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bDepartamento de Ciencias F́ısicas, Universidad Andres Bello,

República 220, Santiago, Chile
cCentro de Estudios Cient́ıficos (CECs),

Casilla 1469, Valdivia, Chile

E-mail: olivera.miskovic@ucv.cl, minasts@cecs.cl, rodrigo.olea@unab.cl

Abstract: It is shown that the renormalized action for AdS gravity in even spacetime

dimensions is equivalent “on shell” to a polynomial of the Weyl tensor, whose first non-

vanishing term is proportional to Weyl2. Remarkably enough, the coupling of this last

term coincides with the one that appears in Critical Gravity.

Keywords: AdS-CFT Correspondence, Black Holes in String Theory

ArXiv ePrint: 1404.5993

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2014)108

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81071406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:olivera.miskovic@ucv.cl
mailto:minasts@cecs.cl
mailto:rodrigo.olea@unab.cl
http://arxiv.org/abs/1404.5993
http://dx.doi.org/10.1007/JHEP08(2014)108


J
H
E
P
0
8
(
2
0
1
4
)
1
0
8

Contents

1 Introduction 1

2 Renormalized AdS action in even dimensions, Kounterterms and topo-

logical invariants 3

3 Renormalized action and Critical Gravity 7

4 Conclusions 8

1 Introduction

Despite the huge success of General Relativity, it is still an insufficient theory since it does

not incorporate quantum phenomena. The most promising candidate up to date to achieve

such a goal seems to be String Theory that predicts non-linear terms in the curvature in

the low-energy limit. In four dimensions, if one wants to modify the Einstein-Hilbert action

such that Ostrogradski ghosts are absent [1] while maintaining a massless spin 2 degree

of freedom, the only possibility is adding a cosmological constant. Including higher-order

curvature terms is another possible modification. These terms can be added to the action

in a high-energy regime, rendering the theory perturbatively renormalizable in absence of

the cosmological constant [2, 3], with the drawback of appearance of ghosts in the form of

massive spin-2 modes.

The issue of higher-order terms in the four-dimensional action has been recently re-

visited from the point of view of Critical Gravity [4], where quadratic terms in the Ricci

tensor and the Ricci scalar were considered on top of the Einstein-Hilbert action with

negative cosmological constant. In that line of reasoning, the presence of the cosmological

constant is crucial. Indeed, perturbative analysis around anti-de Sitter (AdS) vacuum leads

to constraints on the parameters of the theory when the massive spin-2 mode is rendered

massless. The coupling constants are further restricted by the cancelation of the scalar

excitation and they get tuned with the inverse of the cosmological constant. The on-shell

energy of the remaining massless spin-2 mode becomes zero and so do the mass and the

entropy of the black holes of the theory.

However, the presence of a double pole structure in the theory allows for logarithmic

modes, which ruins unitarity of the theory [5–10]. Proper boundary conditions can elimi-

nate these logarithmic modes, because their fall-off is slower than the one of modes. As a

result, obtained four-dimensional unitary gravitational action contains only one term, that

is the square of the Weyl tensor, and also the Gauss-Bonnet term which, in four dimensions,

does not contribute to the field equations [11].
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The concept of Critical Gravity with quadratic terms in the curvature was generalized

to higher dimensions. Apart from Ricci-squared and Ricci scalar-squared contributions,

the Gauss-Bonnet term becomes dynamical in the higher-dimensional setup [11, 12]. In

the case that there is a single vacuum, a suitable choice of the couplings eliminates both

the scalar mode and the mass of the massive mode. This particular point in the space of

parameters provides a reconciling picture to deal with the problem that, in general, the

mass of the spin-2 excitation and the one of the black holes have opposite signs: both have

vanishing on-shell energy in Critical Gravity. As a result, the theory can be written in

terms of the Einstein-Hilbert action and the square of the Weyl tensor [13],

ICG =
1

16πG

∫

dDx
√
−g

(

R− 2Λ− γCG WµναβWµναβ

)

, (1.1)

where the cosmological constant expressed in terms of AdS radius is Λ = −(D − 1)(D −
2)/2ℓ2. Here, the Weyl-squared term reads

WµναβWµναβ = RµναβRµναβ − 4

D − 2
RµνRµν +

2

(D − 1)(D − 2)
R2 , (1.2)

with the coupling constant for Critical Gravity given by

γCG = −(D − 1)(D − 2)

8Λ(D − 3)
. (1.3)

Note that the flat limit (Λ = 0) is not well-defined.

