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Exosomes in cancer: small particle, big player
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Abstract

Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules
including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange
of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells
release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis,
and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells,
contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight
the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles
of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment.
Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising
biomarkers for cancer diagnosis and represent new targets for cancer therapy.
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Introduction
Exosomes are small, lipid bilayer membrane vesicles of
endocytic origin. Exosomes can be defined by several
common characteristics, including size (50–100 nm in
diameter), density (1.13–1.19 g/ml), morphology (“cup”
or “dish” shaped in transmission electron microscopy),
and certain enriched protein markers (tetraspanins,
TSG101, Hsp70). Initially discovered as the garbage bags
for removal of unwanted material from cells, the role of
exosomes in immune response is gradually recognized
as they function in antigen presentation. More recently,
the researchers reveal that exosomes contain proteins
and nucleic acids that are functional when transferred
into recipient cells. Exosomes have been shown to act as
shuttles between cells by transmitting signals (referred
to as communicasomes). In this review, we highlight the
recent advances in the roles of exosomes in cancer with
an emphasis on the potential of exosomes as diagnosis
biomarker and therapy target.
Biogenesis, release, and uptake of exosomes
Exosome formation is a fine-tuned process which in-
cludes four stages: initiation, endocytosis, multivesicular
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bodies (MVBs) formation, and exosome secretion [1].
Multivesicular bodies (MVBs) are endocytic structures
formed by the budding of an endosomal membrane into
the lumen of the compartment. After vesicular accumu-
lation, the MVBs are either sorted for cargo degradation
in the lysosome or released into the extracellular space
as exosomes by fusing with the plasma membrane
(Fig. 1). The mechanisms underlying the sorting of cargo
into the intraluminal vesicles (ILVs) are not yet fully elu-
cidated. Both endosomal sorting complex required for
transport (ESCRT)-dependent and independent signals
have been suggested to determine the sorting of exosomes
[2]. The formation of exosomes has been shown to be
controlled by the syndecan heparan sulfate proteoglycans
and their cytoplasmic adaptor syntenin [3].
The Rab guanosine triphosphatases (GTPases) have

been found to critically regulate exosome secretion.
Ostrowski et al. have identified that Rab27a/b affects
the size and localization of MVBs [4]. Hsu et al. suggest
that Rab3 regulates MVBs docking to tethering at the
plasma membrane [5]. The accumulation of intracellu-
lar Ca2+ results in increased exosome secretion [6]. In
addition, intracellular and intercellular pH has been
shown to affect exosome release. When the microenviron-
mental pH is low, exosome secretion and uptake by recipi-
ent cells increases [7]. There is evidence that oncogenes
and tumor suppressors regulate exosome secretion in
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Fig. 1 Biogenesis, release, structure, and uptake of exosomes. Exosomes are produced from the multivesicular bodies (MVBs) (also known as late
endosomes). The membrane of the MVBs bulges inward to form exosomes. During this process, proteins (e.g., receptor, cytoplasmic proteins,
tetraspanin), nucleic acids (e.g., DNA, mRNA, miRNA), and lipids (e.g., cholesterol, ceramide) are packed into exosomes in a cell type-dependent manner.
MVBs fuse with the cellular membrane to release exosomes into the extracellular space. Several mechanisms have been suggested to mediate the
uptake of exosomes, including a exosome fusion with the cellular membrane of the recipient cell, leading to the release of the exosomal cargo into
the cytoplasm, b juxtracrine signaling through receptor-ligand interactions, c and endocytosis by phagocytosis
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cancer [8]. Yu et al. demonstrate that p53-regulated pro-
tein tumor suppressor-activated pathway 6 (TSAP6) in-
duces exosome secretion under stressed conditions [9, 10].
Heparanase is an enzyme with elevated level in cancer.
Overexpression of heparanase promotes exosome secre-
tion [11]. Intriguingly, exosomes from normal mammary
epithelial cells inhibit exosome secretion by breast cancer
cells, implicating a feedback control to maintain dynamic
equilibrium [12].
Exosomes transfer information to the target cells

through three main ways: (1) receptor-ligand interaction;
(2) direct fusion with plasma membrane; (3) endocytosis
by phagocytosis (Fig. 1). Although the specific receptors
that mediate the uptake of exosomes have not been
found, there are several proteins that may act as poten-
tial receptors for exosome uptake, such as Tim1/4 for B
cells [13] and ICAM-1 for APCs [14]. The uptake of
exosomes by direct plasma membrane fusion mode has
not been well studied. Melanoma cells could take up
exosomes by fusion and low pH facilitates this process
[15]. Phagocytosis is an efficient way of exosome uptake.
Phagocytic cells have a greater uptake of exosomes than
non-phagocytic cells [16]. The uptake of exosomes by
recipient cells is energy dependent [17]. Heparan sulfate
proteoglycans (HSPGs) function as internalizing receptors
of cancer cell-derived exosomes. Enzymatic depletion
of cell-surface HSPG or pharmacological inhibition of
endogenous proteoglycan biosynthesis significantly atten-
uates exosome uptake [18].

