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Abstract In this paper, we introduced the concept of (a,
b)-admissible Geraghty type contractive mappings. Suffi-

cient conditions for the existence of a fixed point for such

class of generalized nonlinear contractive mappings in

metric spaces are provided. As applications, we derive a

fixed point theorem for these contractions whenever the

space is endowed with a graph. Some interesting conse-

quences of our theorems are also obtained. The proved

results generalize and extend various well-known results in

the literature. Some examples are illustrated for the

usability of the results.
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Introduction and preliminaries

Fixed point theory has gained very large impetus due its

wide range of applications in various fields such as engi-

neering, economics, computer science, and many others. It

is well known that the contractive-type conditions are very

indispensable in the study of fixed point theory and

Banach’s fixed point theorem [1] for contraction mappings

is one of the pivotal results in analysis. This theorem that

has been extended and generalized by various authors (see,

e.g., [2–15]) and has many applications in mathematics and

other related disciplines as well.

In an attempt to generalize the Banach contraction

principle, many researchers extended the following result

in certain directions.

Theorem 1.1 (see, [8]) Let (X, d) be a complete metric

space and T : X ! X be a mapping. Assume that there

exists a function h : ½0;1Þ ! ½0; 1� such that, for any

bounded sequence ftng of positive reals, hðtnÞ ! 1 implies

tn ! 0 and dðTx; TyÞ� hðdðx; yÞÞdðx; yÞ for all x; y 2 X.

Then, T has a unique fixed point.

In 2012, Samet et al. [15] introduced the concepts of a-
contractive and a-admissible mappings and established

various fixed point theorems for such class of mappings

defined on complete metric spaces. Thereafter, the exis-

tence of fixed points of a-admissible contractive-type

mappings in complete metric spaces has been studied by

several researchers (see [2, 11, 13, 14] and references cited

therein). In this paper, we introduced the concept of (a, b)-
admissible Geraghty type contractive mappings. Sufficient

conditions for the existence of a fixed point for such class

of generalized nonlinear contractive mappings in metric

spaces are provided. As applications, we derive a fixed

point theorem for these contractions whenever the space is

endowed with a graph. Several other interesting results for

cyclic mappings and ordered metric spaces are also

deduced. The proved results using the concept of (a, b)-
admissible mappings generalize and extend various well-

known results in the literature. Some examples are illus-

trated for the justification of the results.

To start with we give some notations and introduce

some definitions which will be used in the sequel.
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Definition 1.1 Let X be a non-empty set, T : X ! X and

a; b : X � X ! R
þ. We say that T is an (a, b)-admissible

mapping if aðx; yÞ� 1 and bðx; yÞ� 1 implies

aðTx; TyÞ� 1, and bðTx; TyÞ� 1, for all x; y 2 X:

Definition 1.2 Let X be a non-empty set, T : X ! X and

a : X � X ! R
þ. We say that T is an a-admissible mapping

if aðx; yÞ� 1 and implies aðTx; TyÞ� 1, for all x; y 2 X:

Definition 1.3 Let (X, d) be a metric space, and

a; b : X � X ! ½0;1Þ. X is (a, b)-regular if fxng is a

sequence in X such that xn ! x 2 X, aðxn; xnþ1Þ� 1,

bðxn; xnþ1Þ� 1, for all n, there exists a subsequence fxnkg
of fxng such that aðxnk ; xnkþ1Þ� 1, bðxnk ; xnkþ1Þ� 1 for all

k 2 N and aðx; TxÞ� 1, bðx; TxÞ� 1.

Definition 1.4 Let (X, d) be a metric space, and

a : X � X ! ½0;1Þ. X is a a-regular if fxng is a sequence

in X such that xn ! x, aðxn; xnþ1Þ� 1, there exists a

subsequence fxnkg of fxng such that aðxnk ; xnkþ1Þ� 1 for

all k 2 N and aðx; TxÞ� 1.

Definition 1.5 Let ðX; d; �Þ be an ordered metric space,

and a : X � X ! ½0;1Þ. X is an ordered a-regular if fxng
is a sequence in X such that xn ! x, aðxn; xnþ1Þ� 1, and

xn � xnþ1 then there exists a subsequence fxnkg of fxng
such that aðxnk ; xnkþ1Þ� 1 and xnk � xnkþ1 for all k 2 N and

aðx; TxÞ� 1.

Throughout the paper, F(T) denotes the set of fixed

points of T.

Main results

We say H be a family of functions h : ½0;1Þ ! ½0; 1Þ
such that for any bounded sequence ftng of positive reals,

hðtnÞ ! 1 implies tn ! 0.

We say W be a family of functions w : ½0;1Þ ! ½0;1Þ
such that w is continuous, strictly increasing and wð0Þ ¼ 0.

Definition 2.1 Let (X, d) be a metric space, T : X ! X

and a; b : X � X ! R
þ. A mapping T is said to be (a, b)-

Geraghty type-I rational contractive mapping if there exists

a h 2 H, such that for all x; y 2 X, following condition

holds:

a x; Txð Þb y; Tyð Þw dðTx; TyÞð Þ� h wðMðx; yÞÞð ÞwðMðx; yÞÞ;
ð2:1Þ

where Mðx;yÞ¼maxfdðx;yÞ;dðx;TxÞ;dðy;TyÞ; dðx;TxÞdðy;TyÞ
1þdðx;yÞ ;

dðx;TxÞdðy;TyÞ
1þdðTx;TyÞ g and w2W.

Theorem 2.1 Let (X, d) be a complete metric space, T is

self-mapping, T : X ! X, and a; b : X � X ! R
þ. Suppose

that the following conditions are satisfied:

(i) T is an (a, b)-admissible mapping;

(ii) T is an (a, b)-Geraghty type-I rational contractive
mapping;

(iii) there exists x0 2 X such that aðx0; Tx0Þ � 1 and

bðx0; Tx0Þ� 1;

(iv) either T is continuous or X is (a, b)-regular.

Then, T has a fixed point x 2 X and fTnx0g converges to x.

Further, if for all x; y 2 FðTÞ, with x 6¼ y such that

aðx; TxÞ� 1, aðy; TyÞ� 1 and bðx; TxÞ� 1, bðy; TyÞ� 1,

then T has a unique fixed point in X.