Other type of Critical Gravity with quadratic curvature contributions was discussed in

ref. [14], but it does not include the Riemann square term. Extensions of Critical Gravity

with cubic-curvature invariants were studied in ref. [15].

In a different line of development, it was shown that the AdS action in four dimensions

evaluated on-shell is [16, 17]

Iren =
ℓ2

64πG

∫

d4x
√
−gWµναβWµναβ , (1.4)

where Iren is the action properly renormalized by the addition of counterterms [18]. The

proof in ref. [16] makes use of the renormalizing effect of topological invariants, as the ad-

dition of Gauss-Bonnet is equivalent to Holographic Renormalization procedure in asymp-

totically AdS gravity. Then, the bulk action becomes manifestly the one of Conformal

Gravity [19–22] for Einstein spacetimes.

From a different point of view, the use of appropriate boundary conditions in the

infrared regime of the theory led to the same conclusion in ref. [17]. Curiously enough, the

relation between the cosmological constant and the coupling of Weyl square is exactly the

same one that appears in Critical Gravity, while the boundary conditions are those which

eliminate the logarithmic modes [10].

The remarkable feature of eq. (1.4) is that the coefficient of Weyl2 term is exactly the

same as the coupling γCG that appears in the Critical Gravity action (1.1).

In this paper, we extend this result to higher even dimensions along the line of the

argument presented in ref. [16]. Indeed, we show that the renormalized AdS action becomes

on-shell a polynomial of the Weyl tensor, whose first term is always γCGWeyl2.
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2 Renormalized AdS action in even dimensions, Kounterterms and topo-

logical invariants

In the context of AdS/CFT correspondence, the gravity action requires the addition of a

counterterm series L, which are surface terms constructed only with intrinsic quantities of

the boundary, in order to cancel the divergences that appear in the asymptotic region. In

doing so, the action and its variation are functionals only of a given conformal structure

at the boundary, [g(0)ij ], which is the source of the dual CFT.

Throughout the paper, we will use the radial foliation of the manifold M

ds2 = gµν dx
µdxν = N2 (ρ) dρ2 + hij(ρ, x) dx

idxj , (2.1)

where xi and hij are the coordinates and the metric at the boundary ∂M , respectively.

In the even-dimensional case, the renormalized AdS action reads [18]

Iren = IEH − 1

8πG

∫

∂M

d2n−1x
√
−hK +

1

8πG

∫

∂M

d2n−1x
√
−h

[

2n− 2

ℓ
+

+
ℓR

2(2n− 3)
+

ℓ3

2(2n− 3)2(2n− 5)

(

RijRij − (2n− 1)

4(2n− 2)
R2

)

+ · · ·
]

, (2.2)

where the second term in the first line is the Gibbons-Hawking-York (GHY) term, which

ensures a well-posed action principle for δhij = 0 as a boundary condition.

We have defined the extrinsic curvature as

Kij =
1

2N
∂ρhij , (2.3)

and Ri
jkl(h) is the intrinsic curvature.

However, in asymptotically AdS (AAdS) spacetimes, the behavior of δhij at the bound-

ary is divergent such that –strictly speaking– the counterterms are also needed for the

variational problem [23]. Variations of the extrinsic curvature are equally ill-defined at the

boundary, because the leading order in the expansion of δKij is the same as the leading

order in δhij due to the conformal structure of the boundary. This fact motivates the

inclusion of counterterms which depend on the extrinsic curvature instead of the standard

series given above.

Indeed, extrinsic counterterms for Einstein-Hilbert AdS gravity were proposed in

refs. [24] and [25].