Structure and contents of exosomes
Exosomes consist of a lipid bilayer membrane surrounding
a small cytosol (Fig. 1). The structured lipids not only
mold the exosomes but are also involved in exosome func-
tion. In addition to lipids, nucleic acids and proteins have
also been detected in exosomes. Thakur et al. demonstrate
that double-stranded DNA is present in exosomes from
cancer cells and reflects the mutational status of the origi-
nated cells [19]. Valadi et al. demonstrate that exosomes
contain mRNA and miRNA [20]. Exosome-carried RNA
can shuttle between cells and thus is called “exosomal
shuttle RNA” (esRNA). The protein composition of
tumor cell-derived exosomes has been well characterized
for a number of cancers by using different proteomic
methods. The most common proteins, mRNA, and
miRNAs found in exosomes have been deposited in
ExoCarta (www.exocarta.org). To date, 4563 proteins,
1639 mRNAs, and 764 miRNAs have been identified in
exosomes from different species and tissues by independ-
ent examinations. The exosomal contents vary between
different physiological and pathological conditions
and original cell types. Moreover, the composition of

http://www.exocarta.org
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exosomes can be distinct from the originated cells due to
the selective sorting of the cargo into exosomes.

Isolation, detection, and analysis of exosomes
Exosomes have been isolated and characterized from
distinct cells under normal and stressed conditions. At
present, the most commonly used methods for exosome
isolation include ultracentrifugation, combined with su-
crose gradient, and the immune-bead isolation (e.g., mag-
netic activated cell sorting; MACS). There are many
commercial kits available for the extraction of exosomes.
Transmission electron microscopy (TEM), Western blot,
and FACS are frequently used to characterize the isolated
exosomes based on their biochemical properties (e.g.,
morphology, size, exosomal markers). There is a lack of
the accurate method to determine the concentration of
exosomes. The researchers have to rely on inaccurate
measurements of protein concentration or nanoparticle
tracking analysis. Quantitative RT-PCR, nucleic acid
sequencing, Western blot, or ELISA are used for exosome
RNA and protein identification. The International Society
for Extracellular Vesicles (ISEV) has recently released
minimal experimental requirements for definition of
extracellular vesicles and their functions [21].
Fig. 2 Roles of exosomes in cancer. Exosomes are critically involved in tu
by transferring oncogenic proteins and nucleic acids. Tumor-derived exo
and thrombosis. Tumor-derived exosomes can convert fibroblasts and MS
Tumor-derived exosomes contribute to create an immunosuppressive microe
T cells and NK cells, inhibiting DC differentiation, expanding MDSCs, as w
mobilize neutrophils and skew M2 polarization of macrophages to promo
tumor cells develop drug resistance by transferring multidrug-resistant pr
antibody-based drugs. In turn, exosomes from activated T cells, macrophages
Roles of exosomes in cancer
Accumulating evidence indicates that exosomes play
important roles in cancer. Exosomes transfer oncogenic
proteins and nucleic acids to modulate the activity of
recipient cells and play decisive roles in tumorigenesis,
growth, progression, metastasis, and drug resistance
(Fig. 2). Exosomes can act on various recipient cells. The
uptake of exosomes may induce a persistent and efficient
modulation of recipient cells. In this section, we will
discuss about the roles of exosomes in cancer and the
molecular mechanisms (Table 1).

Tumorigenesis
Normal cells are transformed into cancer cells in the
process of tumorigenesis. Exosomes from malignant cells
have shown the potential to induce normal cell trans-
formation. For instance, prostate cancer cell-derived
exosomes could induce neoplastic transformation of
adipose-derived stem cells (ASCs) [22], which is associ-
ated with trafficking of oncogenic proteins (Ras super-
family of GTPases), mRNA (K-ras and H-ras), as well as
miRNAs (miR-125b, miR-130b, and miR-155) by exo-
somes. In addition, Melo et al. suggest that breast cancer
cell-derived exosomes contain precursor microRNAs
mor initiation, growth, progression, metastasis, and drug resistance
somes can activate endothelial cells to support tumor angiogenesis
Cs into myofibroblasts to facilitate tumor angiogenesis and metastasis.
nvironment by inducing apoptosis and impairing the function of effector
ell as promoting Treg cell activity. Tumor-derived exosomes can
te tumor progression. Moreover, tumor-derived exosomes can help
oteins and miRNAs, exporting tumoricidal drugs, and neutralizing
, and stromal cells can promote tumor metastasis and drug resistance



Table 1 Overview on the function of exosomes in cancer

Exosomal cargo Secreting cell Recipient cell Function Reference

EGFRvIII Glioblastoma cells Glioblastoma cells Promotes tumor cell growth [26]

