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An exact multiplicity result of positive solutions for the boundary value problems u′′ +λa(t)f(u) =
0, t ∈ (0, 1), u′(0) = 0, u(1) = 0 is achieved, where λ is a positive parameter. Here the function
f : [0,∞) → [0,∞) is C2 and satisfies f(0) = f(s) = 0, f(u) > 0 for u ∈ (0, s) ∪ (s,∞) for some
s ∈ (0,∞). Moreover, f is asymptotically linear and f

′′
can change sign only once. The weight

function a : [0, 1] → (0,∞) is C2 and satisfies a′(t) < 0, 3(a′(t))2 < 2a(t)a′′(t) for t ∈ [0, 1]. Using
bifurcation techniques, we obtain the exact number of positive solutions of the problem under
consideration for λ lying in various intervals in R. Moreover, we indicate how to extend the result
to the general case.

1. Introduction

Consider the problem

u′′ + λa(t)f(u) = 0, t ∈ (0, 1),

u′(0) = 0, u(1) = 0,
(1.1)

where λ > 0 is a parameter and a ∈ C2[0, 1] is a weight function.
The existence and multiplicity of positive solutions for ordinary differential equations

have been studied extensively in many literatures, see, for example, [1–3] and references
therein. Several different approaches, such as the Leray-Schauder theory, the fixed-point
theory, the lower and upper solutions theory, and the shooting method etc has been applied
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in these literatures. In [4, 5], Ma and Thompson obtained the multiplicity results for a class of
second-order two-point boundary value problems depending on a positive parameter λ by
using bifurcation theory.

Exact multiplicity of positive solutions have been studied by many authors. See, for
example, the papers by Korman et al. [6], Ouyang and Shi [7, 8], Shi [9], Korman andOuyang
[10, 11], Korman [12], Rynne [13], Bari and Rynne [14] (for 2mth-order problems), as well
as Korman and Li [15]. In these papers, bifurcation techniques are used. The basic method
of proving their results can be divided into three steps: proving positivity of solutions of the
linearized problems; studying the direction of bifurcation; showing uniqueness of solution
curves.

Ouyang and Shi [7] obtained the curves of positive solutions for the semilinear
problem

Δu + λf(u) = 0, in Bn,

u = 0, on ∂Bn,
(1.2)

where Bn is the unit ball in Rn (n ≥ 1) and f ∈ C2(R+) (R+ = [0,∞)). In [7], the following two
cases were considered:

(i) f ′′ does not change its sign on R
+; (ii) f ′′ changes its sign only once on R

+.
Korman and Ouyang [10] studied the problem

u′′ + λf(t, u) = 0, t ∈ (−1, 1),
u(−1) = 0, u(1) = 0

(1.3)

under the conditions f ∈ C2([−1, 1];R) and

fuu(t, u) > 0 for t ∈ (−1, 1), u ∈ (0,∞). (1.4)

They obtained a full description of the positive solution set of (1.3) and proved that all
positive solutions of (1.3) lie on a single smooth solution curve bifurcating from the point
(0, 0) and tending to (0,∞) in the (λ, u) plane. Condition (1.4) is very important to conclude
the direction of bifurcation curve.

Of course a natural question is how about the structure of the positive solution set of
(1.3) when fuu changes its sign only once on R

+?
It is extremely difficult to answer such a question in general. So we shift our study

to the problem (1.1) in this paper. We are interested in discussing the exact multiplicity of
positive solutions of (1.1)with a weight function awhen f ′′ changes its sign only once on R

+.
Suppose the following.

(H1) One has f ∈ C2[0,∞) with f(0) = f(s) = 0 for some s ∈ (0,∞) and f(u) > 0 for
u ∈ (0, s) ∪ (s,∞).

(H2) f is concave convex that is, there exists θ > 0 such that

f ′′(u) < 0, if 0 ≤ u < θ; f ′′(u) > 0, if u > θ. (1.5)
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(H3) The limits f0 = limu→ 0(f(u)/u) ∈ (0,∞) and f∞ = limu→ 0(f(u)/u) ∈ (0,∞).

(H4) a ∈ C2[0, 1] satisfies a(t) > 0; a′(t) < 0 and 3(a′(t))2 < 2a(t)a′′(t), if t ∈ [0, 1].

In this paper, we obtain exactly two disjoint smooth curves of positive solutions of
(1.1) under conditions (H1)–(H4). According to this, we can conclude the existence and exact
numbers of positive solutions of (1.1) for λ lying in various intervals in R.

Remark 1.1. Korman and Ouyang [10] obtained the unique positive solution curve of (1.3)
under the condition (1.4). However they gave no information when fuu can change sign. In
[7], they did not treat the case that the equation contains a weight function.