Proof Let x0 2 X such that aðx0; Tx0Þ � 1 and

bðx0; Tx0Þ � 1. Now, we can construct the sequences fxng
in X by xn ¼ Tnx0¼Txn�1, for n 2 N.

Moreover, we assume that if xn0 ¼ xn0þ1, for some

n0 2 N, then xn0 is a fixed point of T. Consequently, we

suppose that xn 6¼ xnþ1 for all n 2 N.

Since T is (a, b)-admissible mapping,

aðx0; Tx0Þ ¼ aðx0; x1Þ� 1, aðTx0; Tx1Þ ¼ aðx1; x2Þ� 1,

aðTx1; Tx2Þ ¼ aðx2; x3Þ� 1. Hence, by induction, we get

aðxn; xnþ1Þ� 1 for all n� 0.

Similarly, bðxn; xnþ1Þ� 1 for all n� 0.

Consider (2.1), we have

wðdðxnþ1; xnþ2ÞÞ ¼wðd Txn; Txnþ1ð ÞÞ
� a xn; Txnð Þb xnþ1; Txnþ1ð Þwðd Txn; Txnþ1ð ÞÞ
� h wðMðxn; xnþ1ÞÞð ÞwðMðxn; xnþ1ÞÞ;

where

Mðxn; xnþ1Þ ¼max dðxn; xnþ1Þ; dðxn; TxnÞ; dðxnþ1; Txnþ1Þ;
�

dðxn; TxnÞdðxnþ1; Txnþ1Þ
1þ dðxn; xnþ1Þ

;
dðxn; TxnÞdðxnþ1; Txnþ1Þ

1þ dðTxn; Txnþ1Þ

�

¼max dðxn; xnþ1Þ; dðxn; xnþ1Þ; dðxnþ1; xnþ2Þ;
�

dðxn; xnþ1Þdðxnþ1; xnþ2Þ
1þ dðxn; xnþ1Þ

;
dðxn; xnþ1Þdðxnþ1; xnþ2Þ

1þ dðxnþ1; xnþ2Þ

�

¼maxfdðxn; xnþ1Þ; dðxnþ1; xnþ2Þg:
ð2:2Þ

Now, if Mðxn; xnþ1Þ ¼ dðxnþ1; xnþ2Þ, then

wðdðxnþ1; xnþ2ÞÞ� hðwðMðxn; xnþ1ÞÞÞwðMðxn; xnþ1ÞÞ
� h wðM xn; xnþ1ð ÞÞð Þwðdðxnþ1; xnþ2ÞÞ
\wðdðxnþ1; xnþ2ÞÞ;

which is a contradiction, using the properties of w.
Therefore, it implies that Mðxn; xnþ1Þ ¼ dðxn; xnþ1Þ

and

wðdðxnþ1; xnþ2ÞÞ� hðwðMðxn; xnþ1ÞÞÞwðMðxn; xnþ1ÞÞ
� h wðM xn; xnþ1ð ÞÞð Þwðd xn; xnþ1ð ÞÞ
�wðd xn; xnþ1ð ÞÞ: ð2:3Þ
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Hence, using the properties of w, we conclude that

d xnþ1; xnþ2ð Þ� d xn; xnþ1ð Þ; ð2:4Þ

for every n 2 N. Therefore, sequence fd xn; xnþ1ð Þg is

decreasing and for the non-negative decreasing sequence

fd xn; xnþ1ð Þg, there exists some r� 0, such that

lim
n!1

d xn; xnþ1ð Þ ¼ r: ð2:5Þ

Further from (2.3), it implies that

wðd xnþ1; xnþ2ð ÞÞ
wðMðxn; xnþ1ÞÞ

� h wðMðxn; xnþ1ÞÞð Þ\1: ð2:6Þ

On letting n ! 1 in above inequality, we have

limn!1 h wðMðxn; xnþ1ÞÞð Þ ¼ 1, and h 2 H,

limn!1 wðMðxn; xnþ1ÞÞ ¼ 0, which yields that

r ¼ lim
n!1

d xn; xnþ1ð Þ ¼ 0: ð2:7Þ

Now, we will show that fxng is a Cauchy sequence. Sup-

pose, to the contrary, that fxng is not a Cauchy sequence.

Then, thereexistsd[ 0 forwhichwecanfindsubsequences

fxnkg and fxmk
g of fxng with nk [mk [ k such that

dðxnk ; xmk
Þ � d ð2:8Þ

Further, corresponding to mk, we can choose nk in such a

way that it is the smallest integer with nk [mk and sat-

isfying (2.8), we have

dðxnk�1; xmk
Þ \ d: ð2:9Þ

Using triangle inequality, we have

0 \ d ¼ dðxnk ; xmk
Þ � dðxnk ; xnk�1Þ þ dðxnk�1; xmk

Þ\d

þ dðxnk ; xnk�1Þ ð2:10Þ

Letting k ! 1 and using (2.7) and (2.8), we obtain

lim
k!1

dðxnk ; xmk
Þ ¼d ð2:11Þ

Again, using triangle inequality, we have

d xnk ; xmk
ð Þ� d xnk ; xnk�1ð Þ þ d xnk�1; xmk�1ð Þ þ d xmk�1; xmk

ð Þ;

and

d xnk�1; xmk�1ð Þ� d xnk ; xnk�1ð Þ þ d xnk ; xmk
ð Þ þ d xmk�1; xmk

ð Þ:

Therefore,

d xnk ; xmk
ð Þ� d xnk ; xnk�1ð Þ þ d xnk�1; xmk�1ð Þ þ d xmk�1; xmk

ð Þ
� 2d xnk ; xnk�1ð Þ þ d xnk ; xmk

ð Þ þ 2d xmk�1; xmk
ð Þ

ð2:12Þ

Letting k ! 1 in (2.12) and using (2.7), (2.11), we get

lim
k!1

d xnk�1; xmk�1ð Þ ¼d: ð2:13Þ

Put x ¼ xmk
and y ¼ xnk in (2.1), we obtain

w dðTxmk
; TxnkÞð Þ� a xmk

; Txmk
ð Þb xnk ; Txnkð Þw dðTxmk

; TxnkÞð Þ
� h wðMðxmk

; xnkÞÞð ÞwðMðxmk
; xnkÞÞ;