In D = 2n dimensions, we consider the AdS action, renormalized with the addition of

this alternative counterterm series (a.k.a. Kounterterms)

Ĩren = IEH + c2n−1

∫

∂M

d2n−1xB2n−1(h,K,R) , (2.4)

where the boundary terms in the even-dimensional case are given by

B2n−1(h,K,R) = 2n
√
−h

1
∫

0

dt δ
[i1···i2n−1]
[j1···j2n−1]

Kj1
i1

(

1

2
Rj2j3

i2i3
(h)− t2Kj2

i2
Kj3

i3

)

× · · ·

· · · ×
(

1

2
Rj2n−2j2n−1

i2n−2i2n−1
(h)− t2K

j2n−2

i2n−2
K

j2n−1

i2n−1

)

, (2.5)

– 3 –
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with a coefficient given in terms of the AdS radius as

c2n−1 =
1

16πG

(−1)n ℓ2n−2

n (2n− 2)!
. (2.6)

Above, the totally antisymmetric Kronecker delta of order m is defined as the determinant

of single-index Kronecker deltas.

A relation between this extrinsic counterterm series and the standard one was sketched

in ref. [16]. Here, a comparison to standard renormalization procedure is given in more

detail.

We start by adding and subtracting the GHY term,

Ĩren = IEH − 1

8πG

∫

∂M

d2n−1x
√
−hK +

∫

∂M

d2n−1xL(h,K,R) , (2.7)

where

L(h,K,R) = c2n−1Bn−1 −GHY. (2.8)

It is easier to manipulate L(h,K,R) if we write down the last term in the above relation

as a totally antisymmetric object, that is,

L(h,K,R) =
(−1)n ℓ2n−2

√
−h

8πG(2n− 2)!
δ
[i1···i2n−1]
[j1···j2n−1]

Kj1
i1

1
∫

0

dt

[(

1

2
Rj2j3

i2i3
− t2Kj2

i2
Kj3

i3

)

× · · ·

· · · ×
(

1

2
Rj2n−2j2n−1

i2n−2i2n−1
− t2K

j2n−2

i2n−2
K

j2n−1

i2n−1

)

+
(−1)n

ℓ2n−2
δj2i2 · · · δ

j2n−1

i2n−1

]

. (2.9)

On the other hand, for any AAdS spacetime, the asymptotic expansion of the extrinsic

curvature is given by

Ki
j =

1

ℓ
δij + ℓSi

j(h) +O(R2) , (2.10)

up to second-derivative terms. Here, the quantity Si
j is the Schouten tensor of the boundary

metric, that is,

Si
j(h) =

1

2n− 3

(

Ri
j(h)−

1

4(n− 1)
δijR(h)

)

. (2.11)

This expansion implies that L(h,K,R) is expressible in terms of intrinsic quantities of

the boundary at least up to quadratic terms in the curvature. Direct substitution of

relation (2.10) in the general boundary term (2.9) produces a rather complicated expression

L(h,K,R) =
(−1)nℓ2n−2

8πG(2n− 2)!

√
−h δ

[i1···i2n−1]
[j1···j2n−1]

(

1

ℓ
δj1i1 + ℓSj1

i1
+ · · ·

)

×

×
1

∫

0

dt

[(

− t2

ℓ2
δj2i2 δ

j3
i3

+
1

2

(

Rj2j3
i2i3

− 4t2Sj2
i2
δj3i3

)

− t2ℓ2Sj2
i2
Sj3
i3

+ · · ·
)

× · · ·

×
(

− t2

ℓ2
δ
j2n−2

i2n−2
δ
j2n−1

i2n−1
+

1

2

(

Rj2n−2j2n−1

i2n−2i2n−1
− 4t2S

j2n−2

i2n−2
δ
j2n−1

i2n−1

)

− t2ℓ2S
j2n−2

i2n−2
S
j2n−1

i2n−1
+ · · ·

)

+
(−1)n

ℓ2n−2
δj1i1 · · · δj2n−1

i2n−1

]

. (2.12)
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Using the definition of the Weyl tensor of the boundary metric in terms of the Riemann

and the Schouten tensor, and the skew symmetry of its indices, whenever the boundary

Weyl tensor enters in a totally antisymmetric formula as the one above, we have that

δ
[···ipip+1··· ]

[···jpjp+1··· ]
Wjpjp+1

ipip+1
= δ

[···ipip+1··· ]

[···jpjp+1··· ]

(

Rjpjp+1

ipip+1
− 4S

jp
ip
δ
jp+1

ip+1

)

. (2.13)

We use the last relation to eliminate the dependence of the Riemann tensor in eq. (2.12),

such that it can be rewritten as

L =
(−1)

n
ℓ2n−2

8πG(2n− 2)!

