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Abstract

Background: Darwin and the architects of the Modern Synthesis found sympatric speciation difficult to explain and
suggested it is unlikely to occur. Increasingly, evidence over the past few decades suggest that sympatric speciation
can occur under ecological conditions that require at most intraspecific competition for a structured resource. Here
we used an individual-based population model with variable foraging strategies to study the evolution of mating
behavior among foraging strategy types. Initially, individuals were placed at random on a structureless resource
landscape, with subsequent spatial variation induced through foraging activity itself. The fitness of individuals
was determined by their biomass at the end of each generational cycle. The model incorporates three diallelic,
codominant foraging strategy genes, and one mate-choice or m-trait (i.e. incipient magic trait) gene, where the
latter is inactive when random mating is assumed.

Results: Under non-random mating, the m-trait gene promotes increasing levels of either disassortative or assortative
mating when the frequency of m respectively increases or decreases from 0.5. Our evolutionary simulations demonstrate
that, under initial random mating conditions, an activated m-trait gene evolves to promote assortative mating because
the system, in trying to fit a multipeak adaptive landscape, causes heterozygous individuals to be less fit than
homozygous individuals.

Conclusion: Our results extend our theoretical understanding that sympatric speciation can evolve under nicheless or
gradientless resource conditions: i.e. the underlying resource is monomorphic and initially spatially homogeneous.
Further the simplicity and generality of our model suggests that sympatric speciation may be more likely than
previously thought to occur in mobile, sexually-reproducing organisms.

Keywords: Magic traits, Foraging guilds, Disruptive selection, Genetic algorithms, Agent-based models

Background
Sympatric speciation is thought to be uncommon [1],
although several systems—including races of Rhagoletis
pomonella (apple maggots) and the parasitic Braconid
wasps (Diachasma alloeum) they host [2], sibling species
of Monostroma (i.e. M. latissimum and M. nitidummarine,
green algae off the coast of Japan [3]), cichlid species
((Amphilophus sp.) complexes in isolated lakes [4] (but
see [5]), and the iconic Darwin finches [6]—are considered
to be examples of such speciation. The current prevalent
view of sympatric speciation is that it is driven by disrup-
tive selection through ecological competition on traits

linked to assortative mating mechanisms that, when of
genetic origin and not associated with sexual selection, are
referred to as “magic traits” [7–11]. The genetic mecha-
nisms underlying sympatric speciation can be quite varied,
but they are often thought to involve either some type of
recognition system (see [12] and the references therein) or
ecological-mediated mate-sorting, such as heteropatry
(individuals mate within preferred patch types on a mosaic
landscapes [13]). Other, more subtle types of mechanisms
also exist [14], suggesting that more mechanisms are likely
to be discovered.
Ecological models underlying disruptive selection have

invoked either multiple distinct habitat types (which
have been referred to as “Levene models” [1]) or a
resource gradient, such as seed size in the case of gram-
nivorous vertebrates. These cases, of course, encompass
a considerable variety of situations. An influential,
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logistic-equation-based, adaptive dynamics analysis by
Dieckmann and Doebeli [15] showed that sympatric spe-
ciation is a likely outcome of competition for resources.
Disruptive selection in their model arose from the
competitive exclusion process associated with resource
competition processes [16]. In concert with disruptive
selection, Kirkpatrick and Ravigne [17] identified a con-
catenation of mechanisms needed for speciation to
occur: an isolating mechanism (e.g. associative mating),
a mechanism to link disruptive selection and isolation, a
genetic basis for increased isolation, and an appropriate
initial situation. Dieckmann and Doebeli’s [15] simula-
tions involved pitting individuals against one another
that have different density-dependent growth responses
to a given implicit ecological background (the implicit-
ness was reflected in terms of the value of the carrying
capacity parameter in the logistic model for the individ-
ual in question) and, as such, fell within the growing
genre of using individual-based models (IBM) to address
ecological and evolutionary questions [18].
Recently, we used an IBM to demonstrated that if a uni-

form monomorphic resource landscape is peppered at
random with consumers that are identical in terms of
their ability to compete, extract and convert resources for
growth—but employ individually variable movement be-
havior strategies (in terms of when and where to move,
based on evaluations of resource levels and number of
competitors in different directions of the compass)—then
a polymorphic movement strategy guild emerges with
structure dependent on historical quirks [19] rather than
on an intrinsic system's attractor. This result considerably
weakens the ecological precursors that are necessary for
sympatric speciation to occur. Further, if we assume some
type of mate labeling cues are linked to behavioral strat-
egies, such as visual coloration correlated with both be-
havioral type and mating strategies in side-blotched lizard
(Uta stansburiana) [20] and Midas cichlids (Amphilophus
citrinellus) [21]—then we have a magic trait system [7–11]
that can be used both to promote the reproductive separ-
ation of individuals belonging to different behavioral syn-
dromic groups. Further, mating strategies that promote
fitness often arise even though we currently may have no
verified explanation for their origin, as with observations
that olfactory cues are used to avoid sibmating in house
mice (Mus musculus domesticus) [22]. In our model as-
sortative mating, which is widespread through the animal
kingdom [23], promotes fitness, as evidenced by the
greater efficiency of clonal versus sexual foraging guilds in
exploiting the model resource space [19].
The specific question we address here, in the context

