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Abstract In this paper, we introduced the concept of (o,
f)-admissible Geraghty type contractive mappings. Suffi-
cient conditions for the existence of a fixed point for such
class of generalized nonlinear contractive mappings in
metric spaces are provided. As applications, we derive a
fixed point theorem for these contractions whenever the
space is endowed with a graph. Some interesting conse-
quences of our theorems are also obtained. The proved
results generalize and extend various well-known results in
the literature. Some examples are illustrated for the
usability of the results.
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Introduction and preliminaries

Fixed point theory has gained very large impetus due its
wide range of applications in various fields such as engi-
neering, economics, computer science, and many others. It
is well known that the contractive-type conditions are very
indispensable in the study of fixed point theory and
Banach’s fixed point theorem [1] for contraction mappings
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is one of the pivotal results in analysis. This theorem that
has been extended and generalized by various authors (see,
e.g., [2-15]) and has many applications in mathematics and
other related disciplines as well.

In an attempt to generalize the Banach contraction
principle, many researchers extended the following result
in certain directions.

Theorem 1.1 (see, [8]) Let (X, d) be a complete metric
space and T : X — X be a mapping. Assume that there
exists a function 0:[0,00) — [0,1] such that, for any
bounded sequence {t,} of positive reals, 0(t,) — 1 implies
ty, — 0 and d(Tx,Ty) <0(d(x,y))d(x,y) for all x,y € X.
Then, T has a unique fixed point.

In 2012, Samet et al. [15] introduced the concepts of o-
contractive and «-admissible mappings and established
various fixed point theorems for such class of mappings
defined on complete metric spaces. Thereafter, the exis-
tence of fixed points of w«-admissible contractive-type
mappings in complete metric spaces has been studied by
several researchers (see [2, 11, 13, 14] and references cited
therein). In this paper, we introduced the concept of («, f)-
admissible Geraghty type contractive mappings. Sufficient
conditions for the existence of a fixed point for such class
of generalized nonlinear contractive mappings in metric
spaces are provided. As applications, we derive a fixed
point theorem for these contractions whenever the space is
endowed with a graph. Several other interesting results for
cyclic mappings and ordered metric spaces are also
deduced. The proved results using the concept of («, f3)-
admissible mappings generalize and extend various well-
known results in the literature. Some examples are illus-
trated for the justification of the results.

To start with we give some notations and introduce
some definitions which will be used in the sequel.
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Definition 1.1 Let X be a non-empty set, 7' : X — X and
o, f: X x X — RT. We say that T is an (o, f8)-admissible
mapping if a(x,y)>1 and P(x,y)>1 implies
a(Tx, Ty) > 1, and B(Tx, Ty)>1, for all x,y € X.

Definition 1.2 Let X be a non-empty set, 7 : X — X and
o: X x X — R". We say that T is an «-admissible mapping
if o(x,y) > 1 and implies «(7Tx, Ty) > 1, forallx,y € X.

Definition 1.3 Let (X,d) be a metric space, and
o, f: X xX—[0,00). X is (o, f)-regular if {x,} is a
sequence in X such that x, — x € X, a(xy, x,41)> 1,
B(xn, Xny1) > 1, for all n, there exists a subsequence {x,, }
of {x,} such that ot(x,,, Xy, 1) > 1, B(xn,, X 1) > 1 for all
ke Nand a(x, Tx) > 1, f(x,Tx) > 1.

Definition 1.4 Let (X,d) be a metric space, and
o:X xX — [0,00). X is a a-regular if {x,} is a sequence
in X such that x, — x, a(x,, x,01)> 1, there exists a
subsequence {x,, } of {x,} such that a(x,,x,+1)> 1 for
all k € N and a(x, Tx) > 1.

Definition 1.5 Let (X,d, <) be an ordered metric space,
and o : X X X — [0,00). X is an ordered a-regular if {x,}
is a sequence in X such that x, — x, a(x,, x,+1)> 1, and
Xn <x,41 then there exists a subsequence {x, } of {x,}
such that o(x,,, x,,+1) > 1 and x,,, <x;,, 4+ for all k € N and
a(x, Tx) > 1.

Throughout the paper, F(T) denotes the set of fixed
points of T.

Main results

We say ® be a family of functions 0 :[0,00) — [0, 1)
such that for any bounded sequence {#,} of positive reals,
6(t,) — 1 implies #, — 0.

We say ¥ be a family of functions ¥ : [0, 00) — [0, 00)
such that ¥ is continuous, strictly increasing and /(0) = 0.

Definition 2.1 Let (X, d) be a metric space, T : X — X
and o, f: X x X — RT. A mapping T is said to be (o, ff)-
Geraghty type-I rational contractive mapping if there exists
a 0 € O, such that for all x,y € X, following condition
holds:

o(x, Tx) B(y, Ty)y (d(Tx, Ty)) < O (M (x,y)) ) (M(x,y)),

(2.1)
where M (x,y)=max{d(x,y),d(x,Tx),d(y,Ty), %7
%} and €.