ð2:14Þ

where

Mðxmk
; xnkÞ ¼max dðxmk

; xnkÞ; dðxmk
; Txmk

Þ; dðxnk ; TxnkÞ;
�

dðxmk
; Txmk

Þdðxnk ; TxnkÞ
1þ dðxmk

; xnkÞ
;
dðxmk

; Txmk
Þdðxnk ; TxnkÞ

1þ dðTxmk
; TxnkÞ

�

¼max dðxmk
; xnkÞ; dðxmk

; xmkþ1Þ; dðxnk ; xnkþ1Þ;
�

dðxmk
; xmkþ1Þdðxnk ; xnkþ1Þ
1þ dðxmk

; xnkÞ
;
dðxmk

; xmkþ1Þdðxnk ; xnkþ1Þ
1þ dðxmkþ1; xnkþ1Þ

�

ð2:15Þ

Therefore,

w dðxmkþ1
; xnkþ1

Þ
� �

� hðwðMðxmk
; xnkÞÞÞwðMðxmk

; xnkÞÞ: On

taking limit k ! 1, we have

wðdÞ� limk!1 hðwðMðxmk
; xnkÞÞÞwðdÞ, that is

1� limk!1 hðwðMðxmk
; xnkÞÞÞ, which implies that

limk!1 hðwðMðxmk
; xnkÞÞÞ ¼ 1. Consequently, we obtain

limk!1 Mðxmk
; xnkÞ ¼ 0 and hence

limk!1 dðxmkþ1; xnkþ1Þ ¼ 0 which is a contradiction.

This shows that fxng is a Cauchy sequence. Since X is

complete, there exists x� 2 X such that xn ! x�.
First, we suppose that T is continuous. Therefore, we

have

x� ¼ lim
n!1

xnþ1 ¼ lim
n!1

Txn ¼T lim
n!1

xn ¼T x�:

Now, we suppose that X is (a, b)-regular.
Therefore, there exists a subsequence fxnkg of fxng such

that aðxnk�1; xnkÞ� 1 and bðxnk�1; xnkÞ� 1 for all k 2 N and

aðx�; Tx�Þ� 1 and bðx�; Tx�Þ� 1. Now, from inequality

(2.1) with x ¼ xnk and y ¼ x�, we obtain

w dðxnkþ1;Tx
�Þð Þ ¼ wðd Txnk ;Tx

�ð ÞÞ
� a xnk ;Txnkð Þb x�;Tx�ð ÞwðdðTxnk ;Tx�ÞÞÞ
� hðwðMðxnk ; x�ÞÞÞwðMðxnk ; x�ÞÞ;

ð2:16Þ

where

Mðxnk ;x�Þ¼ max dðxnk ;x�Þ;dðxnk ;TxnkÞ;dðx�;Tx�Þ;
�

dðxnk ;TxnkÞdðx�;Tx�Þ
1þdðxnk ;x�Þ

;
dðxnk ;TxnkÞdðx�;Tx�Þ

1þdðTxnk ;Tx�Þ

�

¼ max

�
dðxnk ;x�Þ;dðxnk ;xnkþ1Þ;dðx�;Tx�Þ; :

dðxnk ;xnkþ1Þdðx�;Tx�Þ
1þdðxnk ;x�Þ

;
dðxnk ;xnkþ1Þdðx�;Tx�Þ

1þdðxnkþ1;Tx�Þ

�
:

ð2:17Þ
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Therefore,

w dðxnkþ1; Tx
�Þð Þ� hðwðMðxnk ; x�ÞÞÞwðMðxnk ; x�ÞÞ: On tak-

ing limit k ! 1, we have wðdðx�; Tx�ÞÞ� limk!1
hðwðMðxnk ; x�ÞÞÞwðdðx�; Tx�ÞÞ, that is 1� limk!1 hðwðM
ðxnk ; x�ÞÞÞ, which implies that limk!1 hðwðMðxnk ; x�ÞÞÞ
¼ 1. Consequently, we obtain limk!1 Mðxnk ; x�Þ ¼ 0 and

hence dðx�; Tx�Þ ¼ 0, that is, x� ¼ Tx�.
Further, suppose that x� and y� are two fixed points of

T such that x� 6¼ y� and aðx�; Tx�Þ� 1, aðy�; Ty�Þ� 1 and

bðx�; Tx�Þ� 1, bðy�; Ty�Þ � 1. Now applying (2.1), we have

wðdðx�; y�ÞÞ ¼ wðdðTx�; Ty�ÞÞ
� a x�; Tx�ð Þb y�; Ty�ð Þw dðTx�; Ty�Þð Þ
� h wðMðx�; y�ÞÞð ÞwðMðx�; y�ÞÞ

where

Mðx�; y�Þ ¼max dðx�; y�Þ; dðx�; Tx�Þ; dðy�; Ty�Þ;
�

dðx�; Tx�Þdðy�; Ty�Þ
1þ dðx�; y�Þ ;

dðx�; Tx�Þdðy�; Ty�Þ
1þ dðTx�; Ty�Þ

�
:

Hence,

wðdðx�; y�ÞÞ� h wðMðx�; y�ÞÞð Þwðdðx�; y�ÞÞ\wðdðx�; y�ÞÞ,
which is a contradiction unless dðx�; y�Þ ¼ 0, that is,

x� ¼ y�. Hence, T has a unique fixed point. h

Example 2.1 Let X ¼ ½0;1Þ be endowed with the usual

metric dðx; yÞ ¼ jx� yj for all x; y 2 X and T : X ! X be

defined by

Tx ¼
1� x2

8
; x 2 ½0; 1�

9x; x 2 ð1;1Þ

8<
: ð2:18Þ

Define also a; b : X � X ! R
þ, h : ½0;1Þ ! ½0; 1Þ and w :

½0;1Þ ! ½0;1Þ as

aðx; yÞ ¼
1; ðx; yÞ 2 ½0; 1�
0; otherwise

�

bðx; yÞ ¼
1; ðx; yÞ 2 ½0; 1�
0; otherwise

�

hðtÞ ¼ 1
2
and wðtÞ ¼ t.