Angiogenin, IL-8,
VEGF

Glioblastoma cells Endothelial cells Promotes tube formation [75]

ΔNp73 Colon cancer cells Colon cancer cells Promotes tumor cell proliferation and
therapy resistance

[27]

KRAS Colon cancer cells (mutant KRAS) Colon cancer cells
(wild-type KRAS)

Enhances tumor cell growth [97]

MET Melanoma cells (highly metastatic) Bone marrow
progenitor cells

Promotes tumor growth and metastasis [39]

HIF-1α Nasopharyngeal carcinoma (NPC) cells
(EBV-positive)

NPC cells (EBV-negative) Promotes tumor cell migration and invasion [37]

αvβ6 Integrin Prostate cancer cells Prostate cancer cells Promotes tumor cell migration [98]

Survivin Cervical cancer cells Cervical cancer cells Inhibits genotoxic stress-induced apoptosis
and promotes cell proliferation

[25, 99]

Wnt5a Macrophages Breast cancer cells Enhances tumor cell invasion [100]

Wnt3a Diffuse large B-cell lymphoma side
population (SP) cells

Neighboring non-SP
cells

Modulates SP–non-SP transition and
promotes tumor progression

[24]

FasL Activated CD8+ T cells Melanoma cells, lung
cancer cells

Induces MMP9 expression and promotes
lung metastasis

[43]

IL-6, CCL2,
fibronectin

Multiple myeloma (MM) BM-MSCs MM cells Promotes tumor cell growth [29]

Hsp72 Murine thymoma, mammary carcinoma,
colon carcinoma cells

MDSCs Induces immunosuppression and enhances
tumor growth

[63]

TF Squamous cells, colon cancer cells Endothelial cells Promotes coagulation [71]

CD39, CD73 Bladder, colorectal, prostate, breast cancer
cells

T cells Induces adenosine production and inhibits T
cell activation

[101]

TGF-β Mesothelioma, prostate, bladder,
colorectal, breast cancer cells

Fibroblasts Induces myofibroblast differentiation and
promotes tumor angiogenesis and growth

[66, 67]

TGF-β Prostate cancer, gastric cancer MSCs Induces myofibroblast differentiation and
promotes angiogenesis and invasiveness

[68, 102]

TGF-β Pleural effusions of mesothelioma patients NK cells, CD8+ T cells Downregulates NKG2D expression and
impairs cell killing activity

[103]

MICA*008 Cervical cancer cells NK cells Decreases NKG2D expression and reduces
NK cytotoxicity

[104]

TGF-β, PGE2 Murine mammary adenocarcinoma cells Bone marrow myeloid
cells (CD11b+Ly6G+)

Induces MDSCs accumulation and
immunosuppression

[61]

CCL20 Nasopharyngeal carcinoma cells Regulatory T cells Recruits and induces Treg conversion [59]

KIT Mast cells Lung cancer cells Accelerates cell proliferation [105]

KIT Gastrointestinal stromal tumor (GIST) cells Progenitor smooth
muscle cells

Increases tumor invasiveness [40]

Wnt11 Fibroblasts Breast cancer cells Promotes tumor metastasis [42]

MIF Pancreatic cancer cells Liver Kupffer cells Promotes metastasis [47]

Hsp70 Renal cancer cells (murine Renca cell line) MDSCs Induces MDSCs activation and enhances
tumor growth

[106]

Adrenomedullin Pancreatic cancer cells Adipocytes Promotes lipolysis [107]

S1P, CCL20, PGE2 Enteropathogenic bacteria-stimulated
intestinal epithelial cells

Th17 cells Promotes the development of colon cancer [108]

miR-9 Lung cancer, melanoma, pancreatic
cancer, glioblastoma, colorectal cancer
cells

Endothelial cells Induces tumor angiogenesis [109]
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Table 1 Overview on the function of exosomes in cancer (Continued)

miR-125b, 130b, 155 Prostate cancer (PC) cells PC patient adipose-
derived stem cells
(pASCs)

Induces neoplastic transformation [22]

miR-135b Multiple myeloma cells (under chronic
hypoxia condition)

Endothelial cells Enhances endothelial tube formation [36]

miR-10b Metastatic breast cancer cells Mammary epithelial cells Promotes cell migration [110]

miR-92a Chronic myeloid leukemia (CML) cells Endothelial cells Promotes cell migration and tube formation [35]

miR-210 CML cells (under hypoxia condition) Endothelial cells Promotes angiogenic activity [34]

miR-223 IL-4-activated macrophages Breast cancer cells Promotes cell invasion [44]

miR-222 Drug-resistant breast cancer cells Drug-sensitive breast
cancer cells

Transmits chemoresistance [111]

miR-584, 517c, 378 Hepatocellular carcinoma (HCC) cells HCC cells Promotes HCC cell growth and metastasis [112]

miR-21, 29a Lung cancer cells Macrophages Promotes tumor metastasis [46]

miR-105 Metastatic breast cancer cells Endothelial cells Destroys tight junction, induces vascular
permeability, and promotes metastasis