Theorem 2.1 Let (X, d) be a complete metric space, T is
self-mapping, T : X — X, and o, : X x X — R™. Suppose
that the following conditions are satisfied:
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(1) T is an (o, p)-admissible mapping;
(i1))  Tis an (o, f)-Geraghty type-I rational contractive
mapping;
(iii)  there exists xo € X such that a(xo, Txo) >1 and
Blxo, Txo)>1;
@iv)  either T is continuous or X is (o, f)-regular.

Then, T has a fixed point x € X and {T"xo} converges to x.

Further, if for all x,y € F(T), with x #y such that
a(x, Tx) > 1, a(y, Ty) > 1 and B(x,Tx)>1, B(y,Ty) > 1,
then T has a unique fixed point in X.

Proof Let xp€X such that a(xg, Tx) >1 and
B(xo, Txo) > 1. Now, we can construct the sequences {x, }
in X by x, = T"xp=Tx,_, for n € N.

Moreover, we assume that if x,, = x,,+1, for some
no € N, then x,, is a fixed point of 7. Consequently, we
suppose that x,, # x,+; for all n € N.

Since T is (a, f)-admissible  mapping,
OC()C(), T)C()) = OC()C()JC]) > 1, OC(T)C(), Txl) = Ot(xl,)Q) > 1,
o(Txy, Txp) = o(x2,x3) > 1. Hence, by induction, we get
0(Xpy, Xpy1) > 1 for all n>0.

Similarly, f(x,, X,+1) > 1 for all n>0.

Consider (2.1), we have

'//(d(xnﬂ >xn+2)) = lﬁ(d(Tx,,, Txpi 1 ))
S Oc(xﬂ’ Txn)ﬁ(xn+] ) Txn+l )l//(d(Txna Txll+1 ))
< H(lp(M(xnafoI)))w(M(xmxn+l))v

where

M(xnvxn+l) = max{d(xnvx)1+l)7 d(xm TX,,), d(xn+l’ Txn+l)7

d(xm Txn)d(xn+la Txn+l) d(xna Txﬂ)d(xn+17 Txn+l)}
1 +d(xn7xn+l) 1 +d(Txn»Txn+l)

= max{d(xr17xn+l)7 d(xn7xn+l )7 d(xn+1 7xn+2)7

d(xm Xn+1 )d(xn+l ) xn+2) d(xn s Xn+1 )d(xn+l 5 xn+2)}
1 +d(xn7xn+l) 1 +d(xn+17xn+2)

=max{d (X, Xn11), d(Xns1,Xns2)}-

(2.2)

Now, if M(x,,Xn41) = d(Xn41,Xn12), then

l//(d(xn+17xn+2)) ( ( (xnaxl1+l)))lrb(M(xnaxn+1))
<O (M (xn, Xn41)) W (d (X1, Xn12))
(d(xn+1 xn+2))7

which is a contradiction, using the properties of .

Therefore, it implies that M (x,,x,1) = d (X, X4 41)
and
‘/j(d(anrlaanrZ)) S 9(¢( (xn>xn+1)))lp(M(xn>xn+l))
< O() (M (xn, Xn41)) W (d (X, Xn11))
Sw(d(xnyxnﬁ-l)) (23)
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Hence, using the properties of /, we conclude that

d(xn+laxn+2) Sd(xnaxn+l)7 (24)

for every n € N. Therefore, sequence {d(x,,x,+1)} is
decreasing and for the non-negative decreasing sequence
{d(xn,xn11)}, there exists some r >0, such that

nlLHSC (xmxn-&-l) =r. (25)

Further from (2.3), it implies that

Y (d(Xni1,%012))

—— = <Oy (M(xy, x041))) <1. 2.6
(M (%, Xn41)) WG %)) 20

On letting n — oo in above inequality, we have

limy, oo O(WW (M (x, x011))) =1, and 0e0,

lim,,— oo Y(M(xy,, Xp11)) = 0, which yields that

r= lim (Xn, Xpy1) = 0. (2.7)

Now, we will show that {x,} is a Cauchy sequence. Sup-
pose, to the contrary, that {x,} is not a Cauchy sequence.
Then, there exists > 0 for which we can find subsequences

{xn, } and {x,, } of {x,,} withmy > my > k such that
d(Xn, Xm) = 0 (2.8)

Further, corresponding to my, we can choose n; in such a
way that it is the smallest integer with n; > my and sat-
isfying (2.8), we have
d(Xny—1,%m,) < 0. (2.9)
Using triangle inequality, we have

0 < 0=d(xp,Xm) <dXu,Xn—1)+dXn—1,%m,) <0
+d(x”k7‘xnk_l) (210)

Letting k — oo and using (2.7) and (2.8), we obtain

Jim d(x,, Xm,) =0 (2.11)

Again, using triangle inequality, we have

d<xnk7xmk) S d(-xnkwxnkfl) + d(-xnkfly-xmkfl) + d(xmkflyxmk)a

and

d(.xnk717xmk71) S d(-xnwxnkfl) + d(-xnk7xmk) + d(xmkfly-xmk)

