
REVIEW PAPER - EXPLORATION ENGINEERING

Hybrid intelligent systems in petroleum reservoir characterization
and modeling: the journey so far and the challenges ahead

Fatai Adesina Anifowose1,4 • Jane Labadin2 • Abdulazeez Abdulraheem3

Received: 13 October 2015 /Accepted: 22 May 2016 / Published online: 3 June 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Computational intelligence (CI) techniques have

positively impacted the petroleum reservoir characteriza-

tion and modeling landscape. However, studies have

showed that each CI technique has its strengths and

weaknesses. Some of the techniques have the ability to

handle datasets of high dimensionality and fast in execu-

tion, while others are limited in their ability to handle

uncertainties, difficult to learn, and could not deal with

datasets of high or low dimensionality. The ‘‘no free

lunch’’ theorem also gives credence to this problem as it

postulates that no technique or method can be applicable to

all problems in all situations. A technique that worked well

on a problem may not perform well in another problem

domain just as a technique that was written off on one

problem may be promising with another. There was the

need for robust techniques that will make the best use of

the strengths to overcome the weaknesses while producing

the best results. The machine learning concepts of hybrid

intelligent system (HIS) have been proposed to partly

overcome this problem. In this review paper, the impact of

HIS on the petroleum reservoir characterization process is

enumerated, analyzed, and extensively discussed. It was

concluded that HIS has huge potentials in the improvement

of petroleum reservoir property predictions resulting in

improved exploration, more efficient exploitation,

increased production, and more effective management of

energy resources. Lastly, a number of yet-to-be-explored

hybrid possibilities were recommended.

Keywords Hybrid intelligent systems � Reservoir
characterization and modeling � Petroleum reservoir

properties � Computational intelligence

Introduction

Computational intelligence (CI) has positively impacted

the oil and gas industry especially the reservoir charac-

terization and modeling process in the recent time (Al-

Bulushi et al. 2009; Dutta and Gupta 2010; Asadisaghandi

and Tahmasebi 2011; Al-Marhoun et al. 2012; Barros and

Andrade 2013; Anifowose et al. 2014a). This positive

impact resulted from the successful applications of vari-

ous CI techniques such as artificial neural networks

(ANNs), functional networks (FNs), fuzzy logic (FL),

generalized regression neural network, support vector

machines (SVMs), and radial basis function. These tech-

niques have been used to predict various petroleum

reservoir properties such as porosity, permeability, pres-

sure–volume–temperature (PVT), depth, drive mecha-

nism, structure and seal, diagenesis, well spacing, and

well-bore stability. Some of these reservoir properties are

used for the detection of drilling problems, determination

of reservoir quality, optimization of reservoir architecture,

identification of lithofacies, and estimation of reservoir

volume.
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The petroleum industry has partly succeeded in reducing

or limiting the coring process and encouraged the utilization

of archival data acquired and stored over a period of time.

The concept of machine learning, with its CI paradigm, has

been instrumental to the use of existing data such as well logs

and their accompanying core measurements to predict the

core values for new wells and uncored sections of wells or

new fields. These core properties make significant impacts

on petroleum field operations and reservoir management

(Jong-Se 2005). Before the application of CI in petroleum

science and technology, mathematical equations and

empirical correlations have been established to relate some

of the well logs to their respective core values. For example,

porosity measurements were directly obtained from core

samples using the following relationship (Amyx et al. 1960):

/ ¼ VP

VB

ð1Þ

where / = porosity, VP = pore volume, and VB = bulk

volume.

When calculated from density logs, porosity has been

estimated using the following relations (Coates et al. 1997):

/d ¼
qma � qb
qma � qf

ð2Þ

where /d = density-derived porosity; qma = matrix den-

sity; qb = bulk density; and qf = fluid density.

From sonic log, porosity has been expressed as (Wyllie

et al. 1956):

/s ¼
Dt � Dtma

Dtf � Dtma

ð3Þ

where /s = sonic-derived porosity; Dt = transit time;

Dtf = fluid transit time; and Dtma = transit time for the

rock matrix.

In a similar manner, a number of equations have been

derived for the estimation of permeability from laboratory-

measured properties. Among the popular ones is the Dar-

cy’s equation (Shang et al. 2003):

k ¼ q � l � L
A� DP

ð4Þ

where k = permeability (Darcy); q = flow rate (cc/s);

l = viscosity (cp); L = length (cm); A = cross-sectional

area (cm2); and DP = pressure difference (Atm).

Another popular equation derived for the calculation of

permeability from other properties is the Kozeny–Carman

equation (Kozeny 1927; Carman 1937) expressed as:

k ¼ /3

Fss2A2
gð1� /Þ2

ð5Þ

where k = permeability (lm2); / = porosity (a fraction);

Fs = shape factor; s = tortuosity; and Ag = surface area

per unit grain volume (lm-1). The term, Fss
2, is called the

Kozeny constant.