[33]

Pre-miRNAs, RISC-
loading complex

Breast cancer cells Non-tumorigenic
epithelial cells

Induces cell transformation [23]

miR-24-3p, 891a,
106a-5p, 20a-5p,
1908

Nasopharyngeal carcinoma T cells Promotes T cell dysfunction and tumor
progression

[60]

miR-221, 222 Gastric cancer tissue derived MSCs Gastric cancer cells Enhances tumor cell migration [60]

miR-122 Breast cancer cells Lung fibroblasts, brain
astrocytes, and neurons

Reprograms systemic energy metabolism
and facilitates metastasis

[113]

miR-23b Bladder cancer cells (cellular disposal by
exosome release)

None Acquires metastatic potential [38]

miR-503 Endothelial cells Breast cancer cells Impairs tumor cell growth [114]

miR-140 Preadipocytes Ductal carcinoma in situ
(DCIS) cells

Enhances tumorigenesis [115]

miR-127, 197, 222,
223

Bone marrow stromal cells Breast cancer cells Decreases cell proliferation and induces cell
quiescence

[116]

TUC339 Hepatocellular carcinoma (HCC) cells HCC cells Promotes tumor cell growth and inhibits cell
adhesion

[81]

Linc-ROR HCC cells HCC cells Reduces chemotherapy sensitivity [82]
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(pre-miRNAs) associated with RNA-induced silencing
complex (RISC)-loading complex proteins, which could
induce a rapid and efficient silencing of mRNAs in non-
tumorigenic epithelial cells, resulting in transcriptome
reprogramming and oncogenic transformation [23].
They further demonstrate that the exosomes from serum
specimen from breast cancer patients but not those from
healthy donors induce tumor formation in mice when co-
injected with the nontumorigenic epithelial cells, suggest-
ing a potential mechanism for exosome in tumorigenesis.
Cancer is composed of heterogeneous cell populations.
Side population (SP) cells are a sub-population of cells
that exhibit stem cell-like characteristics and can be
isolated in cancer by adapting the Hoechst33342 stain-
ing method. Koch et al. demonstrate that in diffuse
large B-cell lymphoma, side population cells could ex-
port Wnt3a via exosomes to neighboring cells, thus
modulating SP-non-SP transitions and maintaining
population equilibrium [24]. Altogether, these findings
indicate that exosomes may contribute to tumor develop-
ment and uncontrolled tumor progression by acting as a
mediator in the transformation of normal cells to malig-
nant cells and a modulator for the balance between cancer
stem cells (CSCs) and non-CSCs.

Tumor growth
The promoting effects of exosomes from distinct sources
on tumor cell proliferation have been widely reported.
Cancer cells uptake exosomes that contain survivin, an
anti-apoptotic protein, to protect them from genotoxic
stress-induced cell death [25]. Exosomes from serum of
glioblastoma patients contain EGFRvIII mRNA, which
stimulate the proliferation of human glioma cells
through a self-promoting way [26]. Colon cancer cell-
derived exosomes are enriched in ΔNp73 mRNA. The
proliferation potential of target cells is greatly enhanced
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by incubation with ΔNp73-containing exosomes [27].
The interaction between tumor stromal cells and tumor
cells also efficiently promote tumor growth. Exosomes
from chronic myelogenous leukemia (CML) cells stimu-
late bone marrow stromal cells to produce IL-8, which
in turn promote the growth of leukemia cells [28]. Bone
marrow mesenchymal stromal cells (BM-MSCs) from
multiple myeloma (MM) patients release exosomes that
express increased levels of oncogenic proteins, cytokines,
and adhesion molecules to facilitate the growth of MM
cells [29]. Thus, exosomes from tumor cells and micro-
environment could act coordinately to promote tumor
growth.

Tumor angiogenesis
The formation of new blood vessels is required for
tumor growth and progression. Proteomic analysis has
revealed that abundant angiogenic factors are present
in malignant mesothelioma-derived exosomes [30].
Exosome uptake induces upregulation of angiogenesis-
related genes and results in enhanced endothelial cell
proliferation, migration, and sprouting [31]. Exosomes
derived from hypoxic glioblastoma cells are more potent
to induce angiogenesis [32]. Exosomes from metastatic
breast cancer cells contain miR-105. Exosome-mediated
transfer of miR-105 degrades ZO-1 protein, disturbs tight
junctions, and induces vascular permeability in distant or-
gans [33]. Exosomal miR-92a from K562 leukemia cells
targets integrin α5 to enhance endothelial cell migration
and tube formation [34]. MiR-210 is significantly enriched
in exosomes from hypoxic K562 cells, which promotes the
angiogenic activity of endothelial cells [35]. Multiple mye-
loma cells grown under hypoxic condition produce more
exosomes containing miR-135b, which directly suppresses
FIH-1, an inhibitor of HIF-1, to enhance endothelial tube
formation in endothelial cells [36]. Exosomes are critically
involved in tumor angiogenesis by directly delivering
angiogenic proteins into endothelial cells or modulating
the angiogenic function of endothelial cells by exosomal
miRNAs.