On the other hand, suppose the following.

(H1′) One has f ∈ C2[0,∞) with f(0) = 0, f(u) > 0, u ∈ (0,∞). There exists s > 0 such
that f ′(u) < f(u)/u, u ∈ (0, s) and f ′(u) > f(u)/u, u ∈ (s,∞).

Remark 1.2. If a(t) > 0, t ∈ [0, 1], then we know from the proof in [4] that the assumptions
(H1’) and (H3) imply that the component of positive solutions from the trivial solution and
the component from infinity are coincident. However, these two components are disjoint
under the assumptions (H1) and (H3) (see [5]). Hence, the essential role is played by the
fact of whether f possesses zeros in R \ {0}. In Section 3, we prove that (1.1) has exactly two
positive solution curves which are disjoint and have no turning point on them (Theorem 3.8)
under Conditions (H1)–(H4). And (1.1) has a unique positive solution curve with only
one turning point (Theorem 3.9) if (H1) is replaced by (H1’). The condition (H4) is used
to prove the positivity of solutions of the linearized problems of (1.1) and the direction of
bifurcation.

Our main tool is the following bifurcation theorem of Crandall and Rabinowitz.

Theorem 1.3 (see [16]). Let X and Y be Banach spaces. Let (λ, u) ∈ R × X and let F be a
continuously differentiable mapping of an open neighborhood of (λ, u) into Y . Let the null-space
N(Fu(λ, u)) = span{w} be one dimensional and codimR(Fu(λ, u)) = 1. Let Fλ(λ, u)/∈R(Fu(λ, u)).
If Z is a complement of span{w} in X, then the solution of F(λ, u) = F(λ, u) near (λ, u) forms a
curve (λ(s), u(s)) = (λ + τ(s), u + sw + z(s)), where s → (τ(s), z(s)) ∈ R × Z is a continuously
differentiable function near s = 0 and τ(0) = τ ′(0) = z(0) = z′(0) = 0.

2. Notations and Preliminaries

Let Y = C[0, 1] with the norm

∥
∥y

∥
∥
∞ = max

t∈[0,1]

∣
∣y(t)

∣
∣, (2.1)

and let

E =
{

y ∈ C1[0, 1] | y′(0) = y(1) = 0
}

(2.2)
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with the norm

∥
∥y

∥
∥
E = max

{∥
∥y

∥
∥
∞,

∥
∥y′∥∥

∞
}

. (2.3)

Set

X =
{

y ∈ C2[0, 1] | y′(0) = y(1) = 0
}

(2.4)

equipped with the norm

∥
∥y

∥
∥
X = max

{∥
∥y

∥
∥
∞,

∥
∥y′∥∥

∞,
∥
∥y′′∥∥

∞
}

. (2.5)

Define the operator L : X → Y ,

Lu = −u′′, u ∈ X. (2.6)

Then, L−1 : Y → E is a completely continuous operator.

Definition 2.1. For a nontrivial solution of (1.1), (λ, u) is degenerate if the linearized problem

w′′ + λa(t)f ′(u)w = 0, t ∈ (0, 1),

w′(0) = 0, w(1) = 0
(2.7)

has a nontrivial solution; otherwise, it is nondegenerate.

Lemma 2.2. Let (H1) and (H4) hold. For any degenerate positive solution (λ, u) of (1.1), the
nontrivial solution w of (2.7) can be chosen as positive.

Proof. The proof is motivated by Lemma 2.6 in [11].
Suppose to the contrary that w has zeros on (0,1). Without loss of generality, suppose

that w(0) > 0. Note that w and ut satisfy

w′′ + λa(t)f ′(u)w = 0, (2.8)

u′′
t + λa(t)f ′(u)ut + λa′(t)f(u) = 0, (2.9)

respectively. We claim thatw has at most one zero in (0,1). Otherwise, let 0 < α < β < 1 be the
first two zeros of w. Then,

w(α) = w
(

β
)

= 0, w(t) < 0, t ∈ (

α, β
)

,

w′(α) ≤ 0, w′(β
) ≥ 0.

(2.10)
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Multiplying (2.9) by g(t)w and (2.8) by g(t)ut, subtracting, and integrating over (α, β), we
have

∫β

α

u′′
t gw dt −

∫β

α

w′′gut + λ

∫β

α

a′gfw = 0 (2.11)

with g(t) > 0 to be specified. We denote the left side of (2.11) by I and a constant
−w′(β)g(β)u′(β) +w′(α)g(α)u′(α) by A. Integrating by parts,

I = A +
∫β

α

u′g ′′wdt + 2
∫β

α

u′g ′w′dt + λ

∫β

α

a′gfw dt

= A −
∫β

α

u′g ′′wdt − 2
∫β

α

wg ′u′′dt + λ

∫β

α

a′gfw dt

= A −
∫β

α

u′g ′′wdt + λ

∫β

α

(

2g ′a + a′g
)

fw dt.

