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Abstract

Background: Glucocorticoids (GCs) are involved in the control of appetite in birds and mammals. The effect of GCs
on feed intake in birds depends on their dietary energy level. But the regulation mechanism of GCs on appetite is
still unclear in chickens facing to different energy level. An experiment was conducted to investigate the effect of

and under fasting/feeding condition.

expression (P < 0.05).

on dietary energy level and feeding state.

dexamethasone (DEX) on hypothalamic expression of appetite-related peptides in chickens fed high/low fat diet

Results: An interaction between DEX injection and dietary energy level was found on hypothalamic corticotropin-
releasing hormone (CRH) gene expression in fasted chickens (P < 0.05). The chickens, given a DEX injection and a
low fat diet treatment, had the highest CRH mRNA levels than any of the fasted chickens given treatments (P < 0.05).
Under fasting conditions, the DEX treatment significantly increased hypothalamic neuropeptide Y (NPY) and GC
receptors mRNA levels (P < 0.05). Under re-feeding conditions, DEX treatment significantly decreased hypothalamic
expression levels of NPY and agouti-related peptide (AgRP) but significantly increased the level of hypothalamic CRH

Conclusion: A regulatory network formed by NPY, AgRP and CRH is associated with the appetite-control by GCs.
The result suggests that the regulation of GCs on orexigenic neuropeptides expression is dependent at least partially

Keywords: Chickens, Glucocorticoids, Hypothalamus, Neuropeptides

Background

Hypothalami play a pivotal role in influencing feed in-
take in mammals and birds [1]. There are a population
of neurons influencing appetite in hypothalamus, such
as orexigenic neuropeptides (e.g., neuropeptide Y [NPY],
agouti-related peptide [AgRP]) [1], and anorexigenic
neuropeptides (e.g., proopiomelanocortin [POMC], and
corticotropin-releasing hormone, [CRH]) [2, 3]. The re-
lease of these neuropeptides is closely associated with
the feeding state and dietary energy level. For example,
the fasting for 24 h decreased the hypothalamic POMC
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and CRH genes expression, but increased the AgRP gene
expression in chicks [4]. The mice fed with high fat diet
had the lower NPY and AgRP mRNA levels [5, 6].
Peripheral signal (e.g., insulin and glucocorticoids
[GCs]) is integrated in hypothalamic arcuate nucleus
(ARC) of mammals or infundibular nucleus of birds [7, 8].
GCs are involved in the appetite-control. Intracerebroven-
tricular (ICV) injection of GCs increases feed intake in
rats and chicks [8, 9]. Additionally, the effect of GCs on
feed intake in birds depends on its dosage. Feed intake in-
creased in chickens that were given high dosages of GCs
[10]. Long-term peripheral corticosterone administration
increased feed consumption on the comparable body
weight basis [11, 12]. Bartov [13] showed that the effect of
GCs on appetite was diet-type dependent, and GCs could
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stimulate feed intake of high-protein diet. Besides, fasting
could not only alter the hypothalamic appetite-related
genes expression [14], but also increase the blood
corticosterone level [15]. GC receptors (GR) are located in
hypothalamus and essential for energy balance regulation
[16]. GCs stimulate NPY expression, while restraining
POMC synthesis and release in birds and mammals via
GR [17, 18]. Therefore, we hypothesized that peripheral
GC-induced gene expression of appetitive neuropeptides
could be changed by dietary energy level as well as the
feeding state.

DEX, a synthetic glucocorticoid exhibiting a high affinity
for GR and a delayed plasma clearance [19], was employed
in the present study to induce the hyper GCs status. And
we examined the effect of GCs on hypothalamic appetitive
peptides in chickens fed high/low fat diet and under
fasting/feeding condition and determined the major
appetitive peptides that respond to peripheral GCs.