Tumor metastasis
Exosomes contribute to tumor metastasis by enhancing
tumor cell migration and invasion, establishing pre-
metastatic niche, and remodeling the extracellular
matrix. EBV-positive nasopharyngeal carcinoma (NPC)
cell-derived exosomes contain HIF-1α, which increases
migration and invasiveness of EBV-negative NPC cells
[37]. Metastatic cancer cells secrete increased level of
miRNA with tumor-suppressor function, which may
suggest another mechanism for the role of exosomes in
metastasis [38]. The formation of pre-metastatic niche
is a prerequisite for tumor metastasis. Exosomes from
highly metastatic melanoma enhance the metastatic ability
of primary tumors by converting bone marrow progenitor
cells to a pro-vasculogenic and pre-metastatic phenotype
via the MET receptor [39]. Gastrointestinal stromal tumor
cells release exosomes containing protein tyrosine kinase
to convert progenitor smooth muscle cells to a pre-
metastatic phenotype [40]. Suetsugu et al. show that highly
metastatic breast cancer cells can transfer their own exo-
somes to other cancer cells and normal lung tissue cells
in vitro and in vivo by using fluorescent protein imaging
method [41], which provides direct evidence for the in-
volvement of exosomes from highly metastatic cancer cells
in educating stromal cells. Luga and colleagues have
shown that exosomes produced by stromal cells are taken
up by breast cancer cells and are then loaded with Wnt11,
which is associated with stimulation of the invasiveness
and metastasis of the breast cancer cells [42]. Exosomes
from activated CD8+ T cells promote cancer cell invasion
and lung metastasis via the Fas/FasL pathway [43],
which adds another layer of mechanism for the role of
tumor-infiltrating lymphocytes in cancer metastasis.
Exosome-mediated transfer of oncogenic microRNAs
into cancer cells is associated with enhanced metastatic
potential. IL-4-activated macrophage-derived exosomes
transfer miR-223 to co-cultivated breast cancer cells,
leading to increase of cell invasion [44]. Exosome-
mediated delivery of miR-221/222 from MSCs to
gastric cancer cells greatly enhances gastric cancer cell
migration [45]. Fabbri et al. suggest that miRNAs in
tumor-secreted exosomes can directly bind toll-like
receptor (TLR) in immune cells to promote tumor
metastasis [46]. Recently, Costa-Silva and colleagues
demonstrate that MIF-containing exosomes from pan-
creatic ductal adenocarcinoma (PDAC) cells induce
TGF-β production in liver Kupffer cells, which in turn
upregulates fibronectin (FN) expression by hepatic stel-
late cells and enhances recruitment of bone marrow-
derived cells, finally leading to the formation of liver
pre-metastatic niche [47], suggesting a complicated
network that involves cancer cells, stromal cells, and
immune cells in exosome-initiated pre-metastatic niche
formation. Intriguingly, Zomer et al. use the Cre-LoxP
system to visualize extracellular vesicle (EV) exchange
between tumor cells in living mice [48]. They show that
the less malignant tumor cells that take up EVs released
by malignant tumor cells display enhanced migratory
behavior and metastatic capacity, indicating that the meta-
static behavior can be phenocopied through extracellular
vesicle exchange. Taken together, these findings reveal that
the intercellular communication mediated by exosomes
may be an important mechanism for tumor metastasis.

Tumor drug resistance
Exosomes contribute to the development of therapy resist-
ance in tumor cells through a variety of mechanisms.
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Tumor-derived exosomes can transfer multi-drug re-
sistance (MDR)-associated proteins and miRNAs to
target cells [49, 50]. In addition, exosomes participate
in the process of tumor resistance by mediating drug
efflux. The drugs and their metabolites can be encapsu-
lated and exported by exosomes [51, 52]. Melanosomal
sequestration of cytotoxic drugs contributes to the
intractability of malignant melanomas [53]. Moreover,
exosomes may counteract the effect of antibody drugs by
modulating their binding to tumor cells. Lymphoma exo-
somes carry CD20, which bind therapeutic anti-CD20
antibodies and protect target cells from antibody
attack [54]. Exosomes from HER2-overexpressing breast
cancer cells express active HER2 and can bind to the
HER2 antibody trastuzumab to inhibit its activity
[55]. Exosomes secreted by stromal cells also contrib-
ute to tumor drug resistance. BM-MSC-derived exo-
somes induce multiple myeloma cells resistant to
bortezomib through the activation of several survival
relevant pathways [56]. Therefore, exosomes released
by cancer cells and stromal cells may have a poten-
tial to modulate sensitivity of cancer cells to distinct
therapies.