√
−h δ

[i1···i2n−1]
[j1···j2n−1]

(

1

ℓ
δj1i1 + ℓSj1

i1
+ . . .

)

×

×
1

∫

0

dt

[(

− t2

ℓ2
δj2i2 δ

j3
i3

+
1

2

(

Wj2j3
i2i3

+ 4
(

1− t2
)

Sj2
i2
δj3i3

)

− t2ℓ2Sj2
i2
Sj3
i3

+ · · ·
)

× · · ·

×
(

− t2

ℓ2
δ
j2n−2

i2n−2
δ
j2n−1

i2n−1
+

1

2

(

Wj2n−2j2n−1

i2n−2i2n−1
+ 4

(

1− t2
)

S
j2n−2

i2n−2
δ
j2n−1

i2n−1

)

− t2ℓ2S
j2n−2

i2n−2
S
j2n−1

i2n−1
+ · · ·

)

+
(−1)n

ℓ2n−2
δj2i2 · · · δj2n−1

i2n−1

]

. (2.14)

Notice that the term
(

− t2

ℓ2
δδ+ 1

2

(

W+4
(

1− t2
)

Sδ
)

− t2ℓ2SS + · · ·
)

appears (n−1) times.

The key point to generate the standard counterterm series from the above formula is

to identify the contributions coming from L as an expansion in powers of the boundary

curvature. Symbolically, the lowest-order terms in the expansion of the trinomial to the

(n− 1)-th power are
(

− t2

ℓ2
δδ +

1

2

(

W + 4
(

1− t2
)

Sδ
)

− t2ℓ2SS + · · ·
)n−1

=

(

− t2

ℓ2

)n−1

(δ)2n−2 +
(n− 1)

2

(

− t2

ℓ2

)n−2

(δ)2n−4 (W + 4
(

1− t2
)

Sδ
)

+
(n− 1)(n− 2)

8

(

− t2

ℓ2

)n−3

(δ)2n−6 (W + 4
(

1− t2
)

Sδ
)2

−(n− 1)

(

− t2

ℓ2

)n−2

t2 (δ)2n−4 SS + · · · . (2.15)

The term with no curvatures comes just from the multiplication of Kronecker deltas,1

O(1) =
(−1)n

8πG(2n− 2)!

√
−h

ℓ
δ
[i1···i2n−1]
[j1···j2n−1]

δj1i1 · · · δ
j2n−1

i2n−1

1
∫

0

dt
[

(

−t2
)n−1

+ (−1)n
]

=
(2n− 1)

8πG

√
−h

ℓ

(

1− 1

2n− 1

)

=

√
−h

8πG

2n− 2

ℓ
. (2.16)

1If N is the range of indices, a contraction of k indices in the Kronecker delta of order m produces a

delta of order m− k,

δ
[i1···ik···im]

[j1···jk···jm] δ
j1
i1

· · · δ
jk
ik

=
(N −m+ k)!

(N −m)!
δ
[ik+1···im]

[jk+1···jm] , 1 ≤ k ≤ m ≤ N .

– 5 –
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The term linear in the curvature comes from linear terms in the Schouten tensor, when

the rest of the indices are saturated with Kronecker deltas,

O(R) =
(−1)n ℓ

8πG(2n− 2)!

√
−h δ

[i1···i2n−1]
[j1···j2n−1]

Sj1
i1
δj2i2 · · · δ

j2n−1

i2n−1
×

×
1

∫

0

dt
[

(−1)n
(

1− t2n−2
)

+ 2(−1)n−2(n− 1)t2n−4
(

1− t2
)]

=
ℓ

8πG

√
−hS

1
∫

0

dt
[

1− (2n− 3)t2n−2 + 2(n− 1)t2n−4
]

=
ℓ

8πG

√
−hS

2(n− 1)

2n− 3
=

√
−h

8πG

ℓR
2(2n− 3)

. (2.17)

Terms linear in the Weyl tensor vanish because they involve traces of it.

One can show that O(R2) terms in the expansion of the extrinsic curvature will not

affect quadratic-curvature terms in L(h,K,R). On the other hand, contractions of the

Weyl tensor with a single Schouten tensor will again involve traces ofW, such that products

between S and W are not present. Summing up the rest of the quadratic contributions in

R, we arrive at the expression

O(R2) =
(−1)n ℓ3

16πG(2n− 3)!