of individuals foraging on a structureless resource land-
scape [19], is the following: if the genetic precursors are
in place for a magic-trait system to emerge within a ran-
domly mating population, will assortative mating, as a

precursor to sympatric speciation, emerge and be-
come firmly established? The question is answered
here in the affirmative, both through our simulation
studies and with a well-supported explanation of why
we should expect consumer-resource systems to be-
have in this way. In addition, the results we obtain
serve to refute the following hypothesis, articulated in
terms of a nicheless resource environment; by which
we mean the resource is structurally homogeneous
(i.e. it has no spectral qualities such as size or even
color variation and exhibits no density gradients,
though it can consist of randomly distributed patches
or packages of resource):

Hypothesis: Two closely competing morphs (or strains),
coevolving in a mixed population, cannot coexist if
they both exploit a nicheless resource environment.

Given that it only takes one counterexample to dis-
prove an hypothesis, the example we provide rejects this
hypothesis and lays to rest the issue that some kind of
resource niche structure is needed to ensure that sym-
patric speciation can occur when the supporting mecha-
nisms of disruptive selection and genetically driven
reproductive isolation, as identified by Kirkpatrick and
Ravigne [17], emerge and become fixed. In short, the re-
sults we present below demonstrate that different foraging
types may not only coexist (as demonstrated in [19]), but
that they may be corralled by a magic-trait system [7–11]
into mating assortatively, which is a precursor to repro-
ductive isolation and, ultimately, speciation [17].

Results
Evolutionary simulations
Simulations were carried out using the model described
in the Methodology Section, essentially running an evo-
lutionary algorithm on top of our individual-based,
single-generation foraging (i.e. ecological) model over
evolutionary epochs that were either 250 or 500 genera-
tions long. The ranges of final population sizes at gener-
ation 250 and 500, together with the means and
standard deviations of the mating-phenotype (magic)
parameter m across runs, as well as mean values of the
standard deviation across runs, are given in Table 1.
Statistical analyses of these results reveal that the mean
values of m for the random (m = 0.49 ± 0.13, n = 124)
and m-trait (m = 0.21 ± 0.09, n = 80) mating are signifi-
cantly different at generation 250, as well as at gener-
ation 500 (n = 15 for both the random m = 0.53 ± 0.20
and m-trait m = 0.10 ± 0.09 mating cases), suggesting that
the m-trait gene evolves to promote assortative mating.
The distributions of the values of m for the 250-
generation cases are plotted in Fig. 1, as a histogram
binned into 0.1 unit intervals.
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Emergent genetic structure
To provide a sense of the emergent genetic structure at
the end of the 500 generation runs (where this structure
is more evolved, and hence sharper than after 250 gener-
ations), in Table 2 we list the mean values of m across
all agents in each of the 15 random and 15m-trait mat-
ing runs along with the heterozygote deviance (i.e. an
index of inbreeding and clustering; see Methods for
details) associated with α, the most diverse of the three
behavioral parameters in the model (See Methods for
further explanation). The differences in each of these
three measures when compared across random versus
m-trait mating are all highly significant (p < 0.001 in all
three cases, Mann–Whitney U tests).
For the four simulations corresponding to the highest

and lowest average m values for the random and m-trait
mating cases in Table 2, the genetic structures that

emerged at generation 500 are plotted in Fig. 2 (with results
from all 30 simulations illustrated in the Additional file 1).
Specifically, the plots are: the values of all four parame-
ters (see the Methods Section for an explanation of these pa-
rameters) for each individual (Fig. 2, top panels in each of
the four cases), the location of each individual in the first
two principal components space (Fig. 2, middle panels in
each case), and of the dendrograms associated with the prin-
cipal components analysis (PCA; Fig. 2, bottom panels in
each case). The m-trait simulations show defined genetic
structure has evolved across all four parameters, with the
lowest m value run of the m-trait mating case show-
ing a particularly clear structure (Fig. 2) of two alleles
for δ (red—the two dominant bands are the homozy-
gote phenotypes), two alleles for ρ (green—the two
dominant bands are the two homozygote phenotypes),
one allele for m (black) parameters, and three alleles for α
(blue—three dominant homogyzote bands plus smaller
heterozygote bands). The PCA analysis shows very clear
genetic groupings for the case of the smallest m value for
the m-trait mating (Fig. 2) while PCA space grouping are
much less distinct for the remaining three cases. Similarly
the dendrograms indicate that the populations in the m-
trait mating cases consist of a couple or several (depending
at what vertical axis distance the groups are parsed) groups
of more highly related individuals within groups and more
distantly related individuals among groups, consistent with
the fact that assortative mating groups are forming and in-
creasing their reproductive isolation among groups.