Tumor immune escape
Initially reported as tumor-associated antigens and tumor
immune response stimulators, the recent studies have
shown that tumor-derived exosomes might rather perform
immunosuppressive functions. Tumor exosomes block the
differentiation of murine myeloid precursor cells into den-
dritic cells (DC) [57]. Tumor exosome-carried TGF-β1
skews IL-2 responsiveness in favor of regulatory T cells
and away from cytotoxic cells [58]. Human nasopharyn-
geal carcinoma-derived exosomes recruit, expand, and
regulate the function of regulatory T cells through CCL20
[59]. NPC cell-derived exosomes impair T cell function,
which is associated with upregulated miRNAs in the exo-
somes [60]. Tumor cell-derived exosomes switch the
differentiation of myeloid cells to myeloid-derived sup-
pressor cells (MDSCs) and induce accelerated lung me-
tastasis in a MyD88-dependent manner [61, 62]. Hsp72
on tumor-derived exosomes promotes the immunosup-
pressive activity of MDSCs via autocrine activation of
IL-6/STAT3 pathway [63]. Breast cancer cell-derived
exosomes simulate the activation of NF-κB and en-
hance the secretion of pro-inflammatory cytokines in
macrophages [64]. Exosomes from human prostate can-
cer cells express ligands for NKG2D on their surface
and downregulate NKG2D expression on natural killer
(NK) and CD8+ T cells, leading to the impairment of
their cytotoxic function [65]. Collectively, these data sug-
gest that tumor-derived exosomes interfere on multiple
levels with the immune system to drive tumor immune
evasion.
Tumor-stroma interaction
Tumor stroma is believed to be critically involved in tumor
development and progression. Webber et al. suggest that
prostate cancer cells could trigger differentiation of fibro-
blasts into myofibroblasts through exosomal TGF-β [66].
In addition, prostate cancer exosomes triggered TGFβ1-
dependent fibroblast differentiation resemble stromal cells
isolated from cancerous prostate tissue [67], which ac-
celerates tumor growth by supporting angiogenesis.
MSCs function as precursors for tumor myofibroblast.
The research from our lab suggests that tumor cell-
derived exosomes could induce differentiation of human
MSCs to carcinoma-associated fibroblasts (CAFs) [68].
Adipose tissue-derived MSCs treated with breast cancer-
derived exosomes also display the characteristics of myofi-
broblasts [69]. Moreover, stromal communication with
cancer cells modulates therapy response. Boelens et al.
suggest that exosomes transferred from stromal cells to
breast cancer cells constitute a juxtacrine NOTCH3 path-
way to expand therapy-resistant tumor-initiating cells [70].
Luga et al. demonstrate that fibroblast-secreted exosomes
mobilize autocrine Wnt-planar cell polarity (PCP) signal-
ing to drive breast cancer cell invasion and metastasis
[42]. Therefore, exosomes may mediate a reciprocal
interplay between tumor cells and stromal cells to syner-
gistically promote tumor progression.

Tumor thrombosis
Tissue factor (TF) overexpression is closely associated
with tumor progression. TF can get incorporated into
tumor-derived exosomes. The hypercoagulable state in
cancer patients may be partially influenced by the re-
lease of TF-bearing exosomes from tumor cells. Garnier
et al. demonstrate that exosomes link the procoagulant
status with metastatic phenotype in cancer. Induction
of EMT changes in epithelial cancer cells results in the
release of exosomes containing elevated level of tissue
factor. Importantly, TF-rich exosomes can be trans-
ferred to endothelial cells and cause their exaggerated
procoagulant conversion [71], suggesting that EMT
influences tumor-vascular interaction through altered
TF-containing exosomes. However, the exact roles of
exosomes in tumor thrombosis and consequent impact
on tumor growth, progression, and metastasis remain
to be further explored.

Exosomes as cancer biomarkers and targets
The findings that exosomes play critical roles in almost
all aspects of cancer provide opportunities for the de-
velopment of exosomes as ideal diagnostic biomarkers
and therapeutic targets. Exosome-shuttled proteins and
nucleic acids have been suggested as novel diagnostic and
prognostic indicators for a variety of cancers. Moreover,
utilizing tumor-derived exosomes as vaccines and exosomes



Table 2 Exosomes from distinct biofluids of cancer patients as biomarkers

Exosomal cargos Cancer types Methods Clinical value Biofluids References

CD34 Acute myeloid
leukemia (AML)

Immunoaffinity
capture

Higher levels of CD34+ exosomes in AML patients Plasma [117]

EDIL-3/Del1 Bladder cancer Western blot Elevated expression in patients with high-grade bladder
cancer

Urine [118]

miR-101, 372, 373 Breast cancer qRT-PCR Highly expressed in breast cancer patients and elevated
miR-373 expression in receptor-negative breast cancer
patients