Now, we prove that Theorem 2.1 can be applied to

T (here, a fixed point is u ¼
ffiffiffiffiffi
17

p
� 4 ), but Theorem 1.1

cannot be applied to T.

Clearly, (X, d) is a complete metric space. We show that

T is an (a, b)-admissible mapping. Let x; y 2 X, if

aðx; yÞ� 1 and bðx; yÞ� 1, then x; y 2 ½0; 1�. On the other

hand, for all x 2 ½0; 1�, we have Tx� 1. It follows that

aðTx; TyÞ� 1 and bðTx; TyÞ� 1. Thus, the assertion holds.

In reason of the above arguments, að0; T0Þ� 1 and

bð0; T0Þ� 1.

Now, if fxng is a sequence in X such that

aðxn; xnþ1Þ� 1, bðxn; xnþ1Þ� 1 and xn ! x 2 X, for all

n 2 N [ f0g, then xn 	 ½0; 1� and hence x 2 ½0; 1�. This

implies that aðx; TxÞ� 1, and bðx; TxÞ� 1.

Let x; y 2 ½0; 1�. We get

a x; Txð Þb y; Tyð Þw dðTx; TyÞð Þ ¼ jTx� Tyj ¼ 1

8
jx� yjj

� xþ yj � 1

2
jx� yj

¼ hðwðdðx; yÞÞÞwðdðx; yÞÞ:

Hence, the given inequality is satisfied.

Otherwise, if a x; Txð Þb y; Tyð Þ ¼ 0: Then, a x; Txð Þ
b y; Tyð Þw dðTx; TyÞð Þ ¼ 0� hðwðMðx; yÞÞÞwðMðx; yÞÞ:
Therefore, all the conditions of Theorem 2.1 are satisfied

and T has a fixed point.

Now, let x ¼ 3, y ¼ 4. We get

dðT3; T4Þ ¼ 9[
1

2
¼ 1

2
j3� 4j ¼ hðdð3; 4ÞÞdð3; 4Þ:

Therefore, Theorem 1.1 does not hold for this example.

Definition 2.2 Let (X, d) be ametric space, T : X ! X and

a; b : X � X ! R
þ. A mapping T is said to be a, b-Geraghty

type-II rational contractive mapping if there exists a h 2 H,

such that for all x; y 2 X, following condition holds:

½w dðTx; TyÞð Þ þ l�a x;Txð Þb y;Tyð Þ � h wðMðx; yÞÞð ÞwðMðx; yÞÞ þ l;

ð2:19Þ

where Mðx; yÞ ¼ maxfdðx; yÞ; dðx; TxÞ; dðy; TyÞ; dðx;TxÞ

dðy; TyÞ1þ dðx; yÞ; dðx;TxÞdðy;TyÞ
1þdðTx;TyÞ g, w 2 W and l� 1.

Theorem 2.2 Let (X, d) be a complete metric space, T is

self-mapping, T : X ! X, and a; b : X � X ! R. Suppose

that the following conditions are satisfied:

(i) T is an (a, b)-admissible mapping;

(ii) T is an (a, b)-Geraghty type-II rational contrac-

tive mapping;

(iii) there exists x0 2 X such that aðx0; Tx0Þ � 1 and

bðx0; Tx0Þ� 1;

(iv) either T is continuous or X is (a, b)-regular.

Then, T has a fixed point x� 2 X and fTnx0g converges to x�.
Further, if for all x; y 2 FðTÞ, with x 6¼ y such that

aðx; TxÞ� 1, aðy; TyÞ� 1 and bðx; TxÞ� 1, bðy; TyÞ� 1,

then T has a unique fixed point in X.

Proof Let x0 2 X such that aðx0; Tx0Þ � 1 and

bðx0; Tx0Þ � 1. Now, we can construct the sequences fxng
in X by xn ¼ Tnx0¼Txn�1, for n 2 N.

Moreover, we assume that if xn0 ¼ xn0þ1, for some

n0 2 N, then xn0 is a fixed point of T. Consequently, we

suppose that xn 6¼ xnþ1 for all n 2 N.
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Since T is (a, b)-admissible mapping, aðx0; Tx0Þ ¼
aðx0; x1Þ� 1, aðTx0; Tx1Þ ¼ aðx1; x2Þ� 1, aðTx1; Tx2Þ ¼
aðx2; x3Þ � 1. Hence, by induction, we get aðxn; xnþ1Þ� 1

for all n� 0.

Similarly, bðxn; xnþ1Þ� 1 for all n� 0.

Consider (2.19), we have

wðdðxnþ1; xnþ2ÞÞ þ l ¼wðd Txn; Txnþ1ð ÞÞ þ l

� ½wðd Txn; Txnþ1ð ÞÞ þ l�a xn; Txnð Þb xnþ1;Txnþ1ð Þ

� h wðMðxn; xnþ1ÞÞð ÞwðMðxn; xnþ1ÞÞ þ l;

where

Mðxn; xnþ1Þ ¼max dðxn; xnþ1Þ; dðxn; TxnÞ; dðxnþ1; Txnþ1Þ;
�

dðxn;TxnÞdðxnþ1;Txnþ1Þ
1þ dðxn; xnþ1Þ

;
dðxn;TxnÞdðxnþ1; Txnþ1Þ

1þ dðTxn;Txnþ1Þ

�

¼max dðxn; xnþ1Þ; dðxn; xnþ1Þ; dðxnþ1; xnþ2Þ;
�

dðxn; xnþ1Þdðxnþ1; xnþ2Þ
1þ dðxn; xnþ1Þ

;
dðxn; xnþ1Þdðxnþ1; xnþ2Þ

1þ dðxnþ1; xnþ2Þ

�

¼maxfdðxn; xnþ1Þ; dðxnþ1; xnþ2Þg:

ð2:20Þ

Now, if Mðxn; xnþ1Þ ¼ dðxnþ1; xnþ2Þ, then

wðdðxnþ1; xnþ2ÞÞ� hðwðMðxn; xnþ1ÞÞÞwðMðxn; xnþ1ÞÞ
� h wðM xn; xnþ1ð ÞÞð Þwðdðxnþ1; xnþ2ÞÞ
\wðdðxnþ1; xnþ2ÞÞ;

which is a contradiction, using the properties of w.
Therefore, it implies that Mðxn; xnþ1Þ ¼ dðxn; xnþ1Þ

and

wðdðxnþ1; xnþ2ÞÞ� hðwðMðxn; xnþ1ÞÞÞwðMðxn; xnþ1ÞÞ
� h wðM xn; xnþ1ð ÞÞð Þwðd xn; xnþ1ð ÞÞ
�wðd xn; xnþ1ð ÞÞ:

ð2:21Þ

Hence, using the properties of w, we conclude that

d xnþ1; xnþ2ð Þ� d xn; xnþ1ð Þ; ð2:22Þ

for every n 2 N. Therefore, sequence fd xn; xnþ1ð Þg is

decreasing. On the similar lines as in Theorem 2.1, we can

prove that

r ¼ lim
n!1

d xn; xnþ1ð Þ ¼ 0: ð2:23Þ

Now, we will show that fxng is a Cauchy sequence. Sup-

pose, to the contrary, that fxng is not a Cauchy sequence.

Then, there exists d[ 0 for which we can find

subsequences fxnkg and fxmk
g of fxng with nk[mk [k

such that

dðxnk ; xmk
Þ � d: ð2:24Þ

Further, corresponding to mk, we can choose nk in such a

way that it is the smallest integer with nk [mk and satis-

fying (2.24), we have

dðxnk�1; xmk
Þ\d: ð2:25Þ

Using triangle inequality, we have

0\d ¼ dðxnk ; xmk
Þ� dðxnk ; xnk�1Þ þ dðxnk�1; xmk

Þ\d

þ dðxnk ; xnk�1Þ ð2:26Þ

Letting k ! 1 and using (2.23) and (2.24), we obtain

lim
k!1

dðxnk ; xmk
Þ ¼d: ð2:27Þ

Again, using triangle inequality, we have

d xnk ; xmk
ð Þ� d xnk ; xnk�1ð Þ þ d xnk�1; xmk�1ð Þ þ d xmk�1; xmk

ð Þ;

and

d xnk�1; xmk�1ð Þ� d xnk ; xnk�1ð Þ þ d xnk ; xmk
ð Þ þ d xmk�1; xmk

ð Þ:

Therefore,

d xnk ; xmk
ð Þ� d xnk ; xnk�1ð Þ þ d xnk�1; xmk�1ð Þ þ d xmk�1; xmk

ð Þ

� 2d xnk ; xnk�1ð Þ þ d xnk ; xmk
ð Þ þ 2d xmk�1; xmk

ð Þ ð2:28Þ

Letting k ! 1 in (2.28) and using (2.23), (2.27), we get

lim
k!1

d xnk�1; xmk�1ð Þ ¼d: ð2:29Þ

Put x ¼ xmk
and y ¼ xnk in (2.19), we obtain

w dðTxmk
; TxnkÞð Þ þ l� ½wðd Txmk

; Txnkð ÞÞ þ l�a xmk ;Txmkð Þb xnk ;Txnkð Þ

� h wðMðxmk
; xnkÞÞð ÞwðMðxmk

; xnkÞÞ þ l;

ð2:30Þ

where

Mðxmk
; xnkÞ ¼max dðxmk

; xnkÞ; dðxmk
; Txmk

Þ; dðxnk ;TxnkÞ;
�

dðxmk
;Txmk

Þdðxnk ; TxnkÞ
1þ dðxmk

; xnkÞ
;
dðxmk

;Txmk
Þdðxnk ; TxnkÞ

1þ dðTxmk
;TxnkÞ

�

¼max dðxmk
; xnkÞ; dðxmk

; xmkþ1Þ; dðxnk ; xnkþ1Þ;
�

dðxmk
; xmkþ1Þdðxnk ; xnkþ1Þ
1þ dðxmk

; xnkÞ
;
dðxmk

; xmkþ1Þdðxnk ; xnkþ1Þ
1þ dðxmkþ1; xnkþ1Þ

�
:

ð2:31Þ

Therefore, w dðxmkþ1
; xnkþ1

Þ
� �

� hðwðMðxmk
; xnkÞÞÞw

ðMðxmk
; xnkÞÞ: On taking limit k ! 1, we have

wðdÞ� limk!1 hðwðMðxmk
; xnkÞÞÞwðdÞ, that is 1� limk!1

hðwðMðxmk
; xnkÞÞÞ, which implies that limk!1 h

ðwðMðxmk
; xnkÞÞÞ ¼ 1. Consequently, we obtain limk!1

Mðxmk
; xnkÞ ¼ 0 and hence limk!1 dðxmkþ1; xnkþ1Þ ¼ 0

which is a contradiction.
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This shows that fxng is a Cauchy sequence. Since X is

complete, there exists x� 2 X such that xn ! x�.
First, we suppose that T is continuous. Therefore, we

have

x� ¼ lim
n!1

xnþ1 ¼ lim
n!1

Txn ¼T lim
n!1

xn ¼T x�:

Now, we suppose that X is a, b-regular.
Therefore, there exists a subsequence fxnkg of fxng such

that aðxnk�1; xnkÞ� 1 and bðxnk�1; xnkÞ� 1 for all k 2 N and

aðx�; Tx�Þ� 1 and bðx�; Tx�Þ� 1. Now, from inequality

(2.19) with x ¼ xnk and y ¼ x� , we obtain

w dðxnkþ1; Tx
�Þð Þ þ l ¼w dðTxnk ; Tx�Þð Þ þ l

� ½wðdðTxnk ; Tx�ÞÞÞ þ l�a xnk ;Txnkð Þb x�;Tx�ð Þ

� hðwðMðxnk ; x�ÞÞÞwðMðxnk ; x�ÞÞ þ l;

ð2:32Þ

where

Mðxnk ; x�Þ ¼max dðxnk ; x�Þ; dðxnk ; TxnkÞ; dðx�; Tx�Þ;
�

dðxnk ; TxnkÞdðx�; Tx�Þ
1þ dðxnk ; x�Þ

;
dðxnk ; TxnkÞdðx�; Tx�Þ

1þ dðTxnk ; Tx�Þ

�

¼max dðxnk ; x�Þ; dðxnk ; xnkþ1Þ; dðx�; Tx�Þ;
�

dðxnk ; xnkþ1Þdðx�; Tx�Þ
1þ dðxnk ; x�Þ

;
dðxnk ; xnkþ1Þdðx�; Tx�Þ

1þ dðxnkþ1; Tx�Þ

�
:

ð2:33Þ

Therefore,

w dðxnkþ1; Tx
�Þð Þ� hðwðMðxnk ; x�ÞÞÞwðMðxnk ; x�ÞÞ: On tak-

ing limit k ! 1, we have

wðdðx�; Tx�ÞÞ� limk!1 hðwðMðxnk ; x�ÞÞÞwðdðx�; Tx�ÞÞ,
that is 1� limk!1 hðwðMðxnk ; x�ÞÞÞ, which implies that

limk!1 hðwðMðxnk ; x�ÞÞÞ ¼ 1. Consequently, we obtain

limk!1 Mðxnk ; x�Þ ¼ 0 and hence dðx�; Tx�Þ ¼ 0, that is,

x� ¼ Tx�.
Further, suppose that x� and y� are two fixed points of

T such that x� 6¼ y� and aðx�; Tx�Þ� 1, aðy�; Ty�Þ� 1 and

bðx�; Tx�Þ� 1, bðy�; Ty�Þ� 1. Hence from (2.19), we have

wðdðx�; y�ÞÞ þ l ¼wðdðTx�; Ty�ÞÞ þ l

� ½w dðTx�; Ty�Þð Þ þ l�a x�;Tx�ð Þb y�;Ty�ð Þ

� h wðMðx�; y�ÞÞð ÞwðMðx�; y�ÞÞ þ l

where

Mðx�; y�Þ ¼max dðx�; y�Þ; dðx�; Tx�Þ; dðy�; Ty�Þ
�

;

dðx�; Tx�Þdðy�; Ty�Þ
1þ dðx�; y�Þ ;

dðx�; Tx�Þdðy�; Ty�Þ
1þ dðTx�; Ty�Þ

�
:

Hence, wðdðx�; y�ÞÞ� h wðMðx�; y�ÞÞð Þwðdðx�; y�ÞÞ, which

implies that h wðMðx�; y�ÞÞð Þ ¼ 1. Therefore, dðx�; y�Þ ¼ 0,

that is, x� ¼ y�. Hence, T has a unique fixed point. h

Example 2.2 Let X ¼ ½0;1Þ be endowed with the usual

metric dðx; yÞ ¼ jx� yj for all x; y 2 X and T : X ! X be

defined by

Tx ¼
x

xþ 1
; x 2 ½0; 1�

3x; x 2 ð1;1Þ

8<
: ð2:34Þ

Define also a; b : X � X ! R
þ, h : ½0;1Þ ! ½0; 1Þ and w :

½0;1Þ ! ½0;1Þ as

aðx; yÞ ¼
1; ðx; yÞ 2 ½0; 1�
0; otherwise

�

bðx; yÞ ¼
1; ðx; yÞ 2 ½0; 1�
0; otherwise

�

hðtÞ ¼ 1
1þt

and wðtÞ ¼ t.

Now, we prove that Theorem 2.2 can be applied to

T (here, a fixed point is u ¼ 0), but Theorem 1.1 cannot be

applied to T.

Clearly, (X, d) is a complete metric space. On the same

lines of Example 2.1, we can show that T is an (a, b)-
admissible mapping.

Let x; y 2 ½0; 1�. We get

½w dðTx;TyÞð Þ þ l�a x;Txð Þb y;Tyð Þ ¼ w dðTx; TyÞð Þ þ l

¼ jTx� Tyj þ l ¼ x

xþ 1
� y

yþ 1

����
����þ l

¼ y� x

ð1þ xÞð1þ yÞ

����
����þ l

� y� x

1þ y� x

����
����þ l

¼ hðwðdðx; yÞÞÞwðdðx; yÞÞ þ l:

Hence, the given inequality is satisfied.

Otherwise, a x; Txð Þb y; Tyð Þ ¼ 0 and ½w dðTx; TyÞð Þ þ
l�a x;Txð Þb y;Tyð Þ ¼ 1� hðwðMðx; yÞÞÞwðMðx; yÞÞ þ l: There-

fore, all the conditions of Theorem 2.2 are satisfied and

T has a fixed point.

Now, let x ¼ 3, y ¼ 4. We get

dðT3;T4Þ¼3[
1

2
¼ 1

1þj3�4jj3�4j¼hðdð3;4ÞÞdð3;4Þ:

Therefore, Theorem 1.1 does not hold for this example.

Consequences of the main results

In this section, we discuss some consequences of our main

results. First, we prove some fixed point theorems for

cyclic mappings in metric and ordered metric spaces. Also,
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we obtain some other related interesting results in the next

section. In the last section, we obtain a fixed point theorem

whenever the space is endowed with a graph.

Fixed point results for cyclic mappings in metric

and ordered metric spaces

Theorem 3.1 Let (X, d) be a complete metric space, A

and B be two nonempty closed subsets of X . Suppose that

a : X � X ! ½0;1Þ, and T : A [ B ! A [ B be a mapping

with TA 	 B and TB 	 A, such that aðTy; TxÞ� 1 if

aðx; yÞ� 1, where x 2 A and y 2 B. Further assume that T

satisfies any one of the following contractive condition for

all x 2 A and y 2 B

a x; yð Þw dðTx; TyÞð Þ� h wðMðx; yÞÞð ÞwðMðx; yÞÞ;

or

½w dðTx; TyÞð Þ þ l�a x;yð Þ � h wðMðx; yÞÞð ÞwðMðx; yÞÞ þ l;

where Mðx; yÞ ¼ maxfdðx; yÞ; dðx; TxÞ; dðy; TyÞ; dðx;TxÞ

dðy; TyÞ1þ dðx; yÞ; dðx;TxÞdðy;TyÞ
1þdðTx;TyÞ g, w 2 W and l� 1.

If there exists x0 2 A such that aðx0; Tx0Þ� 1, and either

T is continuous or X is a-regular, then T has a fixed point in

A \ B.