From Eq. (5), several extensions were proposed. These

include Wyllie and Rose (1950), Timur (1968), Coates

and Denoo (1981), and Amaefule et al. (1993). It was,

however, argued that all these equations can be reduced to

linear terms. It was further argued that natural phenomena

such as porosity, water saturation, and permeability can-

not be adequately estimated by linear relations. With

relevant log measurements representing the dynamics of

the subsurface, CI techniques have proved to have the

capability to use the available log–core pairs to predict the

missing reservoir properties of the uncored but logged

sections of the reservoir. The CI techniques achieved this

by establishing nonlinear relations between the log mea-

surements and the core values for prediction. CI tech-

niques have also been reported to outperform the

statistical regression tools (Mohaghegh 2000; Goda et al.

2003; Osman and Al-Marhoun 2005; Zahedi et al. 2009;

Al-Marhoun et al. 2012).

As successful as the CI techniques have appeared to be,

it has been shown that each technique has certain limita-

tions and challenges that would not make its application

desirable in certain conditions such as small, sparse, lim-

ited, and missing data scenarios (Chang 2008; Helmy et al.

2010; Anifowose and Abdulraheem 2010a), and model

complexity and high data dimensionality conditions

(Mendel 2003; Van et al. 2011). The ‘‘no free lunch’’

theory (Wolpert and Macready 1997) also holds true as no

single one of the CI techniques could be considered as

being the best to solve all problems in all data and com-

puting conditions. Since each of the techniques has its

limitations and challenges associated with its strengths,

there has been few research attempts in the area of hybrid

intelligent systems (HIS) (Chen and Zhao 2008; Helmy

et al. 2010, 2012) to have better generalization than indi-

vidual CI techniques. This is the focus of this review.

The petroleum reservoir characterization process

requires such very high degree of prediction accuracy that

any deviation from expectation may result in huge losses

and wasted efforts through enormous man-hours and huge

investments. Conversely, a little improvement in the pre-

diction accuracies will have multiplicative effect on current

exploration and production activities. Present prediction

accuracies have remained acceptable in the petroleum

industry, but there is always the quest for better and more

reliable results. In view of this, there is the need for the

hybridization of those techniques with traits that are strong

enough to be used to complement the performance of other

techniques for increased performance in terms of higher

prediction accuracies, reduced prediction errors, and faster

execution.
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The major motivations for this review paper are:

• The continued discovery of various CI techniques with

common denominators that are suitable for hybridization.

• The need to extract the relevant input parameters from

the deluge of data currently being experienced with the

advent of sophisticated data acquisition tools such as

logging while drilling (LWD), sensing while drilling

(SWD), and measurement while drilling (MWD) in

petroleum exploration.

• The consistent quest for better techniques in the

prediction of petroleum reservoir properties for

improved production of energy.

Hybrid intelligent systems

Hybrid computational intelligence is the branch of

machine learning theory that studies the combination of

two or more CI techniques to cooperatively work together

to form a single functional entity for better performance

(Tsakonas and Dounias 2002; Guan et al. 2003). This

process of combining the strengths to overcoming the

effects of the weaknesses of multiple CI techniques to

solve a problem has become popular in the recent times

and especially in fields outside the oil and gas industry.

The increased popularity of these systems lies in their

extensive success in many real-world complex problems.

A key prerequisite for the merging of technologies in the

spirit of hybridization is the existence of a ‘‘common

denominator’’ to build upon. This includes the inference

procedures and excellent predictive capabilities deployed

by the techniques.

A single overall technique that comes out of this

approach of combining two or more existing techniques is

called a hybrid system (Chandra and Yao 2006; Khashei

et al. 2011). It is an approach that combines different

theoretical backgrounds and algorithms such as data min-

ing and soft computing methodologies. Hence, hybridiza-

tion of CI techniques can boost their individual

performance and make them achieve much more success in

dealing with large-scale, complex problems than their

individual components. The hybrid concept is rooted in the

biological evolution of new traits based on the combination

of desired traits in individual species. Hybrid methodology

can come in different flavors: feature selection, cooperative

architecture, or optimization. The focus of this review is

the feature selection-based HIS. This kind of cooperative

network has been shown to perform excellently well in the

few attempts in petroleum engineering as well as in most

other applications. The reasons for focusing on the feature

selection methodology are:

• The petroleum industry is an application domain and

not a core domain of computer science. This precludes

the cooperative architecture methodology.

• The feature selection-based hybrid methodology will

benefit the petroleum industry in handling its high-

dimensional, multimodal, and multi-scale streams of

data. This will help to avoid or reduce the curse of

dimensionality (Trunk 1979) in modeling its reservoir

properties.

A general framework for hybrid modeling is shown in

Fig. 1. The chart shows how each technique in the hybrid

model contributes its respective part to solving the overall

problem. This synergetic spirit and cooperative effort

combine the strength of each technique to solve a problem

while suppressing the weaknesses of the respective

techniques.

The following section reviews the petroleum reservoir

characterization process and the benefits it has derived

from the application of HIS.