Serum [119]

miR-21, 146a Cervical cancer qRT-PCR Elevated expression in exosomes from cervical cancer
patients than healthy controls and HPV(+) subjects

Cervicovaginal
lavages

[120]

Let-7a, miR-1229, 1246,
150, 21, 223, 23a

Colon cancer qRT-PCR Highly expressed in exosomes from colon cancer
patients

Serum [121]

CD147, CD9 Colon cancer Exoscreen Higher levels of CD147/CD9 double-positive extracellular
vesicles in cancer patients than healthy controls

Serum [122]

miR-17-92a cluster Colon cancer qRT-PCR Elevated expression in cancer patients and higher levels
predict poorer prognoses

Serum [123]

miR-21 Esophageal
squamous cell
carcinoma (ESCC)

qRT-PCR Exosomal levels of miR-21 are significantly higher in
patients with ESCC than those with benign diseases

Serum [80]

LINC00152 Gastric cancer qRT-PCR Elevated expression levels in gastric cancer patients than
healthy controls

Plasma [83]

EGFRvIII (mRNA) Glioblastoma Nested RT-PCR Mutated EGFRvIII could be detected in exosomes from 7
of 25 glioblastoma patients but not that from 30
healthy subjects

Serum [75]

miR-718 Hepatocellular
carcinoma (HCC)

qRT-PCR Decreased expression of miR-718 in exosomes from
HCC cases with recurrence after liver transplantation
compared with those without recurrence

Serum [124]

miR-21 Hepatocellular
carcinoma (HCC)

qRT-PCR Higher exosomal levels in patients with HCC than those
with hepatitis or healthy controls

Serum [125]

miR-17-3p, 21, 106a,
146, 155, 191, 192, 203,
205, 210, 212, 214

Lung cancer miRNA array Total exosome and miRNA levels are upregulated in
lung cancer patients and these 12 miRNAs could be
detected in exosomes

Plasma [76]

LRG1 Lung cancer Western blot Patients with non-small cell lung cancer have an
increased LRG1 expression in exosomes compared to
healthy controls

Urine [126]

TYRP2, VLA-4, Hsp70,
MET

Melanoma Western blot,
multiplex
protein analysis

The levels of these 4 proteins are increased in exosomes
from stage III and IV patients compared to stage I
patients as well as healthy controls

Plasma [39]

CD63, caveolin-1 Melanoma In-house
sandwich ELISA
(Exotest)

Melanoma patients have more CD63- and caveolin-1-
positive exosomes compared to healthy controls

Plasma [127]

Galectin-9 Nasopharyngeal
carcinoma (NPC)

Western blot Exosomes from NPC patients but not that from healthy
controls contain galectin-9

Serum [128]

Claudin-4 Ovarian cancer Western blot Claudin-4 could be detected in exosomes from 32 of 63
ovarian cancer patients but only 1 of 50 healthy controls

Plasma [129]

miR-21, 141, 200a, 200b,
200c, 203, 205, 214

Ovarian cancer miRNA array The levels of these 8 miRNAs are elevated in exosomes
from ovarian cancer patients compared to healthy
controls and benign tumors

Serum [72]

miR-1246, 4644, 3976,
4306

Pancreatic cancer qRT-PCR Upregulated expression in pancreatic cancer patients
compared to healthy controls

Serum [130]

PTEN Prostate cancer Western blot PTEN is exclusively expressed in exosomes of prostate
cancer patients compared to healthy controls

Plasma [131]

Survivin Prostate cancer Western blot,
ELISA

Prostate cancer patients have more survivin-positive
exosomes compared to healthy controls as well as
patients with benign prostatic hyperplasia

Plasma [132]

PSA, PSMA Prostate cancer Western blot Detected in 20 of 24 exosomes from prostate cancer
patients but not in healthy controls

Urine [133]
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Table 2 Exosomes from distinct biofluids of cancer patients as biomarkers (Continued)

miR-1290, miR-375 Prostate cancer qRT-PCR Highly expressed in castration-resistant prostate cancer
patients and their levels are significantly associated with
poor overall survival

Plasma [134]

LncRNA-p21 Prostate cancer qRT-PCR Higher level of exosomal lncRNA-p21 in patients with
prostate cancer than those with benign hyperplasia

Plasma [135]
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from distinct sources as carriers for drugs and small mole-
cules have been proved to be effective in pre-clinical studies
and clinical trials.