Therefore,

d(xnkvxmk) S d(xnkaxnk—l) + d(xnkfl»xmk—l) + d(xmk—lyxmk)
S 2d(xnk»xnk71) + d(‘x"lkPXMk) + 2d(xmk—l axmk)
(2.12)

Letting k — oo in (2.12) and using (2.7), (2.11), we get

Jim (-1, -1) =9 (2.13)

Put x = x,,, and y = x,, in (2.1), we obtain

x//(d(Txm“ Txnk )) S oc(xmk, Txmk)ﬁ(xnm Txﬂk)lp<d(Txmk7 Tx”lk))
SO0 (M (X , X)) )Y (M (X, X))
(2.14)

where

M (X, X)) = max{d(xmk X )y d (X s Ty ) d (X s T, ),

d Xy s T )d (X s T ) d (X s Tt ) (X Txnk)}
1 + d(xnu ) xn;() ’ 1 + d(Txmk, Tx,u,)

= max{d(xmk s Xy )v d(‘xmk s Xmy+-1 )v d('xnk y Xn+1 )7

d(xmk s Xmy+-1 )d(xnk y Xy +1 ) d(xmk y Xy +1 )d(xnk s Xy +1 )}
1 + d(‘xmk’xnk) ' 1 + d(xmk+l7xnk+l)

(2.15)
Therefore,
l// (d(x’7lk+1 ) xﬂk-l )) S Q(IP(M(X,,U{ ’ 'xnk )))lﬁ (M('xmk ’ 'xnk )) . On
taking limit k — oo, we have
Y(0) < limygoo O(W (M (X, X)) )Y (9), that is

1 < limg oo O (M (X, X, ))),  which  implies  that
limy_ oo O(W (M (X, %, ))) = 1. Consequently, we obtain
limy o0 M (X X, ) = 0 and hence
limg 00 d (X 11, %, +1) = O which is a contradiction.

This shows that {x,} is a Cauchy sequence. Since X is
complete, there exists x* € X such that x, — x*.

First, we suppose that T is continuous. Therefore, we
have
x* =1lim x,,1 =lim Tx, =Tlim x, =T x*.

n—oo n—oo n—oo
Now, we suppose that X is (o, ff)-regular.

Therefore, there exists a subsequence {x,, } of {x,} such
that a(x,,—1, %, ) > 1 and f(xy,—1,%,) > 1 for all k € N and
a(x*, Tx*) >1 and B(x*,Tx*)>1. Now, from inequality
(2.1) with x = x,,, and y = x*, we obtain

W(d X1, Tx")) = Y (d(Txp, , Tx*))
< at( Xy, Txn, ) (X", T™ )W (d(Txy, , TXY)))
S OO (M (6 X)) )Wy (M (2, X7)),
(2.16)

where

M(37) = max{ da, 5). o T (5 70,

d (X, Ty )d(x*, Tx*) d (%, , Tn, )d (x*, Tx*)
L4+d(xy,x*) 7 1+d(Tx,, Tx*)
= max {d(xnk,x*),d(x,,k,xnkﬂ),d(x*,Tx*),.

d('xnk ) Xy +1 )d(x*v TX*) d(xnk »Xn+1 )d(x*’ TX*) }
1+ d(xp,x*) T 1 4d(xpe1, Tx) ’
(2.17)

ﬁ @ Springer
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Therefore,
(g1, T5)) < 00U (M (1, 6°)) (M (3, ). O tak-
ing limit k& — oo, we have Y(d(x*,Tx*)) < limy_
O (M (xn,, x*)) W (d(x*, Tx")), that is 1 < limg_, O(Y(M
(Xn,,x%))), which implies that limg_ O(Y(M(x,,,x")))
= 1. Consequently, we obtain limy_..o M(x,,,x*) = 0 and
hence d(x*, Tx*) = 0, that is, x* = Tx".

Further, suppose that x* and y* are two fixed points of
T such that x* # y* and o(x*, Tx*) > 1, a(y*, Ty*) > 1 and
Bx*, Tx*) > 1, B(y*, Ty*) > 1. Now applying (2.1), we have

Y(dx*,y")) = Y (d(Tx", Ty"))
Salx®, T ) BOS, Ty )Y (d(Tx", Ty"))
SO MG,y (M (x",y"))

where
M(x",y") —maX{d(X*,y*),d(x*’ Tx"),d(y", Ty"),

d(x*, Tx")d(y", Ty*) d(x*, Tx*)d(y*, Ty")
L+d(e,y) 7 1+d(Te,Ty") |

Hence,

WA, y7)) < O M (), y7)) < B, y7)),
which is a contradiction unless d(x*,y*) =0, that is,
x* = y*. Hence, T has a unique fixed point. O

Example 2.1 Let X = [0,00) be endowed with the usual
metric d(x,y) = |x—y| forall x,y € X and T : X — X be
defined by
1 —x?
Tx = 8 ’
9%, x€(1,00)

x€0,1] (2.18)

Define also o, f : X x X — R, 0:[0,00) — [0,1) and V :
[0,00) — [0, 00) as

(1,7) L, (xy) €10,1]
a(x,y) = .
Y 0, otherwise

L, (x,y)€[0,1]

Blx,y) = {

0(r) =1 and y(1r) = 1.