Methods

Animals

Male broiler (Arbor Acres) chicks of 1 d were reared
in an environmentally controlled room. Temperature
and lighting was maintained in accordance with com-
mercial conditions. The composition and nutrient levels
of the diets of the chickens used in experiment 1 are
listed in Additional file 1: Table S1. All animal experi-
ments were reviewed and approved by the Institutional
Animal Care and Use Committee of Shandong Agricultural
University and performed in accordance with the “Guide-
lines for Experimental Animals” of the Ministry of Science
and Technology (Beijing, PR China). Animal suffering was
minimized as much as possible.

Experimental protocol and sample collection

At 1 d of age, 64 chickens of similar body weight were
divided into two groups, with four replicates per group
and eight chickens per replicate. Chickens were ran-
domly subjected to one of the following two treatments:
1) feeding with high-fat diet (HED, 15.06 MJ/kg, 13.5 %
soy oil), or 2) feeding with low-fat diet (LFD, 10.90 MJ/
kg, 0 % soy oil). At 35 d of age, every replicate was either
fasted for 24 h and given a dexamethasone injection
(DEX, 1 mg/kg body weight/time, subcutaneous injec-
tion at 0 and 12 h after fasting), or fasted for 24 h plus a
saline injection (Control, same volume as the DEX
group, subcutaneous injection 0 and 12 h after fasting)
[20, 21]. After a 24-h period of fasting, all groups were
re-fed for 3 h with the same diet at 40 g/bird that they
received before the fasting period. At the end of the fast-
ing and re-feeding period, two chickens from each repli-
cate were selected and sacrificed. A blood sample was
drawn from a wing vein using a heparinised syringe.
Plasma was obtained following centrifugation at 400 g

Page 2 of 7

for 10 min at 4 °C and then stored at —20 °C. Hypothal-
ami were collected according to Yuan et al. [22]. After
being flash-frozen in liquid nitrogen, the hypothalami
were stored at —80 °C for subsequent RNA extraction.

Measurement of plasma insulin level

Plasma glucose concentration was measured spectro-
photometrically with commercial diagnostic kits (Hitachi
High-Technologies Corp.; Jiancheng Bioengineering
Institute, Nanjing, P.R. China). Plasma insulin was
measured using radioimmunoassay with guinea pig anti-
porcine insulin serum (3 V Bio-engineering group Co.,
Weifang, P.R. China). Which have been successfully ap-
plied in poultry research [13].

RNA isolation and analysis

Total RNA extraction and qRT-PCR were performed as
described previously [7]. Sequences of primers are
shown in Table 1. The PCR data were analyzed with the
2744CT method [23]. The mRNA levels of target genes
were normalised to glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) mRNA and 18S ribosomal RNA
(18SrRNA) (ACT). On the basis of the Ct values, 18S or
GAPDH mRNA expression was stable across the treat-
ments in this study (P>0.1). The group with only LFD
treatment was deemed to be 1.

Statistical analysis

The data are presented as the mean + SEM. A two-way
ANOVA model was used to analyze the primary effects
of GCs and the dietary energy treatments as well as their
interactions, using Statistical Analysis Systems statistical
software package (Version 8e, SAS Institute, Cary, NC,
USA). When the main effect of the treatment was sig-
nificant in the analysis, the differences between means
were assessed by Duncan’s multiple range analysis. The
mean was considered significantly different at P < 0.05.

Results
The food intake in LFD-fed chickens was significantly
higher than that of the HFD-fed ones in whole period
(P<0.05, Fig. 1a), but the body weight gain revealed the
opposite tendency from the fourth week (P < 0.05, Fig. 1b).
Dietary fat did not affect the plasma insulin concentra-
tion in fasted and re-fed chickens (P >0.05, Fig. 2a).
However, DEX injection significantly increased the
plasma insulin concentration in re-fed chickens (P < 0.05,
Fig. 2 b). In fasting chickens, DEX treatment significantly
increased the plasma glucose concentration (P < 0.05), but
diet treatment had no significant effect (P > 0.05, Fig. 2c).
Both diet and DEX treatments had an effect on the plasma
glucose concentration in re-fed chickens, and LFD and
DEX treatments significantly increased the plasma glucose
concentration (P < 0.05, Fig. 2d). As shown in Fig. 2, no
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Table 1 Gene-specific primers used for the analysis of chicken gene expression