Hybrid intelligent systems in petroleum reservoir
characterization

Evolution of the petroleum reservoir

characterization process

The logging and coring processes discussed in ‘‘Introduc-

tion’’ section partly constitute the overall important task

called petroleum reservoir characterization (Mohaghegh

2000). This is a process for quantitatively describing var-

ious reservoir properties in spatial variability using avail-

able field and laboratory data. It is the process of building

reservoir models usually between the discovery phase of a

reservoir and its management phase by incorporating cer-

tain characteristics that has to do with its ability to store

and produce hydrocarbons. It has to do with modeling the

behavior of rocks under various circumstances with respect

to the presence of oil and gas as well as their ability to flow

through the medium. The ultimate aim of a petroleum

reservoir characterization process is to determine the

properties of the reservoir structure in order to find the

optimal production techniques that will optimize the pro-

duction procedures. Reservoir characterization plays a

crucial role in modern reservoir management. It helps to

make sound reservoir decisions and improves the asset

value of the oil and gas companies. It maximizes integra-

tion of multidisciplinary data and knowledge and hence

improves the reliability of reservoir predictions. The ulti-

mate goal is a reservoir model with realistic tolerance for

imprecision and uncertainty (Helmy et al. 2010).
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The reservoir characterization process plays a crucial

role in modern reservoir management: making sound

reservoir decisions and improving the reliability of the

reservoir predictions.

It focuses on modeling each reservoir unit, predicting

well behavior, understanding past reservoir performance,

and forecasting future reservoir conditions. Furthermore, it

is the process between the discovery phase of a reservoir

and its management phase. The process integrates the

technical disciplines of petrophysics, geophysics, geology,

reservoir engineering, production engineering, petroleum

economics, and data processing and management (Aminian

and Ameri 2005; Wong et al. 2005). The evolution of the

petroleum reservoir characterization process from the

direct measurement of various reservoir properties directly

from core samples, through empirical equations and mul-

tivariate regression, to the use of CI techniques has been

discussed in ‘‘Introduction’’ section. A major drawback of

the empirical equations and correlations is that they have to

be derived all over again from the scratch when applied on

new datasets. This is effortful and time-consuming. They

are static and difficult to re-calibrate on new cases. Though

both models cannot be generalized to a new applicable

outside their design data coverage, CI techniques have

better advantage of being dynamic as they are easily

retrained with new datasets and can easily be adapted to a

new application.

HIS has not been adequately utilized in the petroleum

industry. The awareness is just being felt around. Existing

hybrid models in the literature are mostly limited to genetic

algorithm (GA) with neuro-fuzzy and artificial neural net-

work coupled with fuzzy logic. One of the earliest works

on HIS application in petroleum reservoir characterization

is Jong-Se (2005). He simply used a fuzzy curve analysis

based on fuzzy logic to select the best related well logs

with core porosity and permeability data as input attributes

to a neural network model. Another work is Xie et al.

(2005) who developed a hybrid GA and fuzzy/neural

inference system methodology that provides permeability

estimates for all types of rocks in order to determine the

volumetric estimate of permeability. Their proposed hybrid

system consisted of three modules: one that serves to

classify the lithology and categorize the reservoir interval

into user-defined lithology types, a second module con-

taining GA to optimize the permeability profile prediction,

and the third module that uses neuro-fuzzy inference

systems to form a relationship for each permeability profile

and lithology.

More recently, in order to obtain the minimum pos-

sible duration, Zarei et al. (2008) used a hybrid GA and

neuro-fuzzy model to determine the optimal well loca-

tions using the net present value as the objective func-

tion. Another interesting hybrid algorithm proposed in

the literature is Al-Anazi et al. (2009). With the objective

of overcoming the poor performance of conventional

techniques such as empirical, linear, and multi-linear

regression methods in the estimation of petroleum

reservoir properties, they presented a two-stage fuzzy

ranking algorithm integrated with a fuzzy predictive

model to improve generalization capability. They used

fuzzy curve with surface analysis to identify informa-

tion-rich well logs and filter out data dependencies. The

results showed that the hybrid model performed better

than the conventional methods and offered an effective

dynamic system that can be continuously conditioned as

new data becomes available.

In the spirit of pseudo-hybridization, Shahvar et al.

(2009) used fuzzy logic to predict the flow zone index

(FZI) of reservoir rocks from wireline logs which served as

part of the input for an ANN model for the estimation of

permeability. They reported that with the successful pre-

diction of FZI, the result of the permeability estimation was

highly satisfactory and more robust when compared with

the conventional multi-linear regression. A fusion of GA

and ANN was used to estimate reservoir permeability by

Mohsen et al. (2007) while using the GA to automatically

optimize the tuning parameters and ANN to establish a

relationship between the log data and core permeability. A

hybrid fuzzy-GA system for the optimization of gas pro-

duction operations was proposed by Park et al. (2010a).