Discussion
Interpretation of the results
At the start of each generation the resource landscape
consists of a uniformly distributed landscape of a mono-
morphic set of resource patches (top left panel, Fig. 3;
top panel Fig. 4), where the resource biomass in each
patch changes over time due to resource growth and for-
ager extraction processes [19]. Foragers, in the form of
100 agents are peppered at random over this landscape
at the start of each generational cycle. These agents at
the start of the evolutionary epoch (250 or 500 genera-
tions, as the case may be) have variable foraging strat-
egies assigned to them (second from top panel, Fig. 4).
Some time into each intra-generational ecological simu-
lation, the resources on the landscape have increased,
except in those cells where agents have been exploiting re-
sources (top middle panel, Fig. 3). Agents with poor for-
aging strategies appear as small white rectangles, while
more successful agents appear as round purple dots in this
same panel (bigger dots correspond to agents that have
grown the most; cf. top middle panel, Fig. 3).
As time progresses, the number of agents reaches a

carrying capacity with stochastic perturbations (bottom
middle and right panels in Fig. 3), but the relatively

Table 1 Range of population sizes and basic statistics of the
parameter values of m for random (value of m has no affect) and
m-trait mating (i.e. assortative mating when m < 0.5, dissasortative
mating when m > 0.5) simulations at the end of the 250 and 500
generation epochs

N (runs) Agent ranges
across runs

Mean ± stdev across
“within run means”

Mean ± stdev across
“within run stdev”

At generation 250a

Random 124 239–361 0.49 ± 0.13b 0.17 ± 0.05

m-Trait 80 256–348 0.21 ± 0.09b 0.11 ± 0.05

At generation 500c

Random 15 265–334 0.53 ± 0.20b 0.10 ± 0.07

m-Trait 15 263–350 0.10 ± 0.09b 0.06 ± 0.04
aThe difference between distributions of m values for random versus m-trait
mating are plotted in Fig. 1
bSignificance evaluated using a two-tailed non-parameteric Mann-Witney U
test. For 250 generations
p < <0.001, for 500 generation p < 0.01
cAdditional details in Table 2

Fig. 1 Frequency histograms of the mean value of m under random
(blue) and m-trait (red) mating (purple represents areas of overlap) for
the 500 generation cases. See Table 1 for more details
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intense level of competition ensures that individuals are
smaller on average than we see in the early stages of the
evolutionary epoch (low values of the generation index
g, as g increases from 1 to 250 or 500; compare top
middle and right panels in Fig. 3), when population
levels are around 100 (the first 10 generations) rather
than above 300 (>150 generations—see lower middle
panel of Fig. 3). In this latter period of intense competi-
tion, the homogeneous environment takes on a mosaic
structure of resource patches at various stages of regen-
eration (upper right panel Fig. 3; third panel from the
top Fig. 4). At this stage, the optimal foraging strategy
type depends on the mix of existing foraging strategy
types and is affected by both absolute and relative num-
bers. Thus, at the start of each generation, the fittest for-
aging strategy type depends both on the number of
within generation foragers and on each of their strategy
types. As in the iconic, but deterministic, hawk-dove
game the evolutionarily stable strategy (ESS) is a poly-
morphism represented by a ratio of hawks to doves that
satisfies Nash equilibrium conditions (a discussion of the
concepts in this sentence can all be found in a review by
Nowak and Sigmund [24]). Unlike the hawk-dove game,
our system is dynamic with regard to the exploitation of
resources by foragers (i.e., during each iteration of the
ecological component of the model) and also stochastic.
The latter implies that an ESS does not exist in the

deterministic sense. To address the question of the exist-
ence of a long-run average ESS entails the formulation
of the concept of a quasi-stationary strategy (QSS), as
defined by Zhou et al. [25]. They demonstrated that a
QSS can only be regarded as the long-run average ESS if
the stochastic dynamical system’s approach to its QSS is
not too rapid. If it is too rapid, as happens in our system,
the QSS that emerges is different in each simulation
(of 250 or 500 generations in our case). Put in other
terms, the dynamic adaptive landscape that is associated
with our system’s evolutionary dynamics is the basis for
support of a polymorphic guild of foraging strategy types,
where the evolving configuration is dependent on the
early evolutionary history (i.e. on early stochastic events)
of the simulation.
The m-trait mating gene that we included in our model,

as an extension to our earlier work [19], has the potential
to take the population in two directions—assortative or
disassortative mating. In our simulation of this extended
model we observed that: i) when the gene is inactive (i.e. it
does not actually influence mating), the value of m wan-
ders in either direction, but across runs realizes an average
value very close to m = 0.5 (Table 1); ii). when the gene is
active (i.e. it influences mate choice in individuals with m
phenotypes sufficiently different from 0.5: viz. it engages
disassortative or assortative mating 72 % of the time when
m is respectively 0.6 or 0.4: see Methods section for

Table 2 Information on the genetic structure of the population at generation 500 for 15 evolutionary runs under random versus
m-trait mating (run numbers sorted on m separately for cases A. and B.; genetic structure of runs 1 and 15 for both cases illustrated
in Fig. 2). The heterozygote deviance value (see Method section) is with respect to the parameter α, while the % variance explained
by our principal components analysis (PCA) is with respect to the first two components