(2.12)

Let

2g ′a + a′g = 0, g ′′ < 0 (2.13)

on (0, 1). From (2.10), (2.13), and u′(t) < 0, t ∈ (0, 1], we have

I = −w′(β
)

g
(

β
)

u′(β
)

+w′(α)g(α)u′(α) −
∫β

α

u′g ′′wdt > 0. (2.14)

Note that the right side of (2.11) is zero, which is a contradiction.
Hence, w has at most one zero in (0,1). Suppose that there is one point γ such that

w(γ) = 0. Then,

w
(

γ
)

= w(1) = 0, w(t) < 0, t ∈ (

γ, 1
)

,

w′(γ
) ≤ 0, w′(1) ≥ 0.

(2.15)

Repeating the above proof on (γ, 1), we can get similar contradiction.
Finally, integrating the differential equation in (2.13), we can choose

g(t) = a−1/2(t). (2.16)

In view of (H4), g ′′ < 0. So, the auxiliary function g exists.



6 Boundary Value Problems

The following lemma is an important result in this paper.

Lemma 2.3. Let (H1) and (H4) hold. Suppose that (λ∗, u∗) is a degenerate positive solution of (1.1).
Then, the following are considered.

(i) All solutions of (1.1) near (λ∗, u∗) have the form (λ(s), u∗+sw+z(s)) for s ∈ (−δ, δ) and
some δ > 0, where λ(0) = λ∗, λ′(0) = 0, z(0) = z′(0) = 0.

(ii) One has λ′′(0) < 0, if f is concave convex; λ′′(0) > 0, if f is convex concave.

Proof. (i) The proof is standard. Let F : X → Y be such that F(λ, u) = u′′ + λa(t)f(u). We will
show that the conditions of Theorem 1.3 hold.

Since (λ∗, u∗) is a degenerate positive solution of (1.1), we denote the corresponding
solution of (2.7) by w. From Lemma 2.2 and the theory of compact disturbing of a Fredholm
operator, N(Fu(λ∗, u∗)) = span{w} is one dimensional and codimR(Fu(λ∗, u∗)) = 1.

Now, we show that Fλ(λ∗, u∗)/∈R(Fu(λ∗, u∗)). Suppose to the contrary that Fλ(λ∗, u∗) ∈
R(Fu(λ∗, u∗)). Then, there is a v ∈ X such that

v′′ + λ∗a(t)f ′(u∗)v = a(t)f(u∗), (2.17)

v′(0) = v(1) = 0. (2.18)

Note that w satisfies

w′′ + λ∗a(t)f ′(u∗)w = 0, (2.19)

w′(0) = w(1) = 0. (2.20)

Multiplying (2.17) byw and (2.19) by v, subtracting, and integrating on both sides, we obtain

∫1

0

(

v′′w −w′′v
)

dt =
∫1

0
a(t)f(u∗)wdt > 0. (2.21)

However, the left side of (2.21) is equal to zero according to boundary conditions (2.18) and
(2.20). This implies that Fλ(λ∗, u∗)/∈ Im(Fu(λ∗, u∗)). According to Theorem 1.3, the result (i)
holds.

(ii) Substituting λ = λ(s), u = u∗ + sw + z(s) into (1.1), we obtain

[u∗ + sw + z(s)]′′ + λ(s)a(t)f(u∗ + sw + z(s)) = 0. (2.22)

Since f ∈ C2[0,∞), then, by the implicit function theorem, the solution curve near (λ∗, u∗) is
also C2. Differentiating (2.22) twice with respect to s, we have

u′′
ss + λ′′(s)a(t)f(u) + 2λ′(s)a(t)f ′(u)us + λ(s)a(t)f ′′(u)u2

s + λ(s)a(t)f ′(u)uss = 0. (2.23)

Evaluating at s = 0, we obtain

u′′
ss + λ′′(0)a(t)f(u∗) + λ∗a(t)f ′′(u∗)w2 + λ∗a(t)f ′(u∗)uss = 0. (2.24)
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Multiplying (2.24) by w and (2.19) by uss, subtracting, and integrating, we get

λ′′(0) = −λ
∗ ∫1

0 a(t)f
′′(u∗)w3dt

∫1
0 a(t)f(u

∗)wdt
. (2.25)

According to (H1), (H4), and Lemma 2.2, we see that
∫1
0 a(t)f(u

∗)wdt > 0. Next, for the sign
of λ′′(0), we consider the sign of

∫1
0 a(t)f

′′(u∗)w3dt.
We first prove that

∫1

0
f ′′(u∗)u∗2

t w dt = 0. (2.26)