Now, we prove that Theorem 2.1 can be applied to
T (here, a fixed point is u = V17 -4 ), but Theorem 1.1
cannot be applied to 7.

Clearly, (X, d) is a complete metric space. We show that
T is an (o, f5)-admissible mapping. Let x,y € X, if
o(x,y) >1 and S(x,y) > 1, then x,y € [0, 1]. On the other
hand, for all x € [0,1], we have Tx<1. It follows that
o(Tx,Ty) > 1 and f(Tx, Ty) > 1. Thus, the assertion holds.
In reason of the above arguments, o(0,70)>1 and
p(0,70)> 1.

0, otherwise

Y4
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Now, if {x,} is a sequence in X such that
(X, Xna1) > 1, B(xn, x401)> 1 and x, — x € X, for all
n € NU{0}, then x, C [0,1] and hence x € [0, 1]. This
implies that a(x, Tx) > 1, and p(x, Tx) > 1.

Let x,y € [0, 1]. We get

o, Ty, YW (A(T, T5) = [T~ Ty| = v =]

X x+yl < %|X—J’|
=0(y(d(x,y))¥(d(x,y)).

Hence, the given inequality is satisfied.
Otherwise, if o(x,Tx)p(y,Ty) =0. Then, o(x,Tx)
By, Ty)y(d(Tx, Ty)) = 0 < O( (M (x, y)) ) (M (x, y)).

Therefore, all the conditions of Theorem 2.1 are satisfied
and T has a fixed point.
Now, let x =3, y = 4. We get

A(T3,T4) =9 > % . % 13— 4] = 0(d(3,4))d(3,4).

Therefore, Theorem 1.1 does not hold for this example.

Definition 2.2 Let (X, d) be ametric space, T : X — X and
o, B : X x X — R*. A mapping T'is said to be o, -Geraghty
type-1I rational contractive mapping if there exists a 0 € ©,
such that for all x, y € X, following condition holds:
WA(d(Te, Ty)) + PSP < 0() (M (x, )W (M (x,) + 1,
(2.19)

M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty), d(x,Tx)

d(y,Ty)1 +d(x,y),%;i%’;y)}, Yy eWandl>1.

where

Theorem 2.2 Let (X, d) be a complete metric space, T is
self-mapping, T : X — X, and o, : X x X — R. Suppose
that the following conditions are satisfied:

(i) Tis an (o, p)-admissible mapping;
(ii) T is an (o, P)-Geraghty type-1I rational contrac-
tive mapping;
(iii)  there exists xo € X such that a(xo, Txo) > 1 and
B(x0, Txo) > 1;
(iv)  either T is continuous or X is (o, f)-regular.

Then, T has a fixed point x* € X and {T"xy} converges to x*.

Further, if for all x,y € F(T), with x #y such that
a(x, Tx) > 1, a(y, Ty)>1 and f(x,Tx)>1, By, Ty) >1,
then T has a unique fixed point in X.

Proof Let xp€X such that oa(xg, Txo) >1 and
f(x0, Txo) > 1. Now, we can construct the sequences {x,}
in X by x, = T"xo=Tx,_,, for n € N.

Moreover, we assume that if x,, = x,4+1, for some
ny € N, then x,, is a fixed point of 7. Consequently, we
suppose that x,, # x, for all n € N,



Math Sci (2015) 9:127-135

131

Since T is (o, f)-admissible mapping, o(xp,Txp) =
O((XO,)Cl)Zl, O((TXO,T)C]) :OC(X],)Q)ZL oc(Txl,sz)
a(xz,x3) > 1. Hence, by induction, we get o(x,, X,+1) >
for all n>0.

Similarly, f(x,,X,+1) > 1 for all n > 0.

Consider (2.19), we have

Y (d(Xns1, Xn12)) + 1 =Y (d(Txn, Txni1)) +1
< [l//(d(Txn, Txn+1)) + l]x(xm Tx) B(n41,TXn 1)
SO0 (M (xn, X41)) W (M (X, X41)) + 1,

1

where

M(x0,3001) :max{d<xn,xn+l),d(xn, T5,), d(xos 1, T,

d(xm Txn)d(er»h Txn+1) d(xrh Txn)d(er»h Txn+1)
1 4 d (%, Xnt1) 1+ d(Txn, Txns1)

:max{d(xmxwrl)v d(xn7xn+1)7 d(xn+lvxn+2)7
d( X, X 11)d Xy 1, Xn12) d(X, Xpi1)d (i1 7xn+2)}
1+ d(xp, Xu11) ! + d (X1 1, Xn42)

= max{d(x,,, Xn+1 )7 d(er»l ) xn+2)}-

(2.20)

Now, if M(x,,xp+1) =
l//(d(xrt+17xrz+2)) < G(lﬁ( (xn7xn+1
< O (M (i, X+

1
<Y(d(Xnt1,%012)