Gene GenBank accession no. Primer sequences (5'-3") Product size, bp

GAPDH NM_204305 F: ACATGGCATCCAAGGAGTGAG 266
R: GGGGAGACAGAAGGGAACAGA

185 AF173612 F: ATAACGAACGAGACTCTGGCA 136
R: CGGACATCTAAGGGCATCACA

NPY M87294 F: GAGGCACTACATCAACCTCATCAC 101
R: TGTTTTCTGTGCTTTCCCTCAA

CRH NM_001123031 F: CTCCCTGGACCTGACTTTCC 86
R: TGTTGCTGTGGGCTTGCT

AgRP NM_001031457 F: GGAACCGCAGGCATTGTC 163
R: GTAGCAGAAGGCGTTGAAGAA

POMC NM_001031098 F: CGCTACGGCGGCTTCA 88
R: TCTTGTAGGCGCTTTTGACGAT

GR DQ227738 F: CATGAACCTCGAAGCTCGCAAGA 159

R: ACCTCCAGCAGTGACACCAG

effect of the interaction between DEX injection and
dietary fat on plasma insulin and glucose concentration
was detected in fasted and re-fed chickens (P > 0.05).
Under fasting condition, DEX treatment significantly
increased hypothalamic NPY and GR mRNA levels (P <
0.05 Fig. 3a and i). Under re-feeding condition, DEX
treatment significantly decreased genes expression of
NPY and AgRP (P<0.05, Fig. 3b and d). No effect of
dietary energy level or the interaction between DEX in-
jection and dietary fat level was found on the hypothal-
amic gene expression of NPY, AgRP, POMC or GR in
fasted and re-fed chickens (P> 0.05, Fig. 3). The chick-
ens, given a DEX injection and a LFD, had the highest
CRH mRNA levels than any of the fasted chickens
given treatments (P<0.05, Fig. 3g). Under re-feeding
condition, a significant increase in hypothalamic CRH

gene expression was found in HFD-fed chickens com-
pared to the LFD-fed chickens (P <0.05, Fig. 3h). And
DEX treatment significantly increased the CRH gene ex-
pression compared to control (P<0.05, Fig. 3h). An
interaction effect of DEX injection and dietary fat was
observed in the CRH gene expression in fasted chickens
(P<0.05, Fig. 3g), but not in re-fed chickens (P> 0.05,
Fig. 3h).

Discussion

In the present study, we investigated the effect of per-
ipheral GCs on appetitive peptides of chickens in differ-
ent energy situations. Our data show the following: 1)
peripheral GCs increased hypothalamic NPY level in
fasted chicks and CRH levels in re-fed chickens but de-
creased NPY and AgRP levels in re-fed chickens; 2) An
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interaction effect of DEX injection and dietary fat was
observed in the CRH gene expression in fasted chickens.
The chickens, given a DEX injection and a LED, had the
highest CRH mRNA levels than any of the fasted chick-
ens given treatments. The results suggest that a regula-
tory network formed by NPY, AgRP and CRH is
associated with the appetite-control of GCs.

Diet rich in energy and fat alters the glucose/insulin
response to GCs

GCs have an extensive effect in maintaining energy homeo-
stasis. In line with previous findings [24], DEX significantly
increased plasma glucose level regardless of feeding state.
The result indicated that DEX treatment resulted in hyper-
glycaemia in both LFD and HFD chickens. The increased
insulin level at re-fed state by DEX suggests the insulin

resistance in DEX-chickens, in accordance with a previous
publication [24]. At re-fed state, however, LFD-chicken had
higher glucose and insulin levels compared with HFD-
chickens, suggesting that the chickens fed with LFD are
more prone to develop insulin resistance by DEX challenge,
compared to the chickens fed with HFD. In line with this
result, our previous study showed that chickens fed with
LED could have a more severe glucose response to long-
term (7 days) corticosterone exposure [25]. Collectively, the
result suggests that dietary energy level could alter the glu-
cose response to GCs challenge.