Differentiating (1.1) and (2.19)with respect to t, we have

u∗
t
′′ + λa′(t)f(u∗) + λa(t)f ′(u∗)u∗

t = 0, (2.27)

w′′
t + λa′(t)f ′(u∗)w + λa(t)f ′′(u∗)u∗

tw + λa(t)f ′(u∗)wt = 0. (2.28)

Multiplying, (2.27) by h(t)wt and (2.28) by h(t)u∗
t , subtracting, and integrating over (0, 1), we

get

∫1

0

(

u∗′′
t wth −w′′

t u
∗
t h
)

dt + λ

∫1

0
a′[f(u∗)wt − f ′(u∗)wu∗

t

]

hdt = λ

∫1

0
af ′′(u∗)u∗2

t whdt (2.29)

with h(t) > 0 to be specified. Integrating by parts on the left side of (2.29),

∫1

0

(

u∗′′
t wth −w′′

t u
∗
t h
)

dt + λ

∫1

0
a′[f(u∗)wt − f ′(u∗)wu∗

t

]

hdt

= λ

∫1

0

(

ah′ + a′h
)(

f(u∗)w′ − f ′(u∗)wu∗′
)

dt.

(2.30)

Let

ah′ + a′h = 0. (2.31)

From (2.29), we get

∫1

0
af ′′(u∗)u∗2

t whdt = 0. (2.32)

Solving the equation ah′ + a′h = 0, we can choose the auxiliary function

h = a−1. (2.33)

Combining with (2.32), we obtain (2.26).



8 Boundary Value Problems

The following proof is motivated by the proof of Theorem 2.2 in [8].
Since w > 0, (2.26) implies that f ′′(u∗(t)) must change sign. If f is concave convex,

then there exists t0 ∈ (0, 1) such that

f ′′(u∗(t)) ≥ 0 in [0, t0],

f ′′(u∗(t)) ≤ 0 in [t0, 1].
(2.34)

Next, we claim that there exists k > 0, such that

kw ≥ −u∗
t in [0, t0],

kw ≤ −u∗
t in [t0, 1].

(2.35)

Let x = kw + u∗
t . Then, x(0) = kw(0) + u∗

t (0) = kw(0) > 0, and x(1) = kw(1) + u∗
t (1) < 0. So, x

has at least one zero in (0, 1). Moreover, we can prove that x has only one zero in (0, 1). Note
that kw satisfies

(kw)′′ + λ∗a(t)f ′(u∗)(kw) = 0. (2.36)

We get

x′′ + λa(t)f ′(u∗)x = −λa′(t)f(u∗) ≥ 0, (2.37)

since a′(t) < 0 and f(u∗) > 0. Suppose that x has more than one zero in (0, 1). Let t1 < t2 be
the last two zeros of x, then we say that

x(t1) = x(t2) = 0, x(t) > 0, if t ∈ (t1, t2),

x′(t1) ≥ 0, x′(t2) ≤ 0.
(2.38)

We first prove the above statement. On the contrary, suppose that

x(t1) = x(t2) = 0, x(t) < 0, if t ∈ (t1, t2) ∪ (t2, 1]. (2.39)

Consider the problem

q′′(t) + λa(t)f ′(u∗)q(t) = 0, q(t1) = q(1) = 0. (2.40)

Obviously, x is a subsolution and 0 is a supersolution of (2.40), respectively. Note that x ≤ 0.
By the strong maximum principle, we obtain that x < 0 on (t1, 1). This contradicts x(t2) = 0.
Hence, the statement holds.



Boundary Value Problems 9

Now let us consider the claim related to k. Multiplying (2.36) by x and (2.37) by kw,
subtracting, and integrating over (t1, t2), we get

−(kw)(t2)x′(t2) + (kw)(t1)x′(t1) = λ

∫ t2

t1

a′(t)f(u∗)(kw)dt < 0 (2.41)

since a′(t) < 0. Note that the left side is nonnegative. Such a contradiction implies that x has
only one zero in (0,1). By varying k such that x(t0) = kw(t0) +u∗

t (t0) = 0,we can conclude the
claim.

From the claim and a′(t) < 0, we have

k2
∫1

0
a(t)f ′′(u∗)w3dt =

∫ t0

0
af ′′(u∗)

(

k2w2
)

wdt +
∫1

t0

af ′′(u∗)
(

k2w2
)

wdt

>

∫ t0

0
af ′′(u∗)u2

t w dt +
∫1

t0

af ′′(u∗)u2
t w dt

>

∫ t0

0
a(t0)f ′′(u∗)u2

t w dt +
∫1

t0

a(t0)f ′′(u∗)u2
t w dt

= a(t0)
∫1

0
f ′′(u∗)u2

t w dt = 0.