Exosomes as cancer diagnostic biomarkers
Exosomes are readily accessible in nearly all body fluids
including blood, urine, saliva, and ascites. Exosomes
contain bioactive molecules that reflect the pathological
state of the originated cells, thus providing an enriched
source of biomarkers (Table 2). The level of exosomes
is elevated in the plasma of some cancer patients as
compared to healthy controls. There is a positive cor-
relation between the abundance of tumor exosomes
and tumor stage in ovarian cancer patients [72]. Tumor
is characterized by a specific miRNA profile. The ma-
jority of circulating microRNAs is concentrated in
exosomes [73]. Exosomal miRNAs have been suggested
as diagnostic and prognostic indicators for lung cancer,
esophageal squamous cell carcinoma, prostate cancer,
breast cancer, glioblastoma, ovarian cancer, and other
cancer types [74–80]. Exosomal miRNAs are positively
correlated with the stage and degree of cancer progres-
sion. In addition to miRNAs, long non-coding RNAs
(LncRNAs) are also detected in exosomes [81, 82].
LncRNA from serum of gastric cancer patients is de-
fined as a novel exosomal biomarker [83, 84].

Exosomes as cancer therapy targets
Exosome-based immunotherapy
Dendritic cell-derived exosomes (dexosomes) have been
developed as immunotherapeutic anticancer agents
[85]. Tumor peptide-pulsed DC-derived exosomes sup-
press growth of established murine tumors in a T cell-
dependent manner [86]. Exosomes secreted by living
tumor cells contain and transfer tumor antigens to den-
dritic cells and induce potent CD8+ T cell-dependent
antitumor effects on mouse tumors [87]. Dexosomes
have entered clinical trials for colorectal cancer, meta-
static melanoma, and non-small cell lung cancer and
have achieved modest therapeutic effects [88].

Exosome removal for cancer therapy
The removal of exosomes from advanced cancer patients
is a novel strategy to treat cancer [89]. Exosome depletion
by dimethyl amiloride (DMA) in mice restores the anti-
tumor efficacy of cyclophosphamide (CTX) through the
inhibition of MDSC functions. Amiloride, a drug used to
treat high blood pressure, inhibits exosome formation and
blunts MDSC suppressor functions in colorectal cancer
patients [63]. The biotechnology company Aethlon Med-
ical has developed an adjunct therapeutic method HER2o-
some, which is able to reduce tumor-secreted HER2
positive exosomes in the circulation and thus inhibit
HER2-positive breast cancer progression. However, further
work is needed to evaluate the clinical safety of such a
treatment strategy based on exosome removal.

Exosomes as anti-cancer drug delivery vehicles
The use of exosomes as nucleic acid or drug delivery
vehicles has gained considerable interest due to their
excellent biodistribution and biocompatibility [90].
Exosome-mediated delivery of therapeutic short interfer-
ing RNA (siRNA) to the target cells has been tested. The
exosome-delivered siRNA is effective at causing post-
transcriptional gene silencing and inducing cell death in
recipient cancer cells [91–93]. To improve drug delivery
efficacy to tumors, the researchers have modified exo-
somes with targeting ligands such as iRGD-Lamp2b. The
modified exosomes show highly efficient targeting to αV
integrin-positive breast cancer cells, and intravenous injec-
tion of these exosomes obviously inhibits tumor growth
[94]. In addition, exosomes have been utilized as effective
vehicle for drug delivery [95]. Exosomes from MSCs have
been tested as the vehicle to package and deliver active
drugs such as paclitaxel [96].

Conclusion
The rapid expansion of the number of published studies
on exosomes clearly shows that research on exosomes and
their functions is now a very exciting field. Exosomes are
small particles with big roles and are emerging as major
players in intercellular communication. Exosomes have
been suggested as active transporters for proteins, DNA,
mRNA, and non-coding RNAs. The roles of exosomes in
cancer have been gradually realized. Although some re-
ports have suggested anti-tumor roles of exosomes due to
their potential to elicit immune response, most of the re-
ports have revealed the various pro-tumor effects of exo-
somes, which is further supported by the observations
that the level of circulating exosomes is increased in can-
cer patients and correlated with tumor progression. In this
review, we discussed several aspects of exosome biology in
cancer. Cancer cells communicate with the surrounding
and distant cells via exosomes, which constitutes a
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bi-directional interaction network to synergistically pro-
mote cancer development, progression, metastasis, and
drug resistance. However, the exact mechanisms mediat-
ing the complex roles of exosomes in cancer have not yet
fully elucidated. Exosomes would be ideal biomarkers for
cancer diagnosis and targeted therapy because they closely
represent the state of their parental cells and are relatively
stable in the circulation and could be easily collected from
body fluids. The potential of exosomal contents for diag-
nostic and prognostic biomarkers have been investigated
in various cancers. It is required to develop faster and
more convenient methods for validating the proposed
exosomal cargos as biomarkers in specimens from human
cancer patients. The use of nanotechnology to load exo-
somes with small molecules or drugs for cancer therapy
has also been exploited. Improvements in developing new
strategies to obtain a large amount of exosomes from
appropriate donor cells, efficiently introducing the thera-
peutic agents into exosomes, and optimizing the targeted
delivery of exosomes to particular tissues will facilitate the
use of exosomes as natural carrier in clinical therapy.
Future studies of exosomes will not only shed lights on
their roles in the pathogenesis of cancer but will open
new avenues for cancer diagnosis and therapeutics.
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