√
−h δ

[i1···i2n−1]
[j1···j2n−1]

Sj1
i1
Sj2
i2
δj3i3 · · · δ

j2n−1

i2n−1
×

×
1

∫

0

dt
(

−t2
)n−3

[

−2t2
(

1− t2
)

+ 2(n− 2)
(

1− t2
)2

+ t4
]

=
ℓ3

16πG(2n− 5)

√
−h δ

[i1i2]
[j1j2]

Sj1
i1
Sj2
i2
. (2.18)

In order to obtain the standard form of the curvature-squared counterterms, we use

the identity

δ
[i1i2]
[j1j2]

Sj1
i1
Sj2
i2

= S2 − SijSij

= − 1

(2n− 3)2

(

RijRij − (2n− 1)

4(2n− 2)
R2

)

, (2.19)

such that

O(R2) =

√
−h

8πG

ℓ3

2(2n− 3)2(2n− 5)

(

RijRij − (2n− 1)

4(2n− 2)
R2

)

. (2.20)

We also provide the expression for the Weyl-squared term, which is

O(W2) =
(−1)nℓ3

256πG(2n− 3)(2n− 5)!

√
−h δ

[i1···i2n−1]
[j1···j2n−1]

×
1

∫

0

dt
(

−t2
)n−3Wj1j2

i1i2
Wj3j4

i3i4
δi5j5 · · · δ

i2n−1

j2n−1

– 6 –
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= − ℓ3

256πG(2n− 3)(2n− 5)

√
−h δ

[i1i2i3i4]
[j1j2j3j4]

Wj1j2
i1i2

Wj3j4
i3i4

= − ℓ3

64πG(2n− 3)(2n− 5)

√
−hW ijklWijkl . (2.21)

This is just for the purpose of completing the computation, because the quadratic piece in

the boundary Weyl tensor has a faster asymptotic fall-off, such that it is not considered to

be part of the standard counterterm series.

In sum, in this section we have provided a nontrivial checking that the action defined

by the addition of Kounterterms in eq. (2.4) is equal to the renormalized AdS action,

Ĩren = Iren. (2.22)

On the other hand, the boundary term B2n−1 appears as a boundary correction to the

Euler characteristic χ (M) in the Euler theorem in 2n dimensions,
∫

M

E2n = (4π)n n!χ(M) +

∫

∂M

B2n−1(h,K,R) , (2.23)

where E2n is the Euler term in that dimension. This simply means that the GHY term

plus the standard counterterm series in Iren can be generated from the addition of a single

topological invariant in the bulk.

In the next section, we exploit this remarkable feature of Iren to work out a general

property of the on-shell value of the renormalized AdS action in even dimensions.

3 Renormalized action and Critical Gravity

Let us consider the Einstein-Hilbert action with negative cosmological constant in D = 2n

dimensions,

Iren =
1

16πG

∫

d2nx
√
−g

[

R− 2Λ + α2n δ
[ν1···ν2n]
[µ1···µ2n]

Rµ1µ2
ν1ν2

· · ·Rµ2n−1µ2n
ν2n−1ν2n

]

. (3.1)

It was shown in ref. [16] that the addition of the Euler term to the even-dimensional AdS

gravity action is equivalent to the Holographic Renormalization program if the coupling

constant is chosen as

α2n = (−1)n
ℓ2n−2

2nn(2n− 2)!
. (3.2)

That is the reason why, from now on, we will call it renormalized action. We can cast it in

the alternative form,

Iren =
1

2n+4πG(2n− 2)!

∫

d2nx
√
−g δ

[ν1···ν2n]
[µ1···µ2n]

[

Rµ1µ2
ν1ν2

δ
[µ3µ4]
[ν3ν4]

· · · δ[µ2n−1µ2n]
[ν2n−1ν2n]

+
n− 1

nℓ2
δ
[µ1µ2]
[ν1ν2]

· · · δ[µ2n−1µ2n]
[ν2n−1ν2n]

+
(−1)n

n
ℓ2n−2Rµ1µ2

ν1ν2
· · ·Rµ2n−1µ2n

ν2n−1ν2n

]

. (3.3)

Now, we use the fact that, on-shell, the Weyl tensor is

Wαβ
µν = Rαβ

µν +
1

ℓ2
δ
[αβ]
[µν] , (3.4)

– 7 –
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such that we replace this relation in Iren and we get

Iren =
1

2n+4πG(2n− 2)!