They used the traditional fuzzy logic to accommodate

uncertainties in the field data and GA as a primary opti-

mization scheme to solve the optimum gas production rates

of each well and pipeline segment diameters to minimize

investment costs. The traditional and conventional hybrid

technique used in the modeling of oil and gas reservoir

properties is the adaptive neuro-fuzzy inference system

(ANFIS), which combines the functionalities of ANN and

fuzzy logic techniques. This hybrid technique featured in

the study of Ali et al. (2008) where it was used to predict

the permeability of tight gas sands using a combination of

core and log data.

Fig. 1 Generalized framework

of hybrid intelligent systems
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In some of these proposed hybrid models, fuzzy logic

was used to select the best related well logs with core

porosity and permeability data, while the ANN component

was used as a nonlinear regression method to develop

transformation between the selected well logs and core

measurements. The GAs were used, in some of the studies,

to optimize the tuning parameters of the CI technique and,

in some others, to select the dominant variables from the

original well logs. The GA, ANN, and fuzzy logic algo-

rithms, as implemented in those studies, have limitations

that hamper their choice for such roles. However, based on

experience gathered in previous studies and a critical

review of existing literature, it could be argued that the

combination of evolutionary algorithms such as GA, par-

ticle swarm optimization, ant colony optimization, bee

colony optimization, fuzzy logic, and ANN in the afore-

mentioned hybrid models could have limitations based on

the following reasons:

• Though GA and the other evolutionary algorithms are

very robust optimization algorithms, but since they are

based on exhaustive search paradigms, they are well

known for their long execution time, need for high

processing power due to their computational complex-

ity and sometimes inefficiency as they get cut up in

some local optima (Bies et al. 2006).

• For the fuzzy logic, especially type 2 fuzzy logic

system, reports have shown that it easily becomes

computationally intensive (Abe 2004), hence requiring

more time for execution when applied on high-dimen-

sional data (Mendel 2003), and performs poorly when

applied on datasets of small size (Mendel 2003;

Pratama et al. 2012).

• ANN is also known to suffer from many deficiencies

(Petrus et al. 1995; Rusu and Rusu 2006) such as

having no general framework to design the appropriate

network for a specific task, the need to determine the

number of hidden layers and hidden neurons of the

network architecture are determined by trial and error,

requiring a large number of parameters to fit a good

network structure, and using pre-defined activation

functions without considering the properties of the

phenomena being modeled. However, recent studies

have proposed to overcome some of these problems

especially an optimization-based workflow that deter-

mines an optimal topology that fulfills a suitable error

margin (Enab and Ertekin 2014; Enyioha et al. 2014).

In view of the above, combining the limitations of GA,

ANN, and fuzzy logic in a hybrid model could only result

in a combined overall inefficiency despite their reported

good individual performances (Xie et al. 2005; Mohsen

et al. 2007; Ali et al. 2008; Zarei et al. 2008; Al-Anazi et al.

2009; Shahvar et al. 2009; Park et al. 2010a). Various

studies to address these reported problems of ANN through

the development of other algorithms such as cascade cor-

relation and radial basis function did not improve its

overall performance (Bruen and Yang 2005). It has not

been proven in the literature that the use of fuzzy logic and

GA components in hybrid models was able to effectively

neutralize the limitations of ANN. These deficiencies of

ANN are part of the justifications for looking toward HIS,

in terms of performance and robustness, for the prediction

of reservoir properties. In addition to this, there was the

need to apply lightweight feature selection-based algo-

rithms to extract the dominant input parameters rather than

using complex algorithms to tune the parameters of the CI

techniques.

Some of the early attempts at the application of feature

selection-based HIS applications in reservoir characteriza-

tion include Helmy et al. 2010; Helmy and Anifowose

2010; and Anifowose and Abdulraheem 2010a. They

combined the capabilities of functional networks (FNs),

type 2 fuzzy logic system (T2FLS), and support vector

machines (SVMs) for the prediction of porosity and per-

meability of some Middle East carbonate reservoirs. The

FN was used to reduce the dimensionality of the input data

(well logs) for the more efficient training of the T2FLS.

The T2FLS component was used to handle the uncertain-

ties in the input data before submitting the fuzzified output

to the SVM component for prediction. The attempt was

deemed excellent. However, it was felt that the combina-

tion of three techniques in a single hybrid model made

them cumbersome and complex. It was not also clear how

each component contributed to the overall improvement of

the hybrid models due to the seeming redundancy of the

hybrid components. As a result of these, simpler and

lightweight hybrid models that would not consist of more

than two components were proposed.

Consequently, in their later attempts (Anifowose and

Abdulraheem 2011; Anifowose et al. 2013, 2014b), the

same authors (mentioned above) focused on rather simpler

methodologies to combine the hybrid models following the

Occam Razor’s principle of simplicity (Jefferys and Berger

1991). Due to the simplicity of the newly proposed design

of the hybrid models, the contributions of each component

became clear. The CI techniques that were explored for the

reduced-component hybrid models were taken from those

with promising capabilities as reported in the literature.