Proof Let Y ¼ A [ B and b : Y � Y ! ½0;1Þ defined as

bðx; yÞ ¼
1; if x 2 A; y 2 B;

0; otherwise

�

Then, (Y, d) is complete metric space. Now, if x0 2 A is

such that aðx0; Tx0Þ� 1, then also bðx0; Tx0Þ� 1 and hence

all the hypotheses of above Theorems 2.1–2.2 hold with

X ¼ Y . Consequently, T has a fixed point in A [ B, say

z. Since z 2 A implies z ¼ Tz 2 B and z 2 B implies

z ¼ Tz 2 A, then z 2 A \ B.

Now, assume that fxng be a sequence in Y such that

aðx2n; x2nþ1Þ� 1 and bðx2n; x2nþ1Þ� 1 for all n 2 N [ f0g
and xn ! x as n ! 1, then x2n 2 A and x2nþ1 2 B. Since

B is closed, then x 2 B and hence aðx2n; xÞ� 1 and

bðx2n; xÞ� 1. We deduce that all the hypotheses of above

Theorems 2.1–2.2 are satisfied with X ¼ Y and hence T has

a fixed point. h

Theorem 3.2 Let ðX; d; �Þ be an ordered complete

metric space, A and B be two nonempty closed subsets of X.

Suppose that a : X � X ! ½0;1Þ, and T : A [ B ! A [ B

be a mapping with TA 	 B and TB 	 A, such that

aðTy; TxÞ� 1 if aðx; yÞ� 1, where x 2 A and y 2 B. Further

assume that T satisfies any one of the following contractive

condition for all x 2 A and y 2 B with x� y

a x; yð Þw dðTx; TyÞð Þ� h wðMðx; yÞÞð ÞwðMðx; yÞÞ;

or

½w dðTx; TyÞð Þ þ l�a x;yð Þ � h wðMðx; yÞÞð ÞwðMðx; yÞÞ þ l;

where Mðx; yÞ ¼ maxfdðx; yÞ; dðx; TxÞ; dðy; TyÞ; dðx;TxÞdðy;TyÞ

1þ dðx; yÞ; dðx;TxÞdðy;TyÞ
1þdðTx;TyÞ g, w 2 W and l� 1.

If there exists x0 2 A such that aðx0; Tx0Þ� 1 and

x0 � Tx0, and either T is continuous and decreasing or X

is an ordered a-regular, then T has a fixed point in A [ B.

Proof Consider the complete metric space (Y, d), where

Y ¼ A [ B and define b : Y � Y ! ½0;1Þ defined as

bðx; yÞ ¼
1; if x 2 A; y 2 B; with x� y

0; otherwise

�

Let bðx; yÞ� 1 for x; y 2 X, then x 2 A and y 2 B with

x� y. It follows that Tx 2 B and Ty 2 A with Ty� Tx, since

T is decreasing. Therefore, bðTy; TxÞ� 1, that is, T is an (a,
b)-admissible mapping. Now, let aðx0; Tx0Þ� 1 with x0 2
A and x0 � Tx0. From x0 2 A we have Tx0 2 B with

x0 � Tx0, that is, bðx0; Tx0Þ� 1. Hence, all the hypotheses

of above Theorems 2.1–2.2 hold with X ¼ Y . Conse-

quently, T has a fixed point in A [ B, say z. Since z 2 A

implies z ¼ Tz 2 B and z 2 B implies z ¼ Tz 2 A, then

z 2 A \ B.

Now assume that fxng be a sequence in Y such that

aðx2n; x2nþ1Þ� 1 and bðx2n; x2nþ1Þ� 1 for all n 2 N [ f0g
and xn ! x as n ! 1, then x2n 2 A and x2nþ1 2 B. SinceB is

closed, and X is an ordered a-regular, we have x 2 B and

x2n � x, hence aðx2n; xÞ� 1 andbðx2n; xÞ� 1.We deduce that

all the hypotheses of above Theorems 2.1–2.2 are satisfied

with X ¼ Y and hence T has a fixed point. h

Related results

Theorem 3.3 Let (X, d) be a complete metric space, T is

self-mapping, T : X ! X, and a : X � X ! R. Suppose

that the following conditions are satisfied:

(i) T is an ðaÞ-admissible mapping;

(ii) T satisfies any one of following rational contrac-

tive mapping;

½w dðTx; TyÞð Þ þ l�a x;Txð Þa y;Tyð Þ

� h wðMðx; yÞÞð ÞwðMðx; yÞÞ þ l;

or

a x; Txð Þa y; Tyð Þw dðTx; TyÞð Þ
� h wðMðx; yÞÞð ÞwðMðx; yÞÞ;

where Mðx; yÞ ¼
maxfdðx; yÞ; dðx; TxÞ; dðy; TyÞ; dðx;TxÞ

dðy; TyÞ1þ dðx; yÞ; dðx;TxÞdðy;TyÞ
1þdðTx;TyÞ g, w 2 W and l� 1.

(iii) there exists x0 2 X such that aðx0; Tx0Þ � 1 and

bðx0; Tx0Þ� 1;
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(iv) either T is continuous or X is a-regular. Then, T
has a fixed point x� 2 X and fTnx0g converges to

x�. Further, if For all x; y 2 FðTÞ, with x 6¼ y such

that aðx; TxÞ� 1, and aðy; TyÞ� 1, then T has a

unique fixed point in X.

Corollary 3.1 [11] Let (X, d) be a complete metric space

and T : X ! X be an a-admissible mapping. Assume that

there exists a function h 2 H, such that

dðTx; TyÞþlð Þa x;Txð Þa y;Tyð Þ � h d x; yð Þð Þd x; yð Þ þ l

for all x; y 2 X; l� 1. Suppose that either

(a) T is continuous or

(b) if fxng is a sequence in X such that xn ! x,

aðxn; xnþ1Þ� 1 for all n, then aðx; TxÞ� 1:

If there exists x0 2 X such that aðx0; Tx0Þ � 1, then T has

a fixed point.

Corollary 3.2 [11] Let (X, d) be a complete metric space

and T : X ! X be an a-admissible mapping. Assume that

there exists a function h 2 H, such that

a x; Txð Þa y; Tyð ÞdðTx; TyÞ� hðdðx; yÞÞdðx; yÞ

for all x; y 2 X. Suppose that either

(a) T is continuous or

(b) if fxng is a sequence in X such that xn ! x,

aðxn; xnþ1Þ� 1 for all n, then aðx; TxÞ� 1:

If there exists x0 2 X such that aðx0; Tx0Þ � 1, then T has

a fixed point.