∫

d2nx
√
−g δ

[ν1···ν2n]
[µ1···µ2n]

×

×
[

Wµ1µ2
ν1ν2

δ
[µ3µ4]
[ν3ν4]

· · · δ[µ2n−1µ2n]
[ν2n−1ν2n]

− 1

nℓ2
δ
[µ1µ2]
[ν1ν2]

· · · δ[µ2n−1µ2n]
[ν2n−1ν2n]

+

+
(−1)n

n
ℓ2n−2

(

Wµ1µ2
ν1ν2

− 1

ℓ2
δ
[µ1µ2]
[ν1ν2]

)

· · ·
(

Wµ2n−1µ2n
ν2n−1ν2n

− 1

ℓ2
δ
[µ2n−1µ2n]
[ν2n−1ν2n]

)]

. (3.5)

Expanding the binomial in the last line, we obtain

(−1)n

n
ℓ2n−2 δ

[ν1···ν2n]
[µ1···µ2n]

(

Wµ1µ2
ν1ν2

− 1

ℓ2
δ
[µ1µ2]
[ν1ν2]

)

· · ·
(

Wµ2n−1µ2n
ν2n−1ν2n

− 1

ℓ2
δ
[µ2n−1µ2n]
[ν2n−1ν2n]

)

= δ
[ν1···ν2n]
[µ1···µ2n]

(

1

nℓ2
δ
[µ1µ2]
[ν1ν2]

· · · δ[µ2n−1µ2n]
[ν2n−1ν2n]

−Wµ1µ2
ν1ν2

δ
[µ3µ4]
[ν3ν4]

· · · δ[µ2n−1µ2n]
[ν2n−1ν2n]

+

+
ℓ2

2
(n− 1)Wµ1µ2

ν1ν2
Wµ3µ4

ν3ν4
· · · δ[µ2n−1µ2n]

[ν2n−1ν2n]

)

+O(W 3) . (3.6)

The first term in the above expansion cancels the second term in the first line of eq. (3.5).

All terms linear in the Weyl tensor vanish because they involve traces of it. As a conse-

quence, the first non-vanishing contribution in the renormalized action is quadratic in W ,

Iren =
ℓ2

2n+6πG(2n− 3)!

∫

d2nx
√
−g δ

[ν1···ν2n]
[µ1···µ2n]

Wµ1µ2
ν1ν2

Wµ3µ4
ν3ν4

· · · δ[µ2n−1µ2n]
[ν2n−1ν2n]

+O(W 3). (3.7)

We can also write it as

Iren =
γCG

16πG

∫

d2nx
√
−gWαβµν Wαβµν +O(W 3) , (3.8)

because the coupling,

γCG =
ℓ2

4(2n− 3)
= −(2n− 1)(2n− 2)

8Λ(2n− 3)
, (3.9)

is the same one that appears in the Critical Gravity action (1.1).

4 Conclusions

We have shown that, in even spacetime dimensions, the renormalized AdS action is on-

shell equivalent to a polynomial of the Weyl tensor, whose first nonvanishing contribution

is Weyl2. The coupling of this term is the same as the one that appears in Critical Gravity,

where Weyl2 term is added on top of the Einstein-Hilbert Lagrangian.

We stress that this equivalence is at the level of the action evaluated for Ein-

stein spacetimes and, by no means, we imply a dynamic equivalence between the corre-

sponding theories.

We also emphasize that the fact Iren =
γ
CG

16πG Weyl2+· · · is a consequence of a topological
regularization of AAdS gravity. This can only be seen once one shows that the addition of

– 8 –
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topological invariants and Holographic Renormalization program in even-dimensional AdS

gravity provide the same result.

Because of this argument, it is difficult to think of a similar result for odd-dimensio-

nal case.