They include FN (Bruen and Yang 2005; Castillo et al.

2000, 2001; El-Sebakhy et al. 2007; El-Sebakhy 2009),

T2FLS (Olatunji et al. 2011), SVM (El-Sebakhy et al.

2007; El-Sebakhy 2009; Abedi et al. 2012; Al-Anazi and

Gates 2012), decision trees (DT) (Bray and Kristensson

2010), extreme learning machines (ELMs) (Heeswijk et al.

2009; Avci and Coteli 2012), and SVM (Sewell 2008;

Vapnik 2000). The proposed hybrid models include FN-
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SVM, DT-SVM, fuzzy ranking-SVM, FN-T2FLS, and FN-

ELM. Kaydani et al. (2011) proposed a hybrid neural

genetic algorithm to predict permeability from the well log

data in one of the Iranian heterogeneous oil reservoirs. The

approach was based on reservoir zonation according to

geological characteristics and sorting the data in the same

manner.

The studies focused on investigating the capability of

the feature selection process to further improve the per-

formance of SVM, T2FLS, and ELM. Since T2FLS was

reported to perform poorly in the event of small dataset

(Helmy et al. 2010) and taking long to execute with data-

sets of high dimensionality (Karnik and Mendel 1999;

Mendel 2003), the studies investigated the possibility to

improve the performance of T2FLS when assisted with a

feature selection process. ELM was proposed (Huang et al.

2004) as an effort to overcome some of the shortcomings of

ANN (Petrus et al. 1995), and it has been reported to

perform well in other fields such as bioinformatics (Huang

et al. 2006).

As for the choice of FN, DT, and fuzzy ranking, the

authors discovered them as good candidates for feature

selection in their comprehensive literature search. They

have also been considered to be lightweight, hence possible

alternatives to the heavyweight evolutionary algorithms

such as GA. The results of the studies confirmed that the

feature selection process contributed significantly to the

improvement of the SVM, T2FLS, and ELM techniques.

For interested readers, more details of all the individual CI

techniques mentioned so far could be found in respective

computer science and CI applications in petroleum engi-

neering and geosciences literature. The application of HIS

so far in petroleum reservoir characterization is given in

Table 1.

To close this section, it is pertinent to discuss a com-

parison of the CI-based methods and the conventional

geostatistical methods: kriging and co-kriging.

Comparison of computational intelligence

and geostatistics

Kriging and co-kriging are geostatistical techniques used to

interpolate or extrapolate the value of a random field at an

unobserved location from observations of its value at

nearby locations. Interpolation or extrapolation is the

estimation of a variable at an unmeasured location from

observed values at surrounding locations. Both methods are

generalized forms of univariate and multivariate linear

regression models, for estimation at a point, over an area,

or within a volume. Similar to other interpolation methods,

they are linear-weighted averaging methods that not only

assign weights according to functions that give a decreas-

ing weight with increasing separation distance but also

capitalize on the direction and orientation of the neigh-

boring data to the unsampled location (Bohling 2005).

Kriging is defined as:

Z� uð Þ � m uð Þ ¼
Xn uð Þ

a¼1

wa Z uað Þ � m uað Þ½ � ð5Þ

where Z*(u) is the linear regression estimator, u and ua are

the location vectors for estimation point and one of the

neighboring data points, indexed by a, n(u) is the number

of data points in the local neighborhood used for the esti-

mation of Z*(u), m(u) and m(ua) are the expected values

(means) of Z(u) and Z(ua), and wa(u) is the kriging weights

assigned to data Z(ua) for estimation location u. Same data

points will receive different weight for different estimation

locations.

Z(u) is treated as a random field with a trend component,

m(u), and a residual component, R(u) = Z(u) - m(u).

Kriging estimates residual at u as weighted sum of resid-

uals at surrounding data points. Kriging weights wa are

derived from the covariance function or semivariogram,

which should characterize residual component (Myers

1984; Switzer 2006).

The major difference between CI and geostatistics is that

the former considers the nonlinear relationship between

predictor and target variables, while the latter is linear. Due

to the limitation of computing power and quest for

affordable solutions, the reservoir characterization problem

has been assumed to be linear contrary to the reality. This

has been the major reason for the better performance of CI-

based models than linear estimators. In addition to the

aforementioned, the learning capability of the CI tech-

niques makes them more adaptive to new datasets and

increases the generalization capability.

Making a case for the feature selection-based
hybrid methodology

The reason for focusing on the feature selection-based

hybrid methodology in this review was discussed in ‘‘Hy-

brid intelligent systems’’ section. In particular, the deluge

of data in the oil and gas industry acquired from day-to-day

modern data acquisition tools such as LWD, SWD, and

MWD has made the feature selection process a necessary

step in order to ensure that only those attributes that are

most relevant to the prediction of targeted reservoir prop-

erties are used. The feature selection-based hybrid

methodology is the ideal candidate, in terms of efficiency

and accuracy, for extracting useful knowledge from such

hyper-dimensional data. This is based on the reported

successful applications in other fields (Peng and Wang

2009; Helmy et al. 2012) as well as the few successful

256 J Petrol Explor Prod Technol (2017) 7:251–263

123



attempts (Helmy et al. 2010; Kaydani et al. 2011) in pet-

roleum reservoir characterization. The use of those input

parameters that are not deemed relevant to the target

variables could corrupt the performance and increase the

time complexity of a model. Hence, the feature selection

process provides three major benefits:

• Reducing the dimensionality of the input data.