A. Random matinga B. m-Trait matinga

Run # m Heteroz. devianceb % PCA Var m Heteroz. devianceb % PCA Var

1 0.19 0.07 54 0.02 −0.99 80

2 0.31 0.08 53 0.02 −0.97 79

3 0.38 −0.06 54 0.03 −0.98 78

4 0.40 −0.32 58 0.04 −0.99 86

5 0.41 0.03 58 0.04 −0.97 78

6 0.44 0.10 55 0.05 −0.96 78

7 0.45 0.56 55 0.05 −0.96 87

8 0.48 0.04 53 0.06 −0.98 64

9 0.54 −0.14 57 0.06 −0.96 75

10 0.61 NAc 55 0.09 −0.95 70

11 0.66 0.10 53 0.11 −0.96 62

12 0.67 0.15 54 0.11 −0.94 60

13 0.76 0.13 57 0.25 −0.84 57

14 0.78 −0.17 57 0.28 −0.83 58

15 0.93 0.19 52 0.28 −0.86 62
aStatistical comparisons of A. and B. are highly significant for all three measures using a using a two-tailed non-parameteric Mann-Witney U test
bA negative value implies a deficit of heterozygotes compared with Hardy-Weinberg equilibrium
cNo value is given because insufficient genetic structure evolved in the parameter α to identify fewer than 5 distinct alleles
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details), the value of m evolves downwards over time, as
illustrated in the panel second from the bottom in Fig. 4.
This evolution of m is associated with the emergence of
an organized genetic structure (bottom panel in Fig. 4),
defined by homozygous individuals grouped into “strain”
types. These strains are different behavioral foraging types,
with regard to tradeoffs involving avoidance of competi-
tion, propensity to move from current to richer resources
patches, and one-step-tactical versus two-steps-strategic
planning (as described more precisely in the Methods
section). Guilds of strains (or foraging types) are better at
exploiting adaptive landscapes with multiple peaks (which
may dynamically adjust with changes in strain frequencies
and environmental factors: e.g., see [26]) than non-guild
populations, much as clonal populations better exploit the
environment than a randomly reproducing sexual popula-
tion, as demonstrated in our previous study [19]. Since the
integrity of these guilds is eroded by the continual produc-
tion of heterozygote individuals, evolution drives mate
selection to become associative when an m-trait system
(e.g. recognition based on physical matching of mates to
self) that permits mate selection is in place.

Generality of the model
The model we use is rather generically formulated.
Resource consumption is modeled by a Holling type II re-
sponse function that incorporates interference competi-
tion (as originally formulated by Beddington [27] in the
context of both predators and parasite search efficiency,
by DeAngelis and colleagues [28] in the context of trophic
interactions at several levels, and by Getz in the context of
biomass transformation webs [29]), but also includes an
additional ‘abruptness’ parameter that interpolates be-
tween more contest-like and more scramble-like competi-
tion [30]. We set the abruptness parameter to be
intermediate between these extremes, though interference
competition in general for food resources is known to
exert a strong selective force on all animals [31]. The
movement rules in the model are as applicable to unicel-
lular organisms able to detect resources and conspecifics
using chemical gradient signals, as they are invertebrate or
vertebrate herbivores, or even omnivores or carnivores if
resources patches are suitably scaled to appropriate move-
ment ranges. The primary requirements of the model are
that individuals should: i) locally reduce resource density

Fig. 2 Genetic structure of runs 1 and 15 in Table 2 for the random and m-trait mating cases are illustrated here in three different ways (see Additional
file 1: Figures S1 and S2 in the supplementary online file for figures depicting all 30 cases for panel types i. and iii.). These are i.) bottom left panels for
each case: the α (blue), δ (red), ρ (green) and m (black) parameter values (see Methods Section for an explanation of these parameters) ordered along
the horizontal axis according to the final biomass achieved by individuals during generation 500 of the ecological simulation; ii.) bottom right panels
for each case: a plot of each individual in the space of the first two principal components of a principal components analysis (PCA) for individuals
located in the four-dimensional (α, δ, ρ, m)-parameter space, with the colored vectors (color coded as in 1. above) indicating the relative weightings of
these four parameters (in the m-trait cases the weights of two parameters are almost identical resulting in one vector obscuring another); iii) top panels
for each case: a plot of the dendrogram generated by the PCA
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before moving on to areas of greater resource density; ii)
have the means to perceive environmental conditions be-
yond their immediate surroundings (if necessary through
the implementation of scouting activities before finally de-
ciding where next to feed); and iii) be able to choose mates
based on characteristics correlated with foraging behavior.
The model, however, requires no assumptions about the
structure of the resource other than the extraordinarily
weak assumption that it is locally depletable but renew-
able. Resources in the model are monomorphic, grow
everywhere at the same rate, and are initially homoge-
nously distributed across the landscape. Spatial gradients
or distribution across any kind of spectrum (such as seeds
occurring in different sizes) are not needed, but any add-
itional resource structure only enhances opportunities for
individual specialization to occur, provided this structure
is not overly elaborate [32, 33].