(xn+1 ’ xn+2)7 then

))lp(M(xmanrl))
))W(d(xnﬂ ) xn+2))

)
)
)

which is a contradiction, using the properties of .
Therefore, it implies that M(x,,x,:1) = d (X, Xu41)
and

lp(d(xn+1 ) xn+2)) H(W( (xmanrl)))lp(M(xmxn+1))
Q(W( (-xn7xn+1>))lp(d(xna xn+1))

lp(d(xn;anrl))

VANVANNVAN

(2.21)
Hence, using the properties of ¥/, we conclude that

d(-anrl ) xn+2) S d(-xna xn+1)» (222)

for every n € N. Therefore, sequence {d(x,,X,+1)} is
decreasing. On the similar lines as in Theorem 2.1, we can
prove that

r = lim d(x,,x,11) = 0.
n—oo

(2.23)

Now, we will show that {x,} is a Cauchy sequence. Sup-
pose, to the contrary, that {x,} is not a Cauchy sequence.

Then, there exists 6 >0 for which we can find
subsequences {x, } and {x,,} of {x,} with ny>m >k
such that

d (X, Xm,) > 0. (2.24)

Further, corresponding to my, we can choose n; in such a
way that it is the smallest integer with n; > my; and satis-
fying (2.24), we have

d(Xny—1,Xm, ) <O. (2.25)
Using triangle inequality, we have
0<0 = d(xn, X ) < d Xy, Xny—1) + d (X1, X, ) <O

+ d (X, X —1) (2.26)

Letting k — oo and using (2.23) and (2.24), we obtain

Jim d(x %, ) =0. (2.27)

Again, using triangle inequality, we have

d(x”k7'x"nk) < d(‘x”k7x"k*1) + d(xnk*hxmk*l) + d(xmlrlv-xmk)v

and

d(xn;\.flaxmkfl) S d(xnkvxnkfl) + d(xnkaxmk) + d(xmkflaxmk)'

Therefore,

d(xnkaxmk) S d(xnkaxnkfl) + d(xnkflaxmkfl) + d(xmkflaxmk)

<2d (X Xm—1) + d (X s X ) + 2d (=1, X, ) (2.28)
Letting k — oo in (2.28) and using (2.23), (2.27), we get

kli_)l& d(Xp—1, Xm—1) =0. (2.29)

Put x = x,,, and y = x,, in (2.19), we obtain

W(d( T T, )) + 1< W(d( T, Ty, )) A+ 170 P ) o)
< OO (M (o X )WY (M (S 2)) +
(2.30)

where

M (X, Xny) = max{d(xm 3 X ) d (X, T ) d (X, Ty ),

d (X T )d (X, T, ) d (X s T ) (X s T )
1+ d(Xm,, Xn,) T 1+ d(Tx, Txy,)

= max{d(xmk 5 xnk)7 d(xmk s X +1 )7 d(xnk s Xng+1 )7

d(xm“xkar])d(xmaxn;{+]) d(xm“xmk+])d(xrrkzxnk+1)}
1+ d(xmmxn/() ’ I+ d(xm;(+17xn/(+l)

(2.31)

Therefore, lp (d(erk+1 7xl’lk+l )) S G(W(M(xmk ’ xnk)))lﬁ
(M (X, Xy, )). On taking limit k — oo, we have
W (0) < limy— oo O(Y (M (X, , X, )) )W (), that is 1 < limy_,o
O (M(xp,,Xn,))), which implies that limy_.., 0
(Y(M(xp,,xn,))) = 1. Consequently, we obtain limg_,
M (X, %p, ) =0 and hence limy_, oo d(Xpyi1,%n+1) =0
which is a contradiction.

@ Springer
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This shows that {x,} is a Cauchy sequence. Since X is
complete, there exists x* € X such that x, — x*.

First, we suppose that 7T is continuous. Therefore, we
have

x* =1lim x,,y =lim Tx, =Tlim x, =T x".
n—oo

n—oo n—o0

Now, we suppose that X is o, f-regular.

Therefore, there exists a subsequence {x,, } of {x,} such
that ot(x,,—1, %, ) > 1 and f(xy,_1,%,,) > 1 for all k € N and
a(x*,Tx*) >1 and f(x*,Tx*) >1. Now, from inequality
(2.19) with x = x,, and y = x* , we obtain

W(dXp 11, TXY)) + 1 = (d(Tx,,, Tx")) + 1
< [lp(d(Tng Tx*))) + l]“(x”k’Tx"k )BT

< O (M (o, X7)) )Y (M (X, x7)) + L,
(2.32)

where

M(x,,,x") :max{d()cm,x*),d(x,,k,Txnk),d(x*7 Tx"),

d (X, T, )d(x*, Tx*) d (X, Ty, )d(x*, Tx*)
1+d(xy,x)  1+4d(Tx,, Tx)

:max{d(xnk,x*),d(xnk,xnkﬂ), d(x*, Tx"),

d (X, Xp1)d(x*, Tx*) d(x,,k,xnkﬂ)d(x*,Tx*)}

1+ d(x,,, x*) T+ d (g, TxY)
(2.33)
Therefore,
‘/j(d(xnk+17 Tx*)) S Q(W(M(xnk7X*)))W(M(xnk?X*))' On tak-
ing limit k — o0, we have

WA, Tx')) < Timyog 000 (M (%o, 2) (A (', T)),
that is 1< limg_, O((M(x,,,x*))), which implies that
limy_ oo O(Y (M (x,,,x*))) = 1. Consequently, we obtain
limy oo M (X, x*) =0 and hence d(x*,Tx*) =0, that is,
Xt =Tx".