(2.42)

Hence, λ′′(0) < 0 from (2.25).
If f is convex concave, then λ′′(0) > 0 with a similar proof.

3. The Main Results and the Proofs

In this section we state our main results and proofs.

Definition 3.1. Define

λ01 =
λ1
f0

λ∞1 =
λ1
f∞

, (3.1)

where λ1 is the first eigenvalue of the corresponding linear problem

ϕ′′ + λa(t)ϕ = 0, t ∈ (0, 1),

ϕ′(0) = 0, ϕ(1) = 0.
(3.2)

Remark 3.2. It is well known that the eigenvalues of (3.2) are given by

0 < λ1 < λ2 < · · · < λk < λk+1 < · · · , lim
k→∞

λk = ∞. (3.3)
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For each k ∈ N, algebraic multiplicity of λk is equal to 1, and the corresponding eigenfunction
ϕk has exactly k − 1 simple zeros in (0, 1).

Definition 3.3 (see [7]). Let f ∈ C1[a, b]. Then f is said to be superlinear (resp., sublinear) on
[a, b] if f(u)/u ≤ f ′(u) (resp., f(u)/u ≥ f ′(u)) on [a, b]. And f is said to be sup-sub (resp.,
sub-sup) on [a, b] if there exists c ∈ (a, b) such that f(u) is superlinear (resp., sublinear) on
[a, c], and superlinear (resp., sublinear) on [c, b].

Lemma 3.4. (i) Let f ∈ C1[0,∞), f(0) = 0, f ′(0) > 0, and (H4) hold. Suppose that (λ∗, 0) is a point
where a bifurcation from the trivial solutions occurs and that Γ1 is the corresponding positive solution
bifurcation curve of (1.1). If there exists δ1 > 0 such that f is superlinear (resp., sublinear) on [0, δ1],
then Γ1 tends to the left (resp., the right) near (λ∗, 0).

(ii) Let f ∈ C2[0,∞), f∞ ∈ (0,∞), and (H4) hold. Suppose that (λ∗,∞) is a point where a
bifurcation from infinity occurs and that Γ2 is the corresponding positive solution bifurcation curve of
(1.1). If there exists δ2 > 0 such that f is superlinear (resp., sublinear) on [δ2,∞) and f ′′(u) ≥ 0(/≡ 0)
(resp., f ′′(u) ≤ 0(/≡ 0)) for u > δ2, then Γ2 tends to the right (resp., the left) near (λ∗,∞).

Proof. The proof is similar to that of Proposition 3.4 in [7], so we omit it.

Lemma 3.5. Let (H1)–(H4) hold, let I ⊂ R be a bounded and closed interval, and let λ01, λ
∞
1 ∈ I.

Suppose that (λn,un) are positive solutions of (1.1). Then,

(i) λn → λ01, if ‖un‖E → 0,

(ii) λn → λ∞1 , if ‖un‖E → ∞.

Proof. Let ζ, ξ ∈ C(R,R) be such that

f(u) = f0u + ζ(u), f(u) = f∞u + ξ(u). (3.4)

Clearly,

lim
|u|→ 0

ζ(u)
u

= 0, lim
|u|→∞

ξ(u)
u

= 0. (3.5)

Let us consider

Lu − λa(t)f0u = λa(t)ζ(u) (3.6)

as a bifurcation problem from u ≡ 0. Note that (3.6) is the same as to (1.1). From Remark 3.2
and the standard bifurcation theorem from simple eigenvalues [17], we have (i).

Let us consider

Lu − λa(t)f∞u = λa(t)ξ(u) (3.7)

as a bifurcation problem from infinity. Note that (3.7) is also the same as to (1.1). The proof
of Theorem 1.1 in [5] ensures that (ii) is correct.
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Lemma 3.6. Let (H1), (H4) hold. Suppose that (λ, u) is a positive solution of (1.1). Then,

max{u(t) | t ∈ [0, 1]}/= s. (3.8)

Proof. Suppose to the contrary that

max{u(t) | t ∈ [0, 1]} = s. (3.9)

By (1.1) and (H1), we have u(0) = s. Note that f(s) = 0. By the uniqueness of solutions of
initial value problem, the problem

u′′ + λa(t)f(u) = 0, t ∈ (0, 1),

u′(0) = 0, u(0) = s
(3.10)

has a unique solution u(t) ≡ s. This contradicts u(1) = 0.

The following Lemma is an interesting and important result.