Applicability of the model
Biologists are increasingly identifying species complexes
that are best understood in terms of sympatric speci-
ation taking place due to disruptive selection—that is,
heterozygotes (hybrids) are less fit than homozygotes
(true-species)—and magic trait type mechanisms promot-
ing assortative mating. Merrill et al. [34], for example,

have shown in Heliconius butterflies that hybrid color-
pattern phenotypes are attacked more frequently than par-
ental forms, thereby demonstrating disruptive ecological
selection on a trait that also acts as a mating cue. In the
side-blotched lizard, Uta stansburiana, for example, Corl
et al. [20] found geographically widespread throat color
polymorphisms where, in some areas, these polymor-
phisms are reduced in numbers of different morphs. Their
phylogenetic reconstructions show that ancestral poly-
morphisms, though often lost, give rise to morphologically
distinct subspecies/species. They further showed that this
polymorphism loss was associated with accelerated evolu-
tion of sexual dimorphisms, thereby suggesting that poly-
morphism loss is implicated in species formation. Podos
et al. [11], for example, studied the contribution of a
magic trait scenario in the divergence of song elements
among the Galapagos Santa Cruz Island’s medium ground
finches (Geospiza fortis). They used the results they ob-
tained to argue that song divergence and discrimination,
which are fundamental elements of assortative mating in
these finches, is likely fostered in early stages of subspecies
divergence under a magic trait mating scenario. Red cross-
bills provide another ornithological example [35, 36], as
likely do some species of ducks [37]; and, in insects, fruit-
fly provide a possible example [38].

Fig. 3 Various stages of the within-generation simulation (top three panels) show agent location and biomass state (blue-to-purple circles, size an
indication of relative biomass) and within cell resource levels (light to dark green indicating low to high resource levels). Solid yellow rectangle
contains the eight nearest-neighbors around agent 1’s current location); broken yellow rectangle contains the eight nearest-neighbors and 16
next-to-nearest neighbors around agent 2’s location. Individuals choose mates from across the whole landscape and not just local neighborhoods.
Red and blue graphs in middle and right bottom panels show the result from two repeated runs of the number of agents each generation and the
total final biomass of these agents and the end of each generation over a 500-generation evolutionary simulation
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Foraging behavior and correlated cues
To some extent we should expect foraging behavior to
be an expression of a plastic response to environmental
cues, though the threshold values of cues for producing
behavior could be under genetic control. This is known,
for example, to be the case in honeybees [39] (e.g.
switching from within hive tasks to foraging). How likely
is it, however, that variation in foraging behavior is cor-
related with detectable visual, auditory or olfactory cues
that may be used in an m-trait mate selection system?
Searle et al. [40] provide a detailed discussion regarding
the ubiquity of variation of foraging behavior due to
environmental and genetic causes in large mammalian
herbivores, with a summary of the mechanisms driving
this variation (cf. Table 1 in [40]). Variation can be
morphological with associated visual cues: viz. stockier
individuals may prevail under contest competition, lither
individuals may be more efficient movers, taller in-
dividuals more able to assess the state of surrounding re-
sources and so on. Additionally, physiological variation
may be correlated with odor cues [41], while mor-
phological variation with auditory cues [42]. In species
that have evolved mechanisms to discriminate among
individuals—which both invertebrates and vertebrates
are able to do using purely genetic cues (i.e. no environ-
mental influences are needed) in contexts as fine as

discriminating among individuals based on degree of re-
latedness to self [43]—these mechanisms are in place to
function as an m-system, provided mate-selection sys-
tems are also in place (which they often are [44, 45]).
Additionally, it is conceivable that sympatric species,
which vary with respect to foraging behavior, may have
separated under a magic trait system that subsequently
atrophied (e.g. the cue system disappeared) once other
prezygote barriers emerged to entrench speciation.

Assortative mating systems
In our model, mate selection is not influenced in any
way by constraints on movement, because we assume
that individuals choose mates from among the popula-
tion as a whole. In many species, individuals may avoid
choosing siblings or even close cousins as mates, with
recognition systems evolving to facilitate outbreeding
[43]. Beyond this constraint, however, individuals may still
assortatively mate, or at least it may be advantageous for
them to assortatively mate. For example, it has been shown
that individuals in a species of mouse (Mus spicilegus)
reproduce more rapidly when mates are of similar person-
ality types [46]. Similarly, it has been shown in the great tit
(Parus major) that parental pairs with similar environmen-
tal exploratory rate scores interacted more at the nest than
pairs with dissimilar scores [47], while it has been shown
in Stellar’s jays that parental compatibility with regard to
behavioral type (referred to as behavioral syndromes)
increase fitness [48]. While assortative mating purely in
the context of genetically expressed phenotype frequencies
leads to increased homozygosity, it likely also leads to
inbreeding, particularly in small populations, unless a
counter prevailing system exists to avoid mating with close
relatives. Though we did not include an assessment of
inbreeding levels in our m-trait mating system, both our
random and magic-mating simulations are subject to the
same level of 'small population' inbreeding because they
involve populations of similar sizes (see “Agent Ranges”
column in Table 1). Thus any differences in levels of
homozygosity that occur between our two simulation
treatments (random vs. magic-mating) cannot be ex-
plained in terms of 'small population' inbreeding effects,
but are due to assortative mating alone.