Further, suppose that x* and y* are two fixed points of
T such that x* # y* and o(x*, Tx*) > 1, a(y*, Ty*) > 1 and
p(x*, Tx*) > 1, B(y*, Ty*) > 1. Hence from (2.19), we have

P, y)) + 1= YT, Ty")) + 1
< W Ty")) PR
<O MGy )M y)) +1

where

M(x",y") =max{d(x*,y*)7d(x*, Ix'),d(y", Ty"),

d(x*, Tx")d(y*, Ty*) d(x*,Tx*)d(y*, Ty")
1+d(x*,y) 7 1 4d(Te, Ty*)

Y4
ﬁ @ Springer

Hence, W(d(x',y")) < 0(b(M(x",y" ) (d(x",y")), which
implies that O(y(M(x*,y*))) = 1. Therefore, d(x*,y*) = 0,
that is, x* = y*. Hence, T has a unique fixed point. O

Example 2.2 Let X = [0,00) be endowed with the usual
metric d(x,y) = |x—y| forall x,y e X and T : X — X be
defined by

X
x+1’
3x,

x€0,1]

Tx = (2.34)

x € (1,00)

Define also o, : X x X = R, 0:[0,00) — [0,1) and ¢ :
[0,00) — [0,00) as

2(n.y) = { I, (x,y)€]0,1]

0, otherwise

1, (x,y)€]l0,1]

0, otherwise

ﬁmw:{

0(r) = 1 and Y(1) = 1.

Now, we prove that Theorem 2.2 can be applied to
T (here, a fixed point is u = 0), but Theorem 1.1 cannot be
applied to T.

Clearly, (X, d) is a complete metric space. On the same
lines of Example 2.1, we can show that T is an (a, f3)-
admissible mapping.

Let x,y € [0, 1]. We get

[ (d(Tx, Ty)) + 7" POD) = y(d(Tx, Ty)) +1

y

=|Tx—Ty| +1= -2

LR e |
y—x

=+

‘(1+x)(1+)’)‘

S‘ AL

1+y—x

= 0(p(d(x,y))p(d(x,y)) + L.

Hence, the given inequality is satisfied.

Otherwise, o(x,Tx)f(y,Ty) =0 and [y(d(Tx,Ty)) +
[T = 1 <O (M(x,y))Y(M(x,y) + 1. There-
fore, all the conditions of Theorem 2.2 are satisfied and
T has a fixed point.

Now, let x =3, y = 4. We get

1 1
d(T3,T4)=3 > -

2:TIE?5B74ZBMGA»ﬂ1®'

Therefore, Theorem 1.1 does not hold for this example.
Consequences of the main results
In this section, we discuss some consequences of our main

results. First, we prove some fixed point theorems for
cyclic mappings in metric and ordered metric spaces. Also,
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we obtain some other related interesting results in the next
section. In the last section, we obtain a fixed point theorem
whenever the space is endowed with a graph.

Fixed point results for cyclic mappings in metric
and ordered metric spaces

Theorem 3.1 Let (X, d) be a complete metric space, A
and B be two nonempty closed subsets of X . Suppose that
a:XxX —[0,00),and T : AUB — A U B be a mapping
with TACB and TB C A, such that o(Ty,Tx)>1 if
a(x,y) > 1, where x € A and y € B. Further assume that T
satisfies any one of the following contractive condition for
alxeAandy€eB

o(x, Y)Y (d(Tx, Ty)) < 0(p(M

or

[W(d(Tx, Ty)) + 07 <0 (M(x, )b (M(x,y)) +1,
M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty), 2=
d(y, Ty)1 +d(x, y),(lﬂginy@n} v eWandl>1.

If there exists xog € A such that o(xy, Txo) > 1, and either

T is continuous or X is a-regular, then T has a fixed point in
ANB.

(0, Y)Y (M (x,y));

where

Proof LetY=AUBand f:Y x Y — [0,00) defined as
1, if xcaA,
g ={

0, otherwise

Yy €B,

Then, (Y, d) is complete metric space. Now, if xo € A is
such that a(xo, Txo) > 1, then also ff(xg, Txp) > 1 and hence
all the hypotheses of above Theorems 2.1-2.2 hold with
X =Y. Consequently, T has a fixed point in A U B, say
z. Since z €A implies z=7z€ B and z € B implies
z=Tz€ A, thenz€ ANB.