Lemma 3.7. Let (H1)–(H4) hold. Suppose that (λ∗, u∗) is a positive solution of (1.1), then (λ∗, u∗) is
nondegenerate.

Proof. From conditions (H1)–(H3), we can check easily that

f ′(u)u < f(u), ∀u ∈ (0, s); f ′(u)u > f(u), ∀u ∈ (s,∞). (3.11)

In fact, let G(u) = f(u) − uf ′(u), then

G(0) = G(s) = 0, (3.12)

since f(0) = f(s) = f ′(s) = 0. Note that G′(u) = −f ′′(u)u > 0, if u ∈ (0, θ), and G′(u) < 0, if
u ∈ (θ,∞). This together with (3.12) implies that θ < s and (3.11).

Now, we give the proof in two cases.

Case I (max{u∗(t) | t ∈ [0, 1]} < s). On the contrary, suppose that (λ∗, u∗) is a degenerate
solution with max{u∗(t) | t ∈ [0, 1]} < s, then u∗(t) < s, for all t ∈ [0, 1]. By (3.11), we get

u∗(t)f ′(u∗(t)) < f(u∗(t)), ∀t ∈ [0, 1]. (3.13)

Multiplying (1.1) by w∗ and (2.7) by u∗, subtracting, and integrating, we have

0 =
∫1

0

(

u′′
0w∗ −w′′

∗u0
)

dτ = λ

∫1

0
a(τ)

[

f ′(u∗)u∗ − f(u∗)
]

w∗dτ. (3.14)

By Lemma 2.2, (3.13), and a(t) > 0, for all t ∈ [0, 1], the right side of (3.14) is negative. This is
a contradiction.



12 Boundary Value Problems

Case II (max{u∗(t) | t ∈ [0, 1]} > s). On the contrary, suppose that (λ∗, u∗) is a degenerate
solution with max{u∗(t) | t ∈ [0, 1]} > s. According to Lemmas 2.2 and 2.3, we know that all
solutions of (1.1) near (λ∗, u∗) satisfy (λ(s), u∗ + sw∗ + z(s)) for s ∈ (−δ, δ) and some δ > 0,
where λ(0) = λ∗, λ′(0) = 0, z(0) = z′(0) = 0. It follows that for λ close to λ∗ we have two
solutions u−(t, λ) and u+(t, λ) with u−(t, λ) strictly increasing in λ and u+(t, λ) with strictly
decreasing in λ. We will show that the lower branch u−(t, λ) is strictly increasing for all λ < λ∗.

Note that u−
λ(t, λ) > 0 for λ close to λ∗ and all t ∈ (0, 1). Let λ∗ be the largest λ

where this inequality is violated; that is, u−
λ
(t, λ∗) ≥ 0 and u−

λ
(t0, λ∗) = 0 for some t0 ∈ (0, 1).

Differentiating (1.1)with respect to λ,

u′′
λ + λ∗a(t)f ′(u)uλ = −a(t)f(u) ≤ 0, u′

λ(0) = uλ(1) = 0. (3.15)

We can extend evenly a, u, and uλ on (−1, 1), then we obtain

u′′
λ + λ∗a(t)f ′(u)uλ = −a(t)f(u) ≤ 0, uλ(−1) = uλ(1) = 0. (3.16)

By the strongmaximum principle, we conclude that u−
λ
(t, λ∗) > 0 for all [0, 1). This contradicts

that u−
λ
(t0, λ∗) = 0.
By Lemma 2.3, we get λ′′(0) < 0 at every degenerate positive solution. Hence, there is

no degenerate positive solution on the lower branch u−(t, λ). However, the lower branch has
no place to go. In fact, there must exist some positive constant α ≥ s such that max{u(t) | t ∈
[0, 1]} > α for any (λ, u) lying on u−(t, λ). Hence, the lower branch cannot go to the λ axis.
And it also cannot go to the u axis, since (1.1) has only the trivial solution at λ = 0.

So, (λ∗, u∗) is nondegenerate.

Our main result is the following.

Theorem 3.8. Let (H1)–(H4) hold. Then the following are considered.
(i) All positive solutions of (1.1) lie on two continuous curves Σ1 and Σ2 without intersection.

Σ1 bifurcates from (λ01, 0) to infinity and Proj
R
Σ1 = (λ01,∞); Σ2 bifurcates from (λ∞1 , ∞)

to infinity and Proj
R
Σ2 = (λ∞1 ,∞). There is no degenerate positive solution on these curves.

For any (λ, u) ∈ Σ1, ‖u‖∞ < s, and for any (λ, u) ∈ Σ2, ‖u‖∞ > s.
(ii) Equation (1.1) has no positive solution for 0 ≤ λ ≤ min{λ01, λ∞1 } has exactly one positive

solution for min{λ01, λ∞1 } < λ ≤ max{λ01, λ∞1 } but and has exactly two positive solutions
formax{λ01, λ∞1 } < λ < ∞ (see Figure 1).

