 15], the potential (3.1) does not allow for such analysis, the reason being the

11Since 1

V (d)
dQc
dω
≥ 2f2

c > 0 for the classically stable condensate (see eq. (4.5)), for any finite dQren
dω

we

can always take such a large spatial volume V (d) that dQ
dω

> 0.
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additional term ∼
√
φ∗φ that it contains. There still remains a purely numerical way to in-

vestigate the classical instability in the theory with the potential (3.1). The numerical anal-

ysis may also clarify whether or not Q-holes or Q-bulges lead to fragmentation of the scalar

condensate into Q-balls. We leave the thorough investigation of these issues for future work.

5 Conclusion

In this paper we have presented Q-holes and Q-bulges — two classes of localized configu-

rations representing dips and rises in the spatially-homogeneous charged time-dependent

scalar condensate. The important feature of these configurations is that they can be de-

formed into the condensate by a finite amount of energy. We expect that inhomogeneities

of this type may be crucial for the nonlinear dynamics of the condensate in the Early

Universe, in particular, for its fragmentation into Q-balls. We have also found the explicit

solutions for Q-holes in the model with a simple piecewise-parabolic potential proposed

in [14], and examined their properties. It has been shown that the renormalized energy

Eren of Q-holes can take both positive, zero and negative values.

In this paper, we did not address in detail the question of quantum stability of Q-

holes and Q-bulges. Of course, if “ordinary” particles interact with Q-holes and Q-bulges

through, say, the combination φ∗φ (which is time-independent for these solutions and for

the scalar condensate), Q-bulges and Q-holes with Eren > 0 can decay into such particles.

Moreover, one may expect that Q-bulges and Q-holes can be created (even spontaneously)

in processes involving these particles. So, this case is rather standard.

However, the case of excitations of the scalar field φ above the condensate, which are

supposed to form the corresponding scalar particles, is not so trivial. For ordinary Q-balls

one can define a standard vacuum far from the core of the soliton and apply a standard

quantization procedure to the perturbations above this vacuum. For the time-dependent

scalar condensate, excitations on top of the background have nonstandard dispersion laws

like the one in eq. (3.12). Moreover, one can check that even the charge of the excitation

with respect to the condensate charge also has a very nonstandard form, and the standard

quantization procedure can not be applied to such excitations. It would be interesting

to see what should be defined as “particles” related to the excitations of the form (3.11)

on top of the time-dependent background, and what must be the consistent quantization

procedure, providing us with the correct definition of energy of the quantum excitations.

These questions call for further detailed investigation.
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A Limits on ω for Q-holes in (3 + 1)-dimensional space-time

In eq. (3.23), make a substitution Y =
√
M2 − ω2R and rewrite it in the form

Y (coth(Y ) + 1)

Y + 1
=

εM2

M2 − ω2
. (A.1)

The l.h.s. of eq. (A.1) is a monotonic function such that

1 ≤ Y (coth(Y ) + 1)

Y + 1
< 2. (A.2)

Hence

1 ≤ εM2

M2 − ω2
< 2. (A.3)

The latter inequality leads to eq. (3.24).
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