Now, assume that {x,} be a sequence in Y such that
o(X2n, Xont1) > 1 and f(xpn,x2,41) > 1 for all n € NU {0}
and x, — x as n — oo, then x,, € A and x;,,1 € B. Since
B is closed, then x € B and hence w(x;,,x)>1 and
B(x2,,x) > 1. We deduce that all the hypotheses of above
Theorems 2.1-2.2 are satisfied with X = Y and hence T has
a fixed point. O

Theorem 3.2 Let (X,d, <) be an ordered complete
metric space, A and B be two nonempty closed subsets of X.
Suppose that o: X x X — [0,00), and T:AUB — AUB
be a mapping with TA CB and TB C A, such that
a(Ty, Tx) > 1 ifo(x,y) > 1, where x € A and y € B. Further
assume that T satisfies any one of the following contractive
condition for all x € A and y € B with x <y

o(x, Y)Y (d(Tx, Ty)) <O (M (x, ) )Y (M(x,y));

or

W (d(Tx, Ty)) + 07 <O (M (x, y)W(M(x,y)) + 1,
where M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty),M
x,Tx)d(y,Ty)
1+d(x y),TTX’T)y} l// E‘Pandl>1
If there exists xo € A such that o(xy,Txp)>1 and
xo0 < Txg, and either T is continuous and decreasing or X
is an ordered o-regular, then T has a fixed point in A U B.

Proof Consider the complete metric space (Y, d), where
Y =AUB and define f: Y X ¥ — [0, 00) defined as

1, if x€A,
Bx.y) { 0, otherwise

yeB, with x<y

Let f(x,y)>1 for x,y € X, then x € A and y € B with
x <y. It follows that Tx € B and Ty € A with Ty < Tx, since
T is decreasing. Therefore, (Ty, Tx) > 1, that is, T is an (a,
f)-admissible mapping. Now, let a(xp, Txo) > 1 with xy €
A and xy <Txy. From xy € A we have Txy € B with
xo < Txo, that is, f(xo, Txo) > 1. Hence, all the hypotheses
of above Theorems 2.1-2.2 hold with X =Y. Conse-
quently, T has a fixed point in AU B, say z. Since z € A
implies z=7z € B and z € B implies z =Tz € A, then
z€ANB.

Now assume that {x,} be a sequence in Y such that
ot(Xon, X2n11) > 1 and f(xzn, x2041) > 1 for all n € NU {0}
andx, — xasn — oo, thenx,, € Aandx,,, € B.Since Bis
closed, and X is an ordered o-regular, we have x € B and
X2n < x, hence a(xp,,x) > 1 and fi(x2,, x) > 1. We deduce that
all the hypotheses of above Theorems 2.1-2.2 are satisfied
with X = Y and hence T has a fixed point. O

Related results

Theorem 3.3 Let (X, d) be a complete metric space, T is
self-mapping, T:X — X, and o:X x X — R. Suppose
that the following conditions are satisfied:
(1) T is an (a)-admissible mapping;
(i) T satisfies any one of following rational contrac-
tive mapping;
W(d(Tx, Ty)) + (7100
<O (M(x, )W (M(x,y)) + I;

or

o(x, Tx)o(y, Ty)y (d(Tx, Ty))
<O (M(x, )Y (M(x,y)),

where M(x,y) =
max{d(x,),d(x, Tx),d(y, Ty), =2

Ay, Ty)1 +d(x, ), LUy e W and 1> 1.

(iii)  there exists xo € X such that a(xo, Txo) >1 and
ﬁ(xov TXO) >1;
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@iv) either T is continuous or X is o-regular. Then, T
has a fixed point x* € X and {T"xo} converges to
x*. Further, if For all x,y € F(T), with x # y such
that o(x,Tx) > 1, and a(y,Ty) > 1, then T has a
unique fixed point in X.

Corollary 3.1 [11] Let (X, d) be a complete metric space
and T : X — X be an a-admissible mapping. Assume that
there exists a function 0 € ©, such that

(d(Tx, Ty)+1)* ™0 < 0(d(x, y))d(x,y) + 1
forall x, y € X, 1> 1. Suppose that either

(a) T is continuous or

(b) if {x.} is a sequence in X such that x, — x,
o(xy, Xpr1) > 1 for all n, then a(x, Tx) > 1.

If there exists xo € X such that o(xo, Txo) >1, then T has

a fixed point.

Corollary 3.2 [11] Let (X, d) be a complete metric space
and T : X — X be an a-admissible mapping. Assume that
there exists a function 0 € ©, such that

o(x, Tx)o(y, Ty)d(Tx, Ty) < 0(d(x, y))d(x, y)
for all x, y € X. Suppose that either

(a) T is continuous or

(b) if {x.} is a sequence in X such that x, — x,
o(xp, Xnt1) > 1 for all n, then a(x, Tx) > 1.

If there exists xo € X such that o(xy, Txg) > 1, then T has

a fixed point.