Proof. (i) Since f(0) = 0 and f0 > 0, then λ01 > 0. From Lemma 3.5(i) and the standard Crandall
and Rabinowitz theorem on local bifurcation from simple eigenvalues [17], λ01 is the unique
point where a bifurcation from the trivial solution occurs. Moreover, by Lemma 3.4, the curve
bifurcates to the right. We denote this local curve by Σ1 and continue Σ1 to the right as long
as it is possible. Meanwhile, by Lemma 3.6, there is no positive solution of (1.1) which has
the maximum value s on [0, 1]. So, if (λ, u) ∈ Σ1, then ‖u‖∞ < s. From (1.1), we have

∣
∣u′(t)

∣
∣ =

∫ t

0
λa(τ)f(u(τ))dτ ≤ M

∫ t

0
λa(τ)dτ, (3.17)

where M = max{f(r), 0 ≤ r ≤ s}. Obviously, there exists a constant C such that ‖u‖E < C if
λ is bounded. Hence, Σ1 cannot blow up.
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On the other hand, Lemma 3.7 and the implicit function theorem ensure that Σ1 cannot
stop at a finite point (λ̃, ũ).

From the above discussion, we see that Σ1 can be extended continuously to infinity
and Proj

R
Σ1 = (λ01,∞). Meanwhile, the maximum values of all positive solutions of (1.1) are

less than s.
Now, we consider positive solutions of (1.1), for which the maximum value on [0, 1]

is greater than s.
Let us return to consider (3.6) as the bifurcation problem from infinity. Note that (3.6)

is also the same as to (1.1). Since lim|u|→∞(ξ(u)/u) = 0, by Theorem 1.6 and Corollary 1.8 in
[18], there exists a subcontinuumD ⊂ R×E of positive solutions of (3.6)whichmeets (λ∞1 ,∞).
Take Λ ⊂ R as an interval such that Λ ∩ {λj/f∞ | j ∈ N} = {λ∞1 } and U as a neighborhood of
(λ∞1 ,∞) whose projection on R lies in Λ and whose projection on E is bounded away from 0.
Then, there exists a neighborhood O ⊂ U such that any positive solution (λ, u) ∈ O of (1.1)
satisfies (λ, u) = (λ(α), αϕ1 + z(α)) for α ∈ (δ,∞) and some δ > 0 and |λ − λ∞1 | = o(1), ‖z‖X =
o(α) at α = ∞, where ϕ1 denotes the normalized eigenvector of (3.2) corresponding to λ1. So,
‖ϕ1‖ = 1.

Hence, D ∩ O is a continuous curve, and we denote it by Σ2. It tends to the right from
Lemma 3.4(ii). From Lemma 3.7 and the implicit function theorem, Σ2 can be continued to a
maximal interval of definition over the λ axis. We claim that Σ2 \ {(λ∞1 ,∞)} cannot blow up
if λ is bounded. In fact, suppose that there exists a positive solutions sequence {(λn, un)} of
(1.1) and λ < ∞ such that ‖un‖E → ∞ as λn → λ. Then, by Lemma 3.5(ii), λ = λ∞1 . This is a
contradiction. On the other hand, the implicit function theorem implies that Σ2 cannot stop
at a finite point (λ̃, ũ). Thus, Proj

R
Σ2 = (λ∞1 ,∞) and ‖u‖∞ > s if (λ, u) ∈ Σ2.

Finally, we show that both curves Σ1 and Σ2 are the only two positive solutions curves
of (1.1). On the contrary, suppose that (λ, u) is a positive solution of (1.1)with (λ, u)/∈Σ1∪Σ2.
Without loss of generality, assume that ‖u‖∞ > s. Note that (λ, u) is nondegenerate, so we can
extend it to form a curve. We denote this curve by Σ and the corresponding maximal interval
of definition by I = (e1, e2). Since all positive solutions of (1.1) are nondegenerate, according
to the implicit function theorem, we must have that

lim
λ→ e1

‖u(t)‖E = ∞. (3.18)

It follows that e1 = λ∞1 from Lemma 3.5(ii). But all solutions near (λ∞1 ,∞) can be
parameterized by α for α > δ and some δ > 0; thus, Σ = Σ2. This contradicts that (λ, u)/∈Σ2.
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Similarly, we can show that every positive solution of (1.1), the maximum value on
[0, 1] of which is less than s, lies on Σ1.

(ii) The result (ii) is a corollary of (i).

Next, we will give directly other theorems. Their proofs are similar to that of
Theorem 3.8. So, we omit them.