• Extracting the most relevant of the attributes for best

prediction performance.

• Assisting the attainment of the optimality of a model.

These three benefits will be much desirable for keeping

prediction models simple, following the principle of

Occam’s Razor (Jefferys and Berger 1991), as well as

ensuring the optimum accuracy of reservoir properties

predictions. Coincidentally, petroleum and geoscience

professionals have always been in search of models that

will offer increased accuracy in the prediction of the var-

ious petroleum reservoir properties since a marginal

increase in reservoir properties predictions will further

increase the efficiency of exploration, production, and

exploitation of hydrocarbon resources.

Despite that CI techniques have been successfully

applied in the petroleum industry, the feature selection

procedure has been done with statistical packages such as

SPSS. These are based on the linear relationships among

the predictor variables. The same argument follows that of

the use of multivariate regression tools for predicting

reservoir properties that the features are extremely non-

linear attributes and could not be adequately modeled with

such linear relationships. Another problem with the sta-

tistical tools is that they are completely offline. Conse-

quently, the results obtained from them have to be

manually presented to the CI techniques for further pro-

cessing. This creates a time lapse in addition to the inad-

equate relationship established among the predictor

variables. Studies have shown that CI techniques are better

than most statistical procedures and packages (Sfidari et al.

2012).

With the reports of the successful application of HIS

(Jong-Se 2005; Lean et al. 2006; Evaggelos et al. 2006;

Bullinaria and Li 2007; Jin et al. 2007; Mendoza et al.

2007; Anifowose and Abdulraheem 2010a; Helmy et al.

2012), it becomes clear that the petroleum industry is in

dire need of this new modeling approach especially in the

petroleum reservoir characterization workflow. The con-

ceptual framework of the feature selection-based hybrid

learning concept is presented in Fig. 2.

Table 1 Summary of feature selection-based hybrid systems in reservoir characterization

Author(s) Proposed method(s) Application domain

Jong-Se (2005) Fuzzy curve analysis based on

fuzzy logic and neural

networks

Selection of the best related well logs for the prediction of

porosity and permeability neural network

Xie et al. (2005) GA and fuzzy/neural inference

system

Estimation of permeability

Mohsen et al. (2007) GA and ANN Establishment of relationship between log data and core

permeability

Zarei et al. (2008) GA and neuro-fuzzy model Determination of the optimal well locations using the net

present value (NPV) as the objective function

Ali et al. (2008) GA and ANFIS Prediction of the permeability of tight gas sands

Al-Anazi et al. (2009) Fuzzy ranking algorithm

integrated with a fuzzy

predictive model

Estimation of petroleum reservoir properties

Shahvar et al. (2009) Fuzzy logic and artificial neural

network

Prediction of flow zone index and estimation of permeability

Park et al. (2010) GA and ANFIS Determination of optimum gas production rates of each well

and pipeline segment diameters to minimize investment

costs

Helmy et al. 2010; Helmy and Anifowose

2010; Anifowose and Abdulraheem

2010a, b, c

LS-FN ? SVM ? T2FLS and

LS-FN ? T2FLS ? SVM

Prediction of porosity and permeability

Anifowose and Abdulraheem 2011;

Anifowose et al. 2013, 2014b

LS-FN ? T2FLS; LS-

FN ? SVM; DT ? SVM;

FR-SVM

Prediction of porosity and permeability

Kaydani et al. (2011) GA ? ANN Prediction of permeability
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In Fig. 2, an n-dimensional dataset is passed through a

feature selection algorithm. The output of this is an m-

dimensional subset of the dataset where m B n. Following

the supervised machine learning paradigm, the subset is

divided into training and testing parts. The training part

containing known input and output cases are used to train a

CI technique. The testing part is then passed into the

trained model to predict the unknown target output. A more

complex configuration than this is also possible.

The next section discusses briefly some of the methods

used for feature selection in the literature.

Feature selection algorithms used in the literature

An extensive search in the literature revealed only three

algorithms that have been used for feature selection:

functional networks, decision trees, and fuzzy information

entropy (FIE) (also known as fuzzy ranking). Each of them

is discussed in the following sections.

