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Abstract

Interactive Voice Response (IVR) is a technology that allows automatic human-computer interactions, via a telephone
keypad or voice commands. The systems are widely used in many industries, including telecommunications and banking.
Virtualization is a potential technology that can enable the easy development of IVR applications and their deployment
on the cloud. IVR virtualization will enable efficient resource usage by allowing IVR applications to share different IVR
substrate components such as the key detector, the voice recorder and the dialog manager. Resource management is
part and parcel of IVR virtualization and poses a challenge in virtualized environments where both processing and
network constraints must be considered. Considering several objectives to optimize the resource usage makes it even
more challenging. This paper proposes IVR virtualization task scheduling and computational resource sharing (among
different IVR applications) strategies based on genetic algorithms, in which different objectives are optimized.
The algorithms used by both strategies are simulated and the performance measured and analyzed.
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Introduction
Interactive Voice Response (IVR) is a technology that al-
lows automatic human-computer interactions, via a tele-
phone keypad or voice commands. Its key function is to
provide end-users with self-service voice information
[1]. IVR systems are widely used in many industries, in-
cluding telecommunications and banking, to improve
customer satisfaction, reduce cost, and ensure uninter-
rupted service. Examples of IVR applications include au-
tomated attendants, automated meter readers and IVR
banking. The automated attendant transfers callers to
the appropriate extensions automatically, without inter-
vention by a receptionist; using automated meter
readers, utilities customers can remotely enter their
meter readings, while IVR banking allows end-users to
consult their bank balance or last transactions, for
instance.
Virtualization is a potential technology that can enable

the easy development of IVR applications and their de-
ployment on the cloud. It allows the abstraction and
sharing of computer and network resources, as well as
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the co-existence of entities on the same substrates [2].
Cloud computing is a multi-facet paradigm, which en-
ables the easy introduction of new services, scalability
and efficient resource usage. The main facets of cloud
computing are Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service
(SaaS) [3]. IaaS provides the pool of virtualized resources
that are used by applications provisioned (to end-users
or other applications) as SaaS. The development and
management of such applications are made easier
through PaaS which adds one or more levels of abstrac-
tion to the infrastructures offered by IaaS providers.
IVR virtualization will enable efficient resource usage

by allowing IVR applications to share different IVR sub-
strate components such as key detectors, voice recorders
and dialog managers. It will also ease the development
and the management of IVR applications that can be of-
fered as cloud-based services.
In a previous work [4,5], we proposed a virtualized infra-

structure for IVR applications in the cloud. The proposed
architecture is composed of three layers (substrate, infra-
structure, and platform) and an IVR substrate repository
(Figure 1). The substrate layer provides IVR substrates
that can be composed and assembled on the fly to build
IVR applications. These substrates are accessible via the
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Figure 1 Virtualized infrastructure for IVR applications.
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infrastructure layer. The platform layer for its part adds
one or more abstractions and makes the substrates avail-
able to the IVR applications’ developers while the IVR
substrate repository is used to publish and discover exist-
ing IVR substrates.
The three layers communicate via three planes: ser-

vice, composition and management. The service plane
handles the service execution, including coordinating
the execution of services that involve several substrates;
the composition plane intervenes in the composition of
the appropriate substrates to create a given IVR applica-
tion and the management plane is responsible for the ac-
tual control and management of substrate resources. It
allows the instantiation of IVR applications and related
substrates, enables fault and performance monitoring,
and performs accounting for charging purposes. Each
layer includes one functional entity at each plane, and
one key entity that coordinates the operation of the layer
entities at the three planes. At the substrate layer for in-
stance we have a substrate service, composition and
management engines that are coordinated by the sub-
strate IVR engine.
This paper focuses on the management plane, and

more precisely on resource management at the substrate
layer. Before a service provider can make an IVR appli-
cation available to its end-users, he should develop such
an application by discovering and (eventually) compos-
ing existing substrates. It then activates the application,
a phase which includes the instantiation of the sub-
strates required to run the application. It is only after
this that the end-users can interact with the application.
To instantiate new substrates, the substrate management

engine should identify the resources needed, verify resource
availability and then allocate the appropriate resources. We
focus on two issues: computational resources sharing and
task scheduling. In computational resource sharing, we
examine the sharing of existing computational resources
(e.g., virtual machines, processors) between different IVR
applications optimally. Task sch\eduling relates to the as-
signment of the instantiation requests received.
Computational resource sharing and task scheduling in

virtualized environments where both processing and net-
work constraints must be considered are challenging issues.
Considering several objectives to optimize the resource
scheduling and usage makes them even more challenging.
Several research studies have focused on load balancing

across processors or computers in both non-virtualized
[6] and virtualized environments [7]. This paper proposes
to address these issues for a specific application: IVR. It
defines task scheduling and computational resource shar-
ing strategies based on genetic algorithms, in which differ-
ent objectives are optimized. We chose genetic algorithms
because their robustness and efficiency for the design of
efficient schedulers have been largely proven in the litera-
ture [8,9]. More specifically, we identify task assignments
that guarantee maximum utilization of resources while
minimizing the execution time of tasks. Moreover, we
propose a resource allocation strategy that minimizes sub-
strate resource utilization and the resource allocation time.
We also simulated the algorithms used by the proposed
strategies and measured and analyzed their performance.
The rest of the paper is organized as follows. Section