Existence of magic trait systems
How likely is it that magic trait systems exist? Thibert-
Plante and Gavrilets [10] used a stochastic, individual-
based model to study six different mechanisms of
non-random mating, including magic trait mating, evolv-
ing in the context of dispersal, niche invasion, and adap-
tive radiation. As a result of their study, Thibert-Plante
and Gavrilets [10] conjecture that mate choice is likely
based on a few ‘major traits’ that have direct impact on fit-
ness, which is the case in our model. Further, Thibert-

Fig. 4 A cartoon of the processes involved in priming the system
for sympatric speciation. See text for further discussion
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Plante and Gavrilets [10] suggest that magic traits may
emerge by co-opting locally adaptive traits for mating
decisions, as is also the case in our model. Additionally,
Servedio et al. [9] review a variety of mechanisms by which
magic traits can be produced and conclude that magic
traits occur more frequently than previously thought.

Conclusion
Our study builds on that of Dieckmann and Doebeli [15]
who used an adaptive dynamics approach, in the frame-
work of logistic growth models for a population of phe-
notypes characterized by a variable x, to show that the
hypothesis articulated in the opening section of this
paper does not hold, thereby rendering speciation a
much more likely outcome of competition for resources
than previously thought. Implicit in their model is a re-
source spectrum that implies individuals of phenotype x
have an environmental carrying capacity K(x). Addition-
ally we note that this function is an input rather than an
emergent property of their model. This model was re-
cently generalized by Haller et al. [33] and used to show
that on complex landscapes—which may include envir-
onmental gradients, metapopulation structure, and
patchiness at different spatial levels of resolution—that
intermediate levels of heterogeneity are most likely to
lead to the emergence of evolutionary branching, a pat-
tern showed earlier to hold for species as well [32].
Haller et al. [33] also showed that the effects of different
types of heterogeneity appear to some extent to be addi-
tive in causing evolutionary branching. In another recent
study, Debarre [49] asked the question “Can speciation
occur in a single population when different types of re-
sources are available, in the absence of any geographical
isolation, or any spatial or temporal variation in selec-
tion?” and answered the question by stating that “…
sympatric ecological speciation is favored when (i) selec-
tion is disruptive (i.e. individuals with an intermediate
trait are at a local fitness minimum), (ii) resources are
differentiated enough and (iii) mating is assortative. In
our model, unlike Debarre’s, no resource structure is
specified. Further, an implicit resource spectrum is not
implied, as in Doebeli and Dieckmann [15] in terms of
an input function K(x), or explicitly specified, as in a re-
cent analysis by Thibert-Plante and Hendry [50]. In fact,
we model resource extraction and the ensuing growth
effects identically for all individuals: all individuals have
precisely the same growth rates and competitive inter-
action parameter values when exploiting resources at a
particular level within any resource cell (patch) on the
landscape.
In our model, differences in the strategies of individ-

uals to gather resources over time arises from the par-
ticular behavioral strategy employed by individuals to
efficiently search out resources over an initially

homogeneous resource landscape, while individuals may
also move to reduce competitive interactions to differing
extents. This initially homogeneous landscape, however,
takes on a stochastically generated mosaic structure as a
result of the foraging patterns of competitors and of re-
source regrowth (or replacement) within patches. This
induced spatial heterogeneity, without additional gradi-
ent structures, is both as simple as can be expected in
nature with regard to overall resource structure (the re-
source is monomorphic with no specified spatial gradi-
ents) and more realistic than assuming a constant
homogeneous background. The latter follows since all
organisms locally deplete resources unless they are lo-
cated in a constant resource flux (e.g. a spatially homo-
geneous photon flux and individuals are located so they
do not shade the flux from competitors, which is a se-
verely restrictive requirement). Dieckmann and Doebeli
[15] also consider the evolution of assortative mating
using the type of m-gene approach that we took here,
and they demonstrated in their model that assortative
mating often arises and takes the population in the dir-
ection of reproductive isolation among ecologically di-
verging subpopulations. In our case, though, the
divergence emerges from a behavioral polymorphism ra-
ther than requiring a structural ecological input through
a specified carrying capacity function K(x). Thus, to the
extent that Dieckmann and Doebeli [15] conclude that
their “… theory conforms well with mounting empirical
evidence for the sympatric origin of many species,” we
can conclude the same with less restrictive conditions in
that we do not specify any growth rate or other
ecologically-related variation with regard to individual
phenotypes.

Methods
Agent-based consumer-resource model
The model was developed on the Nova Platform [51]
following methods more fully described elsewhere [19].
The model is a discrete time, agent-based, stochastic,
consumer-resource formulation that simulates the move-
ment behavior and growth of a population of consumers
on a cellular array. In each of 100 time steps, representing
the passage of a single generation, and a single pass
through of the ecological component of the model,
individuals can either stay within their current cells
(i.e., resource patches) and consume amounts of re-
sources determined by a Beddington-DeAngelis type
response function (i.e., compensatory with regard to re-
source density, decreasing with regard to the level of intra-
specific competition and has the same parameter values
for all individuals—for more details see [19, 29]), and
hence gain in biomass, or individuals can move at some
cost to their current biomass to one of 8 neighboring cells
(lower left panel, Fig. 3). The resources in cells grow
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logistically, including a reservoir component (root mass
below ground), but lose biomass due to extraction by
consumers.