Functional networks

FN (Castillo 1998) is an extension of ANN which consists

of different layers of neurons connected by links. Each

computing unit or neuron performs a simple calculation: a

scalar, typically monotone, function f of a weighted sum of

inputs. The function f, associated with the neurons, is fixed,

and the weights are learned from data using some well-

known algorithms such as the least-squares fitting algo-

rithm used in this work. The main idea of FN consists of

allowing the f functions to be learned while suppressing the

weights. In addition, the f functions are allowed to be

multi-dimensional, though they can be equivalently

replaced by functions of single variables. When there are

several links, say m, going from the last layer of neurons to

a given output unit, we can write the value of this output

unit in several different forms (one per link). This leads to a

system of m - 1 functional equations, which can be

directly written from the topology of the network. Solving

this system leads to a great simplification of the initial

functions associated with the neurons. An example of this

is shown in Fig. 3.

FN has been mathematically and defined generalized in

the following:

If we assume that we have a neuron with s inputs: (x1,…,

xs) and k outputs: (y1,…, yk), then it follows that there

exist k functions Fj; j = 1,…, k, such that yj = Fj(x1,…,

xs); j = 1,…, k.

FN also consists of a set of directed links that connect

the input layer to the first layer of neurons, neurons of one

layer to neurons of the next layer, and the last layer of

neurons to the output units. Connections are represented by

arrows, indicating the direction of information flow. FN has

also featured in a number of research studies. A

Fig. 2 Conceptual framework

of a feature selection-based

hybrid learning paradigm
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comprehensive demonstration of the application of FN in

statistics and engineering is given by Castillo et al.

(2000, 2001).

For effective learning of FN, there was the need to do a

model selection to choose the best FN model using the

minimum description length (MDL) principle (Castillo

1998). This measure allows comparisons not only of the

quality of different approximations, but also of different

FN models. It is also used to compare models with different

parameters, because it has a penalty term for overfitting.

Accordingly, the best FN model for a given problem cor-

responds to the one with the smallest MDL value. This was

calculated using the backward–forward method with the

least-square criterion to determine the least error attainable

during the training process. This algorithm has the ability

to learn itself and to use the input data directly, by mini-

mizing the sum of squared errors, in order to obtain the

parameters, namely the number of neurons and the type of

kernel functions needed for the fitting process. It works by

building an initial model of all possible functional equa-

tions, simplifying the model, and selecting the best

parameters for the simplified model. A detailed description

of this method can be found in Castillo (1998).

Decision trees

DT learning, as a data mining and machine learning tech-

nique, uses a decision tree algorithm as a predictive model

that maps observations about a problem to conclusions

about the problem’s target value (Breiman 1984). DT

models are also known as classification trees or regression

trees. In these tree structures, leaves represent classifica-

tions and branches represent conjunctions of features that

lead to those classifications. A tree can be ‘‘learned’’ by

splitting the source set into subsets based on an attribute

value test. This process is repeated on each derived subset

in a recursive manner called recursive partitioning. The

recursion is completed when the subset at a node has the

same value as the target variable, or when splitting no

longer adds value to the predictions (Yohannes and Webb

1999).

In data mining, trees can be described also as the

combination of mathematical and computational tech-

niques to aid the description, categorization, and general-

ization of a given set of data. Usually, data come in records

of the form:

x; yð Þ ¼ x1; x2; x3. . .; xk; yð Þ ð6Þ

where the dependent variable, y, is the target variable that

we are trying to understand, classify, or generalize. The

vector x is composed of the input variables, x1, x2, x3, etc.,

that are used for that task.

Some of the algorithms that are used for constructing

decision trees include Gini impurity and information gain

(Moore 2015). The Gini impurity is based on squared

probabilities of membership for each target category in the

node. It reaches its minimum (zero) when all cases in the

node fall into a single target category. Mathematically, it is

expressed as follows:

Suppose y takes on values in {1, 2,…, m}, and let f (i,

j) = frequency of value j in node i. That is, f (i, j) is the

proportion of records assigned to node i for which y = j as

presented in the equation:

IG ið Þ ¼ 1�
Xm

j¼1

f i; jð Þ2¼
X

j6¼k

f i; jð Þf i; kð Þ ð7Þ

The information gain is based on the concept of entropy

used in information theory as expressed in the equation:

IE ið Þ ¼
Xm

j¼1

f i; jð Þ log2 f i; jð Þ ð8Þ

DTs are simple to understand and interpret. They require

little data preparation and are able to handle both numerical

and categorical data. They use a white box model such that

if a given situation is observable in a model, the

explanation for the condition is easily given by Boolean

logic. It is possible to validate a model using statistical tests

making it possible to account for the reliability of the

model. They are robust and perform well with large data in

a short time (Yohannes and Webb 1999). However, the

problem of learning an optimal DT is known to be NP-

Fig. 3 a Structure of FN b its simplification (Castillo et al. 2001)
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complete (Breiman 1984; Yohannes and Webb 1999).

Consequently, practical DT algorithms are based on

heuristic algorithms such as the greedy algorithm where

locally optimal decisions are made at each node. Such

algorithms cannot guarantee to return the globally optimal

decision tree similar to ANN. Also, DT learners create over-

complex trees that do not generalize the data well, referred to

as overfitting, thereby requiring the use of additional

mechanisms such as pruning to avoid this problem. This

additional mechanism increases the complexity of

implementation. Similar to the traditional ANN during its

inception, decision trees have some concepts such as XOR,

parity, or multiplexer problems that are hard to learn because

they cannot be expressed easily. In such cases, the decision

tree becomes prohibitively large (Sherrod 2008).