Theorem 3.4 Let (X, d) be a complete metric space, T is

self-mapping, T : X ! X, and a : X � X ! R
þ. Suppose

that the following conditions are satisfied:

(i) T is an a-admissible mapping;

(ii) T satisfies the following contractive condition

a x; yð Þw dðTx; TyÞð Þ� h wðMðx; yÞÞð ÞwðMðx; yÞÞ;

or

½w dðTx;TyÞð Þ þ l�a x;yð Þ � h wðMðx; yÞÞð ÞwðMðx; yÞÞ þ l;

where Mðx; yÞ ¼ maxfdðx; yÞ; dðx; TxÞ; dðy; TyÞ;
dðx;TxÞdðy;TyÞ

1þdðx;yÞ ; dðx;TxÞdðy;TyÞ
1þdðTx;TyÞ g, w 2 W and l� 1.

(iii) there exists x0 2 X such that aðx0; Tx0Þ � 1 ;

(iv) either T is continuous or X is a-regular.

Then, T has a fixed point x 2 X and fTnx0g converges to x.

Further, if for all x; y 2 FðTÞ, with x 6¼ y such that

aðx; TxÞ� 1, aðy; TyÞ� 1, then T has a unique fixed point in

X.

Proof Define mapping b : X � X ! ½0;1Þ defined as

bðx; yÞ ¼
1; if x; y 2 X;

0; otherwise:

�

Now using the above Theorems 2.1–2.2, we get the

result. h

Fixed point results for graphic contractions

Consistent with Jachymski [12], let (X, d) be a metric

space and D denotes the diagonal of the Cartesian product

X � X. Consider a directed graph G such that the set

V(G) of its vertices coincides with X, and the set E(G) of its

edges contains all loops, i.e., EðGÞ 
 D. We assume G has

no parallel edges, so we can identify G with the pair

(V(G), E(G)). Moreover, we may treat G as a weighted

graph (see [12]) by assigning to each edge the distance

between its vertices. If x and y are vertices in a graph G,

then a path in G from x to y of length m ðm 2 NÞ is a

sequence fxigmi¼0 of mþ 1 vertices such that x0 ¼ x, xm ¼ y

and ðxi�1; xiÞ 2 EðGÞ for i ¼ 1; . . .;m. A graph G is con-

nected if there is a path between any two vertices. G is

weakly connected if ~G is connected (see for details [3, 12]).

Recently, some results have appeared providing sufficient

conditions for a mapping to be a Picard operator if (X, d) is

endowed with a graph. The first result in this direction was

given by Jachymski [12].

Definition 3.1 [12] Let (X, d) be a metric space endowed

with a graph G. We say that a self-mapping T : X ! X is a

Banach G-contraction or simply a G-contraction if T pre-

serves the edges of G, that is, ðx; yÞ 2 EðGÞ ¼) ðTx; TyÞ 2
EðGÞ for all x; y 2 X and T decreases the weights of the

edges of G in the following way:

9a 2 ð0; 1Þ such that for all x; y 2 X, ðx; yÞ 2 EðGÞ ¼)
dðTx; TyÞ� adðx; yÞ.

Theorem 3.5 Let (X, d) be a complete metric space

endowed with a graph G, T is a self-mapping, T : X ! X,

satisfying

w dðTx; TyÞð Þ� h wðMðx; yÞÞð ÞwðMðx; yÞÞ;

or

w dðTx; TyÞð Þ þ l� h wðMðx; yÞÞð ÞwðMðx; yÞÞ þ l;

where Mðx; yÞ ¼ maxfdðx; yÞ; dðx; TxÞ; dðy; TyÞ; dðx;TxÞ

dðy; TyÞ1þ dðx; yÞ; dðx;TxÞdðy;TyÞ
1þdðTx;TyÞ g, w 2 W and l� 1.

Suppose that the following assertions hold:

(i) for all x; y 2 X, ðx; yÞ 2 EðGÞ, implies

ðTx; TyÞ 2 EðGÞ;
(ii) fxng is a sequence in X such that xn ! x as n !

1 and ðxn;TxnÞ 2 EðGÞ, then ðx; TxÞ 2 EðGÞ;
(iii) there exists x0 2 X such that ðx0; Tx0Þ 2 EðGÞ.
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Then, T has a fixed point x 2 X.

Proof Define mapping a : X � X ! ½0;1Þ defined as

aðx; yÞ ¼
1; if ðx; yÞ 2 G;

0; otherwise:

�

Now, we show that T is an a-admissible mapping. Suppose

that aðx; yÞ� 1. Therefore, we have ðx; yÞ 2 EðGÞ. From
(i), we get ðTx; TyÞ 2 EðGÞ. So, aðTx; TyÞ� 1 and T is an a-
admissible mapping. Hence, from the definition of a and

inequality, we have

a x; yð Þw dðTx; TyÞð Þ� h wðMðx; yÞÞð ÞwðMðx; yÞÞ;

or

½w dðTx; TyÞð Þ þ l�a x;yð Þ � h wðMðx; yÞÞð ÞwðMðx; yÞÞ þ l;

where Mðx; yÞ ¼ maxfdðx; yÞ; dðx; TxÞ; dðy; TyÞ;
dðx;TxÞdðy;TyÞ

1þdðx;yÞ ; dðx;TxÞdðy;TyÞ
1þdðTx;TyÞ g, w 2 W and l� 1.

From (iii) there exists x0 2 X such that

ðx0; Tx0Þ 2 EðGÞ, aðx0; Tx0Þ� 1. Let fxng is a sequence

in X such that xn ! x as n ! 1 and ðxn; TxnÞ 2 EðGÞ for
all n 2 N, then aðxn; TxnÞ� 1. Thus, from (ii) we get,

ðx; TxÞ 2 EðGÞ. That is, aðx; TxÞ� 1. Therefore, all condi-

tions of Theorem 3.4 hold true and T has a fixed point. h

Remark 3.1 Using the technique of Samet et al. [15], we

can obtain corresponding coupled fixed point results from

our Theorems 2.1, 2.2.
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