Theorem 3.4 Let (X, d) be a complete metric space, T is
self-mapping, T : X — X, and o : X x X — R*. Suppose
that the following conditions are satisfied:

(i) T is an a-admissible mapping;
(i) T satisfies the following contractive condition

oz(x,y)lp(d(Tx, Ty)) < Q(W(M(XJ)))‘P(M(XJ));

or

W (d(Tx, Ty)) + 17 <00 (M(x, ) (M(x,y)) + 1,

where  M(x,y) = max{d(x,),d(x, Tx),d(y, Ty),

d(x,Tx)d(y,Ty) d(x,Tx)d(y,Ty)
1+d(va) =, 1+d(Tx.);"y)\ hyeVYandl>1.

(iii)  there exists xo € X such that a(xo, Txo) >1;
@{iv) either T is continuous or X is o-regular.

Then, T has a fixed point x € X and {T"xy} converges to x.

Further, if for all x,y € F(T), with x #y such that
a(x, Tx) > 1, oy, Ty) > 1, then T has a unique fixed point in
X.

Proof Define mapping ff: X X X — [0,00) defined as

’r @ Springer

1, if xyeX,
Blx,y) = :
0, otherwise.
Now using the above Theorems 2.1-2.2, we get the

result. 0
Fixed point results for graphic contractions

Consistent with Jachymski [12], let (X, d) be a metric
space and A denotes the diagonal of the Cartesian product
X x X. Consider a directed graph G such that the set
V(G) of its vertices coincides with X, and the set E(G) of its
edges contains all loops, i.e., E(G) 2 A. We assume G has
no parallel edges, so we can identify G with the pair
(V(G), E(G)). Moreover, we may treat G as a weighted
graph (see [12]) by assigning to each edge the distance
between its vertices. If x and y are vertices in a graph G,
then a path in G from x to y of length m (m € N) is a
sequence {x;};-, of m + 1 vertices such that xo = x, x,, = y
and (x;,_1,x;) € E(G) for i=1,...,m. A graph G is con-
nected if there is a path between any two vertices. G is
weakly connected if G is connected (see for details [3, 12]).
Recently, some results have appeared providing sufficient
conditions for a mapping to be a Picard operator if (X, d) is
endowed with a graph. The first result in this direction was
given by Jachymski [12].

Definition 3.1 [12] Let (X, d) be a metric space endowed
with a graph G. We say that a self-mapping 7 : X — X isa
Banach G-contraction or simply a G-contraction if T pre-
serves the edges of G, that is, (x,y) € E(G) = (Tx, Ty) €
E(G) for all x,y € X and T decreases the weights of the
edges of G in the following way:

Jo € (0, 1) such that for all x,y € X, (x,y) € E(G) =
d(Tx, Ty) < od(x,y).

Theorem 3.5 Let (X, d) be a complete metric space
endowed with a graph G, T is a self-mapping, T : X — X,
satisfying

Y(d(Tx, Ty)) < 00y (M(x, y)) )Y (M (x,y));

or

Y(d(Tx, Ty)) + 1< O (M (x, )Y (M(x,y)) + 1,

where M(x,y) = max{d(x,y),d(x, Tx), d(y, Ty), "
d(y,Ty)1 +d(x,y),%}, YyeWandl>1.
Suppose that the following assertions hold:
1 for all x,yeX, (x,y)€E(G), implies

(Tx,Ty) € E(G);

(i) {x.} is a sequence in X such that x,, — x as n —
oo and (x,, Tx,) € E(G), then (x,Tx) € E(G);

(iii)  there exists xo € X such that (xo, Txo) € E(G).
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Then, T has a fixed point x € X.

Proof Define mapping o : X x X — [0, 00) defined as

(x,y) 1, if (x,y) €G,
X, = .
Y 0, otherwise.

Now, we show that T is an o-admissible mapping. Suppose
that o(x,y) > 1. Therefore, we have (x,y) € E(G). From
(i), we get (Tx, Ty) € E(G). So, a(Tx, Ty) > 1 and T'is an a-
admissible mapping. Hence, from the definition of o and
inequality, we have

(X, Y)Y (d(Tx, Ty)) <O (M (x, ) )Y (M(x,y));

or

[Y(d(Tx, Ty)) + 070 < O0p (M (x, )W (M(x,y)) + 1,

where M(x,y) = max{d(x,y),d(x,Tx),d(y, Ty),

d(xT)d(yTy) d(xTx)d(y.Ty)
ey 0 i) b ¥ € Wand 1> 1.

From  (iii) there exists xp€ X such that
(x0, Txo) € E(G), a(xo, Txo)>1. Let {x,} is a sequence
in X such that x, — x as n — oo and (x,, Tx,) € E(G) for
all n €N, then a(x,,Tx,) > 1. Thus, from (ii)) we get,
(x,Tx) € E(G). That is, a(x, Tx) > 1. Therefore, all condi-
tions of Theorem 3.4 hold true and 7 has a fixed point. [J

Remark 3.1 Using the technique of Samet et al. [15], we
can obtain corresponding coupled fixed point results from
our Theorems 2.1, 2.2.
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