Determining the relative importance of a feature is one

of the basic tasks during the generation of a DT model. If a

dataset is subdivided using the values of an attribute as

separators, a number of subsets will be obtained. For each

of these subsets, the information value Ii can be computed

such that Ii\ I, and the difference (I - Ii) is a measure of

how well the parameter has discriminated between differ-

ent subsets. The parameter that maximizes this difference

is then selected. The measure can also be viewed as a class

separability measure. However, this measure suffers the

drawback that it may choose parameters with very low

information content (Lopez de Mantaras 1991). An

example of a decision tree is shown in Fig. 4.

Fuzzy information entropy

Fachao et al. (2008) described FIE in the following man-

ner:Let U = {x1, x2,…, xn} be a non-empty universe, R is a

fuzzy equivalence relation on U, and let [xi]R be the fuzzy

equivalence class containing xi generated by R, it follows

that:

j xi½ �Rj ¼
Xn

j¼1

R xi; xj
� �

ð9Þ

This is called the cardinality of [xi]R. These relations are

further given by:

H Rð Þ ¼ � 1

n

Xn

i�1

log2
j xi½ �Rj
n

ð10Þ

This relationH is called the information entropy ofR. It extracts

the input parameters (such as well logs) that have strong fuzzy

relations (i.e., cardinality) with the target variables (such as

porosity and permeability in the case of this study). However,

the main drawback of the information entropy algorithm is its

sensitivity to the dimensionality of the input data (i.e., the

number of attributes) (White and Liu 1994). The pseudo-code

for the implementation of this algorithm is given as:

Step 1. Input information system IS = U;A; V; fh i;
Step 2. VAi e A: compute the fuzzy equivalence matrix

and choose appropriate fuzzy information filter operator

F to filter the fuzzy equivalence matrix;

Step 3. Red = /;
Step 4. For each Ai e A—red, compute significance of

Attribute Ai in the attribute set Ai

S
red, sig(ai, aiS

redÞ = H(ai
S
redÞ� H(ai);

Step 5. Choose attribute Ax which satisfies:

G(Ax) = max
i

SIG Ai;Ai

S
redð Þ½ �;

Step 6. If G(Ax)[ 0, then red = red
S

Axf g, goto step 4,

else goto step 7;

Step 7. Output the reduct of IS.

Conclusion and the future of HIS in petroleum
reservoir characterization

This review started with the appreciation of the application

of CI in petroleum reservoir characterization and examined

how it evolved into the application of hybrid intelligent

systems. A case was made for the feature selection-based

hybrid systems by highlighting the dire need for them in

modern data-driven and data-centric reservoir modeling

endeavors. With the advent of advanced real-time data

acquisition tools such as LWD, MWD, and SWD coupled

with the recent need to integrate all manners of data from

well logs through seismic to nuclear magnetic resonance

(NMR) for improved reservoir modeling and predictions,

petroleum engineers have had to deal with datasets of

increasingly high dimensionality. With these data deluge,

there was the need to select the most relevant of the param-

eters in order to reduce the matrix dimension of the datasets

and increase the predictive performance of the models. We

have been able to show that the hybrid intelligent learning

paradigm is the way to go to handle this challenge.
Fig. 4 Example of a decision tree (Sherrod 2008)
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The various limitations of the existing CI techniques

were reviewed, and hybrid systems were proposed as

robust ways to handle and overcome some of the limita-

tions. It was observed that though some hybrid techniques

may have been applied in petroleum reservoir characteri-

zation, there are still rooms for further exploration and

investigation. A lot of hybrid learning possibilities are yet

to be discovered. Some of the feature selection algorithms

that have remained unexplored include the various poly-

nomial degrees of the following:

• Sequential forward selection (Jain and Zongker 1997;

Sun and Yao 2006).

• Sequential backward elimination (Jain and Zongker

1997).

• Adaptive forward selection (Somol et al. 1999).

• Adaptive backward selection (Somol et al. 1999).

• Forward selection with backward elimination (bidirec-

tional) (Mao 2003).

Each of these can be combined with any of the CI tech-

niques to form an infinite number of possibilities for new

hybrid models. With today’s powerful computing resources,

algorithmic complexity and memory intensity may no more

be an issue of concern. Hence, yet-to-be-explored optimiza-

tion-based hybrid systems can also be investigated. These

include the combination of any of the existing CI techniques

with new and state-of-the-art evolutionary algorithms such as

bee colony, ant colony, bat colony, cuckoo search, and par-

ticle swarm optimization. The evolutionary algorithms will be

used to optimize the learnability of the CI techniques. It is

believed that this will offer numerous advantages over the

manual optimization methods.
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