Foraging strategy within generation simulation
The only variation among individuals is their current lo-
cation, their accumulated biomass state, and the value of
three foraging-strategy parameters: α, δ and ρ. The spe-
cifics of how these parameters affect foraging behavior
are described below and a description of the mathemat-
ical equations used are provided elsewhere [19]. For the
sake of clarity, however, we summarize this foraging be-
havior in terms of the parameter values that represent
the (α,δ,ρ)-strategy phenotypes of individuals: i) individ-
uals compare the resources and competitors in their
current cells, as well as eight neighboring cells, where
each cell represents a movement direction, and competi-
tors are counted in terms of the number of individuals
that could potentially be inside cells in the next time
step; ii) individuals also compute average resource levels
and competitors in each of the eight neighboring direc-
tions, across those cells that can be reached in two
moves (see dotted yellow rectangle in left bottom panel
of Fig. 3); iii) individuals weigh the relative value of a
unit of resource to the cost of competing with a conspe-
cific, using the parameter value δ ≥0 (i.e. the competition
tradeoff parameter) to obtain a weighted value for each
cell; iv) individuals only move to the best neighboring
cell if their current cells weighted value is less than ρ ≥ 0
times that of the best neighboring cell (i.e. the movement
threshold parameter); v.) each neighboring cell also in-
cludes an average value of that cell’s nearest neighbors
discounted by a factor α ≥ 0 (i.e. the next neighbor-
discount parameter). Note that α ≥ 1 implies an inflation
of the relative importance of the values of the cells two
steps removed from an individual’s current location
compared with its immediate neighbors. A simulation
run of the model begins with an initial number of indi-
viduals, which we set to 100 in the first generation
(lower middle panel, Fig. 3). For the first few time steps
each individual exploits its local patch in an otherwise
homogeneous landscape (top left panel, Fig. 3) until in-
dividuals with high movement threshold phenotypes
values ρ move (the closer ρ ≥ 0 is to 1 the more readily
individuals move). The individuals then accumulate bio-
mass by grazing pathways through a regenerating re-
source landscape (top middle panel, Fig. 3), with the
individual’s biomass state at the end of the 100 times
steps (i.e. 1 generation) representing the individual’s rela-
tive reproductive fitness.

Reproduction model
At the end of each 100 step, intergenerational cycle or
single pass through of the ecological component of the

model, individuals are ranked according to their biomass
and then allowed to reproduce sexually, assuming a
diploid genetic structure and hermaphroditic mating (i.e.
parents pair up, using rules described below, without re-
gard to sexual designation). In a previous study [19], we
employed hard selection by allowing the top half of indi-
viduals to pair up at random and produce four young
each, thereby restoring a preselected number of individ-
uals to compete each generation. Here we employed soft
selection as follows. After pairing individuals, we took the
average biomass Bpair of each pair, and produced a pair
fecundity index Ppair, based on the maximum biomass
Bmax over all individuals: viz., Ppair = Bpair /Bmax. We then
used the binomial distribution with maximum possible
number of progeny nmax to stochastically calculate the
actual number of progeny npair ~ BINOMIAL[nmax,Ppair]
(for “~” read “is drawn from”). This produced at the end
of generation g (g = 1,…,250 or 500, as the case may be) a
total of Ng+1 progeny to start off the next generation, each
with the same initial biomass condition. Note that each it-
eration of g represents one run through of the ecological
component of the model, followed by one run through of
the reproduction component of the model. As we see in
Fig. 3 (bottom middle panel), for the ecological parameter
values used in our model (i.e., those used in [19]), the sys-
tem evolves from an initial 100 progeny in the first gener-
ation to stabilize at an across-generation average of
around 300 plus individuals from generation 100 onwards.
Note that we used the same parameter values for the eco-
logical component of the model as we did in [19], because
the purpose of this study was to not explore the evolution-
ary aspects of the ecological behavior of the system in
more depth, but to extend our previous work to study
how easily assortative mating may arise in a systems that
has the potential for non-random mating (either assorta-
tive or disassortative) to evolve.

Genetic and magic-trait model
Beyond the three foraging-strategy phenotype parameters
(α,δ,ρ) included in our previous study [19], we included
a fourth magic trait parameter m. Because our individ-
uals are diploid, under the assumption that all traits are
governed by co-dominant phenotypic determination, in-
dividual k (k = 1,…, Ng in generation g) has the following
genotype and phenotype:

Genotype of individual k: (ακ1, ακ2; δκ1, δκ2; ρκ1, ρκ2;
mκ1, mκ1)

Phenotype of individual k: ([ακ1 + ακ2]/2; [δκ1 + δκ2]/2;
[ρκ1 + ρκ2]/2; [mκ1 +mκ1]/2)

In all our simulations, we created from 0 to nmax

(number given by binomial drawing described above)
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progeny genotypes under Mendelian random segrega-
tion: i.e. each parent contributed one of its two alleles at
random for each of the parameters in the progeny geno-
type. We then allowed for mutations, using a procedure
described in [19] (i.e. each allele in each progeny could
be perturbed by a small amount that declined from
around 10 to 0.1 % over time using a simulated anneal-
ing approach within our genetic algorithm).