We can go back to four-dimensional example worked out by Lu and Pope in ref. [4], in

order to see what the above claim implies in that case. In 4D Critical Gravity, the action

has the form

ICG =
1

16πG

∫

d4x
√
−g

[(

R+
1

α

)

+ αR2 − 3αRµνR
µν

]

. (4.1)

When the cosmological term adopts the standard value of Einstein-AdS gravity (α = ℓ2/6),

the action can be rewritten as

ICG =
1

16πG

∫

d4x
√
−g

[(

R+
6

ℓ2

)

− ℓ2

2

(

RµνR
µν − 1

3
R2

)]

. (4.2)

Quadratic terms in the curvature are given just as the difference between Weyl2 and

Gauss-Bonnet terms

ICG =
1

16πG

∫

d4x
√
−g

[(

R+
6

ℓ2

)

− ℓ2

4

(

W 2 −GB
)

]

. (4.3)

The particular coupling of Gauss-Bonnet term, as originally pointed out in ref. [16], leads

to the renormalized AdS action given by eq. (3.3), such that the total action for Critical

Gravity is

ICG = Iren −
ℓ2

64πG

∫

d4x
√
−gW 2 . (4.4)

Notice that this automatically implies that ICG = 0 for Einstein spaces, what seems

to indicate that the critical point defines a new vacuum state of the theory.

In higher even dimensions, going beyond quadratic terms in the Weyl tensor in the

expansion of the renormalized action (3.5), we get

Iren=
γCG

16πG

∫

d2nx
√
−gWαβµνWαβµν−

− ℓ4 (n−2)

2n+63πG(2n−3)!

∫

d2nx
√
−g δ

[ν1···ν2n]
[µ1···µ2n]

[

Wµ1µ2
ν1ν2

Wµ3µ4
ν3ν4

Wµ5µ6
ν5ν6

δ
[µ7µ8]
[ν7ν8]

· · · δ[µ2n−1µ2n]
[ν2n−1ν2n]

+ 6 (n−3)!
n
∑

p≥4

(−1)p+1 ℓ2p−6

p! (n−p)!
Wµ1µ2

ν1ν2
· · ·Wµ2p−1µ2p

ν2p−1ν2p δ
[µ2p+1µ2p+2]

[ν2p+1ν2p+2]
· · · δ[µ2n−1µ2n]

[ν2n−1ν2n]



. (4.5)

Note that this action is not Weyl invariant even though it is expressed on-shell in terms

of the Weyl tensor. Namely, under the Weyl transformations gµν → Ω2(x) gµν , the tensor

Wµ
ναβ is invariant, but Wµν

αβ changes as Wµν
αβ → Ω−2Wµν

αβ . Taking into consideration that

the volume element also transforms as d2nx
√−g → d2nx

√−gΩ2n, we find that the p-th

term of the polynomial in W transforms with the weight n− p,
(√

−g δ
[ν1···ν2p]

[µ1···µ2p]
Wµ1µ2

ν1ν2
· · ·Wµ2p−1µ2p

ν2p−1ν2p

)

→ Ω2n−2p
(√

−g δ
[ν1···ν2p]

[µ1···µ2p]
Wµ1µ2

ν1ν2
· · ·Wµ2p−1µ2p

ν2p−1ν2p

)

.

(4.6)

– 9 –
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In particular, in D = 4, there is only one term with n = p = 2, thus this theory is

Weyl invariant.

The expression (4.5) can be rearranged as

Iren =
γCG

16πG

∫

d2nx
√
−g

[

WαβµνWαβµν + a
(

Wµν
αβW

αβ
λρ W

λρ
µν − 4Wµν

ρβ W
αβ
νλ W λρ

µα

)

+

+
n
∑

p≥4

bp δ
[ν1···ν2p]

[µ1···µ2p]
Wµ1µ2

ν1ν2
· · ·Wµ2p−1µ2p

ν2p−1ν2p

]

, (4.7)

using the identity for the cubic term in W ,

δ
[ν1···ν6]
[µ1···µ6]

Wµ1µ2
ν1ν2

Wµ3µ4
ν3ν4

Wµ5µ6
ν5ν6

= 24
(

Wµν
αβW

αβ
λρ W

λρ
µν − 4Wµν

αλW
αβ
µρ W

λρ
νβ

)

. (4.8)

The corresponding couplings of Weyl3 and all higher-order terms are

a = 24b3 = − ℓ2

3 (2n− 5)
,

bp = (−1)p ℓ2p−4 (n− 2)! (2n− 2p)!