Theorem 3.9. Let (H1′) and (H2)–(H4) hold. Then, the following are considered.

(i) All positive solutions of (1.1) lie on a single continuous curve Σ. And Σ bifurcates from
(λ01, 0) to the right to a unique degenerate positive solution (λ∗, u∗) of (1.1), then it tends
to the left to (λ∞1 ,∞).

(ii) Equation (1.1) has no positive solution for λ ∈ (0,min{λ01, λ∞1 })∪(λ∗,∞), and has exactly
one positive solution for λ ∈ (min{λ01, λ∞1 },max{λ01, λ∞1 }) ∪ {λ∗}, and has exactly two
positive solutions for λ ∈ (max{λ01, λ∞1 }, λ∗) (see Figure 2).

Remark 3.10. In fact, if we reverse the inequalities in (H1), (H1’), (H2), we will obtain
corresponding results similar to Theorems 3.8 and 3.9.

Also using the method in this paper, we can obtain the exact numbers of positive
solutions for the Dirichlet problem

u′′ + λa(t)f(u) = 0, t ∈ (−1, 1),
u(−1) = u(1) = 0,

(3.19)

where λ > 0 is a parameter. We assume that

(H4′) a ∈ C1[−1, 1] with a(t) > 0, a(−t) = a(t), and a′(t) < 0, for all t ∈ (0, 1).

Definition 3.11. Define

λ̃01 =
λ̃1
f0

, λ̃∞1 =
λ̃1
f∞

, (3.20)

where λ̃1 is the first eigenvalue of the corresponding linear problem of (3.19).
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Theorem 3.12. Let (H1’), (H2), (H3), and (H4’) hold. Then, the following are considered.

(i) All positive solutions of (3.19) lie on a single continuous curve Σ̃. And Σ̃ bifurcates from
(λ̃01, 0) to the right to a unique degenerate positive solution (λ̃∗, ũ∗) of (3.19), then it tends
to the left to (λ̃∞1 ,∞).

(ii) Equation (1.1) has no positive solution for λ ∈ (0,min{λ̃01, λ̃∞1 })∪ (λ̃∗,∞) but has exactly
one positive solution for λ ∈ (min{λ̃01, λ̃∞1 },max{λ̃01, λ̃∞1 }) ∪ {λ̃∗} and has exactly two
positive solutions for λ ∈ (max{λ̃01, λ̃∞1 }, λ̃∗).

Theorem 3.13. Let (H1), (H2), (H3), (H4’) hold. Then

(i) All positive solutions of (3.19) lie on two continuous curves Σ̃1 and Σ̃2 without
intersection. Σ̃1 bifurcates from (λ̃01, 0) to infinity and Proj

R
Σ̃1 = (λ̃01,∞); Σ̃2 bifurcates

from (λ̃∞1 , ∞) to infinity and Proj
R
Σ̃2 = (λ̃∞1 ,∞). There is no degenerate positive solution

on these curves. For any (λ, u) ∈ Σ̃1, ‖u‖∞ < s, and for any (λ, u) ∈ Σ̃2, ‖u‖∞ > s.

(ii) Equation (3.19) has no positive solution for 0 ≤ λ ≤ min{λ̃01, λ̃∞1 }, and has exactly one
positive solution for min{λ̃01, λ̃∞1 } < λ ≤ max{λ̃01, λ̃∞1 }, and has exactly two positive
solutions for max{λ̃01, λ̃∞1 } < λ < ∞.

Remark 3.14. Theorems 3.12 and 3.13 extend the main result Theorem 1 in [10], where f ′′ > 0
for u > 0.

4. Examples

In this section, we give some examples.

Example 4.1. Let

f(u) =

⎧

⎨

⎩

u(u − 1)2, for u ∈ [0, 2],

−32 lnu + 21u + 32 ln 2 − 40, for u ∈ (2,∞).
(4.1)

Then, f satisfies (H1), (H2), and (H3). Moreover, s = 1, θ = 2/3, f0 = 1, and f∞ = 21.

Example 4.2. Let

f(u) =

⎧

⎨

⎩

u
(

u2 − u + 2
)

, for u ∈ [0, 1],

−4 lnu + 7u − 5, for u ∈ (1,∞).
(4.2)

Then, f satisfies (H1′), (H2), and (H3). Moreover, s = 1/2, θ = 1/3, and f0 = 2, f∞ = 7.

Example 4.3. Let a(t) = β(t) + c. Here, β ∈ C2[0, 1], β′′(t) > 0, β′(t) < 0, for all t ∈ [0, 1], and c
is a large enough constant. Then, a satisfies (H4). On the other hand, functions which satisfy
(H4′) can be found easily.
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