Diet rich in energy and fat alters the gene expression of
orexigenic peptides

In consistent with the findings in mammals [26], body
weight increased and food intake decreased significantly
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in HFD group compared with LED group in this study.
In crassicaudata, isocaloric diet with 10, 20, or 40 % of
calories from fat resulted in altered food consumption
[27]. The result indicated that chickens could adjust
their food intake according to dietary energy level.

Xu et al. [28] found that the appetite alteration by
HFD is related to the hypothalamic neuropeptides. In
the present study, the effect of energy state on gene ex-
pression of orexigenic peptides in hypothalamus was
further investigated in chickens challenged with GCs.
Chicks receiving ICV NPY treatment exhibited marked
hyperphagia [29]. ICV GCs injection induced high NPY
gene expression in chicks [9, 30]. At fasting state, the in-
creased hypothalamic NPY mRNA level by GCs treat-
ment was only detected in HFD-chickens, suggesting
that the effect of peripheral GCs injection on NPY ex-
pression is dependent on dietary energy concentration.
In line with the results, our previous report in laying
hens feeding with normal diet showed that GCs treat-
ment had no effect on the NPY mRNA level [31].
Furthermore, the decreased NPY mRNA level by DEX
was observed in LED-chicken at re-fed state. The result
implied that the regulation of GC on NPY expression is
dependent on dietary energy level and feeding state.

AgRP is another orexigenic peptide in mammals and
poultry [32, 33]. The co-expression of AgRP and NPY
mRNA has also been observed in the infundibular nu-
cleus of avian species [34]. In controversy to our previ-
ous study in laying hens [31], GCs treatment didn’t
affect AgRP level in fasted chickens. However, there is a
distinct expression of genes related to energy homeosta-
sis and obesity in layer and broiler chickens [22]. At re-
fed state, both AgRP and NPY genes expression were
down-regulated by GCs treatment in LFD-chickens ra-
ther than in HFD-chickens, indicating that the regula-
tion of GCs on orexigenic gene expression dependent on
dietary energy level. Our recent study proved that GCs
could evoke a special appetite on energy-rich diet rather
than low-energy diet [35]. The result suggests that the
regulation of GCs on orexigenic neuropeptides expres-
sion is dependent at least partially on dietary energy
level and feeding state. GCs increased food consumption
on the same basis of body weight [11, 12]. Hence, this
result implies that peripheral GCs stimulate feed con-
sumption by upregulating the orexigenic gene expression.

Diet rich in energy and fat alters the feedback signalling
of peripheral GCs

Hypothalamic POMC is an anorexigenic neuropeptide
in both chickens and mammals [36, 37]. Fasting, ICV
GC injection or peripheral GC administration have no
significant effect on hypothalamic POMC mRNA level
in avian species [9, 14, 31]. In accordance with the
previous works, the present result further proved that
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peripheral GCs challenge, fasting, and re-fed had no in-
fluence on POMC gene expression.

CRH is primarily located in the periventricular part
(PVH) of the hypothalamus [38]. ICV CRH injection sig-
nificantly decreased feed intake in both fed and over-
night- fasted birds [39]. Peripheral GCs act on the
hypothalamus and pituitary to suppress CRH and adre-
nocorticotropic hormone production in a negative feed-
back cycle [40]. In this study, peripheral DEX injection
increased CRH mRNA level, indicating that peripheral
GCs paly a feedback effect on hypothalamic CRH gene
expression. As this feedback effect was not observed in
HFD-chicken at fasting state, we speculated that high-
energy diet can attenuate the feedback effect of GCs on
hypothalamic CRH gene expression. However, this
speculation needs to be proved further.

Conclusion

A regulatory network formed by NPY, AgRP and CRH is
associated with the appetite-control by GCs. The result
suggests that the regulation of GCs on orexigenic neuro-
peptides expression is dependent at least partially on
dietary energy level and feeding state.

Additional file

Additional file 1: Table S1. The composition and nutrient levels of the
experimental diets for chickens (air dry basis). (DOC 42 kb)
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