2p−1 (2n− 4)! p! (n− p)!
, p ≥ 3 . (4.9)

For the purpose of comparison with Critical Gravity with cubic-curvature contributions

developed in ref. [15], we use the definition of the Weyl tensor

Wµν
αβ = Rµν

αβ −
(

δµαS
ν
β − δναS

µ
β − δµβS

ν
α + δνβS

µ
α

)

, (4.10)

in terms of the spacetime Schouten tensor

Sν
µ =

1

D − 2

(

Rν
µ − 1

2 (D − 1)
δνµR

)

. (4.11)

In doing so, we obtain

1

16
δ
[ν1···ν6]
[µ1···µ6]

Wµ1µ2
ν1ν2

Wµ3µ4
ν3ν4

Wµ5µ6
ν5ν6

= Rµν
αβR

αβ
λρR

λρ
µν − 4Rµν

αβR
αλ
µρR

βρ
νλ (4.12)

− 36

D − 2
Rµν

αβR
αλ
µνR

β
λ

18

(D − 1) (D − 2)
RRµν

αβR
αβ
µν

+
12 (D + 4)

(D − 2)2
Rµν

αβR
α
µR

β
ν +

8 (7D − 8)

(D − 2)3
Rµ

νR
ν
λR

λ
µ

−
12

(

D2 + 9D − 16
)

(D − 1) (D − 2)3

(

RRµ
νR

ν
µ − 1

3 (D − 1)
R3

)

.

Found cubic gravity belongs to a class of cubic critical gravities discussed in ref. [15].

There, all gravitational theories with up to cubic curvature terms were classified based

on the requirement of unitarity around (A)dS vacuum. However, conditions of criticality

(removal of the massive spin-0 mode and also that the spin-2 mode be massless) fix only

two of eight cubic coupling constants in terms of the others.

Regarding the result given by eq. (3.8), at this moment, we cannot further understand

the implications of this remarkable feature of the renormalized AdS action.
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However, holographic renormalization method applied to the theory around the critical

point in the action of Critical Gravity may give some insight on this problem. AAdS

spaces which are solutions of the Einstein equations are described by the Fefferman-Graham

metric [26]. Higher-derivative terms in the field equations imply the existence of new

holographic sources at the boundary, which should appear at a given order in the asymptotic

expansion of the metric. Significant progress towards a holographic description of Critical

Gravity has been made in four dimensions in ref. [27], where logarithmic modes play an

important role. The main result presented here, eq. (3.8), seems to indicate the exact

cancelation of Einstein modes in the metric of a spacetime which is a solution to Critical

Gravity. Therefore, the residual dynamics should be given just in terms of the new sources

of the full theory.
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[16] O. Mǐsković and R. Olea, Topological regularization and self-duality in four-dimensional

anti-de Sitter gravity, Phys. Rev. D 79 (2009) 124020 [arXiv:0902.2082] [INSPIRE].

[17] J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].

[18] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[19] S.L. Adler, Einstein Gravity as a Symmetry Breaking Effect in Quantum Field Theory,

Rev. Mod. Phys. 54 (1982) 729 [Erratum ibid. 55 (1983) 837] [INSPIRE].

[20] P.D. Mannheim, Making the Case for Conformal Gravity, Found. Phys. 42 (2012) 388

[arXiv:1101.2186] [INSPIRE].

[21] G. ’t Hooft, A class of elementary particle models without any adjustable real parameters,

Found. Phys. 41 (2011) 1829 [arXiv:1104.4543] [INSPIRE].

[22] D.G. Boulware, G.T. Horowitz and A. Strominger, Zero Energy Theorem for Scale Invariant

Gravity, Phys. Rev. Lett. 50 (1983) 1726 [INSPIRE].

[23] I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS

spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].

[24] R. Olea, Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black

holes, JHEP 06 (2005) 023 [hep-th/0504233] [INSPIRE].

[25] R. Olea, Regularization of odd-dimensional AdS gravity: Kounterterms, JHEP 04 (2007) 073

[hep-th/0610230] [INSPIRE].

[26] C. Fefferman and R. Graham, Conformal invariants, in The mathematical heritage of Elie
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