Mate choice process
At the start of the evolutionary simulation, the allelic
values for m of all individuals were all assigned the value
0.5, so non-random mate selection played no role in the
mating process. Under random mating, the phenotypic
value of m, though it would drift, and even self-organize
because of linkages that arise to other genes through in-
breeding in small population sizes, played no role in
mate choice. Under m-trait mating, however, the value
of m played a role in the model as follows.

a. The measures Dk = 2*|mi − 0.5| where calculated
thereby insuring 0 ≤Dk ≤1 for all individuals
k = 1,…,Ng,.

b. Starting with the largest individual (ranked by
biomass at the end of each generation), individual k
selected a mate at random with probability 1-(Dk)

γ,
0 < γ ≤ 1 (thus as γ approaches 0 the probability of
random mating approaches 0 for all possible value of
Di). In our study we used the value γ =0.2, which
results in non-random mating 72 % of the time
when m is respectively 0.6 or 0.4.

c. We model the assumption that individual k could
have a sense of its degree of similarity to individual j,
by defining the measures

dkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αk−αj
� �2 þ δk−δj

� �2 þ ρk−ρj

� �2
r

; j≠k; j ¼ 1;…;Ng

and then applying the following deterministic rules when
individuals have been selected to mate non-randomly
i. If mk < 0.5 then individual k chooses individual j,

where j ¼ minifdkig
ii. If mk > 0.5 then individual k chooses individual j

where j ¼ maxifdkig
iii. If mk = 0.5 then individual i choose individual j at

random.

Under this algorithm, individuals are increasingly
likely to mate non-randomly as their phenotypic value of
m drifts away from 0.5, mating disassortatively when
mk > 0.5, but mating according to the a magic trait
assumption (i.e. assortatively) when mk < 0.5.

Analysis of evolutionary data
Initially, we undertook a series of random mating and
m-trait mating runs of the model over an evolutionary
epoch of 250 generations. For the sake of efficiency, we
ran these on several different computers simultaneously,
experiencing some failures due to web issues and com-
puter crashes. At the point where we had accumulated
124 random mating and 80m-trait mating runs we de-
cided to compare the results using a Mann–Whitney U
test of the average m-trait values across the final popula-
tion of progeny produced at generation 500. We selected
the Mann–Whitney U test, rather than the more general
Kolmogorov-Smirnov test for differences between two
distributions, because we were interested in evaluating
shift rather than general shape differences in the two dis-
tributions of m-trait values. To sharpen the outcomes of
the evolutionary process, we conducted an additional 15
runs each of random mating and m-trait mate selection of
an evolutionary epoch of 500 generations. At the end of
each of the runs, we generated a csv (comma separated
values) file that organized the following output data, with
rows being individuals the following information by col-
umns (phenotype and then genotype information follows
the biomass column): Individual#, biomass, α, δ, ρ, m, α1,
α2, δ1, δ2, ρ1, ρ2, m1, m2. We computed the means and
standard deviation for each of the columns, as well as the
means of these column summary statistics across groups
of runs. We also produced graphs of the phenotypes of in-
dividuals (vertical axis) organized by biomass of individ-
uals (horizontal axis). We applied cluster analyses (Ward’s
method) to the α-phenotype data in each run and plotted
the resulting phylogenetic trees and the data in the plane
spanned by the first two principal components (PC ana-
lysis or PCA) of these data. We calculated the heterozy-
gote deviance of the population from Hardy-Weinberg
equilibrium [52] using the following formula involving the
observed proportion, Hobs, of heterozygotes and the ex-
pected proportion, Hexp, at Hardy-Weinberg equilibrium

Heterozygote deviance ¼ Hobs–Hexp
� �

=Hexp

Our reason for focusing on the α parameter rather
than δ or ρ (note: an individual may be homogeneous in
one and heterogeneous in another of these parameters)
is that greatest allelic variation in our model is observed
at the α gene (i.e. the gene that weighs the relative im-
portance of being tactical versus strategic—i.e. looking at
the state of the ‘immediate’ versus ‘next-to-immediate’
neighborhoods).

Availability of data and materials
This study was not based on empirical data, but rather sim-
ulations obtained by running a model built using the Nova
Software Platform. This Nova can be downloaded from the
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Nova Software Website https://www.novamodeler.com/.
The software platform is free, but users need to register
and obtain a license to run the model under Windows,
Mac OS X, and Linux operating systems.
The model itself can downloaded from https://nature.

berkeley.edu/getzlab/nova.html by clicking on the link:
“Sympatric Speciation Foraging System”.

Additional file

Additional file 1: The supplementary online file contains a link to a
related publication, information on running our simulation model
using the Nova Software Platform, and Additional file 1: Figures S1
and S2 referred to in the caption to Fig. 2. (PDF 3328 kb)
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