"Assumptions and problems statement" presents the as-
sumptions and the problem statement. Section "Resource
management algorithms" discusses the proposed resource
management algorithms. Sections "Computational resource
sharing algorithm" and "Task scheduling" describe the
computational resource sharing and instantiation request
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scheduling algorithms respectively. Section "Performance
results and analysis" presents the main performance ana-
lysis. The state of the art review and the conclusion are
given in sections "State of the art review" and "Conclusion"
respectively.

Assumptions and problems statement
Assumptions
The substrate management engine (Figure 1) has two
entities: the IVR resource manager and the IVR instance
manager. The resource manager maintains and monitors
the current state of resources and allocates resources for
new IVR service substrates (ISSs). An ISS is the set of
IVR substrate instances used by a single IVR application.
Each ISS is managed by a separate IVR instance man-
ager, which coordinates the process of ISS instantiation
(i.e., ISS creation, configuration and activation).
We assume that each virtualization machine (i.e. a ma-

chine that hosts the substrate layer) has a fixed number
of processors that are dedicated to the processing of the
incoming instantiation requests, and a fixed amount of
computational resources (e.g. virtual machines, proces-
sors, CPU, memory, disk space) that are used to run the
different ISSs. The computational resources are shared
among a set of ISSs, each having specific resource re-
quirements evaluated in terms of CPU, memory, disk
space and bandwidth. We assume that the virtualization
machine capabilities are known in advance, while the
ISSs’ resource requirements are estimated at run time.
In our case, the latter are estimated using a set of func-
tions derived from observed measurements performed
using a prototype of a virtualized infrastructure for IVR
applications in the cloud [4].
When a resource manager receives an instantiation re-

quest, it verifies the availability of the substrate resources
according to the ISS requirements. It then creates a new
ISS and allocates the necessary resources. If no more
substrate resources are available, the resource manager
will reject all incoming instantiation requests.
We further assume that the service quality parameters

required by each ISS are described by the IVR application
provider using a service level agreement (SLA). In this
work, we only consider as one SLA parameter; i.e. the sat-
isfactory factor of the IVR application. This satisfactory
factor is defined as the resources employed by a certain
number of users over the allocated ISS resources. This par-
ameter allows the control of the application status, such as
ensuring that no ISS is under or over loaded and therefore
guarantees pay-as-you-use access. To guarantee this qual-
ity parameter, the instantiation requests should specify the
expected number of users as well as the users’ arrival rate.
The IVR substrate management engine also allows the

resizing of computing and network capacities, using the
monitored ISS resource usage. If an ISS is over or under
loaded for a certain interval of time, the resource control
entity will notify the resource negotiation entity and the
ISS computing and network resources are resized. The
resource control and negotiation entities are out of the
scope of this paper.

Problem statement
In this paper, the following notations are used:

� N is the expected number of users for a given IVR
application.

� λ is the expected call arrival rate for an ISS. We
should mention that λ is used in this paper only to
determine the resources needed by an ISS,
depending on the number of request/min that it is
expected to support.

� tn is the size in unit of time for the execution of a
given instantiation request (task size). It is the time
needed to instantiate, configure, and activate a new
ISS.

� tr is the time needed to compute the required
resources for a given instantiation request. It is the
time difference between the end of resource
computation for task j and the arrival time of task j
in processor queue.

� tv is the time needed for the creation, configuration
and activation of the appropriate virtual machine
that will host a given ISS (tn = tv + tr).

� m is the number of processors that can be used to
handle the instantiation requests.

� (CPUr, Mr, Br, Dr) represents the required resources
for a given ISS, in terms of CPU, memory,
bandwidth and disk space, respectively.

� (CPUc, Mc, Bc, Dc) represents the available capacities
(i.e., the capabilities of the virtualization machine),
in terms of CPU, memory, bandwidth and disk
space, respectively.

� (τcpu, τM, τB, τD) represent the percentage of
resource usage for a given ISS:

○ τcpu is the ratio of CPUr over CPUc.
○ τM is the ratio of Mr over Mc.
○ τB is the ratio of Br over Bc.
○ τD is the ratio Dr over Dc.

Our objective is to propose two algorithms: computa-
tional resource sharing and task scheduling. These algo-
rithms will be used by the IVR instance manager and
the substrate IVR engine, respectively. The computa-
tional resource sharing algorithm should allow the selec-
tion of the required resources (CPUr, Mr, Br, Dr) for each
ISS, while minimizing the amount of resources used as
well as the resource allocation time, and maximizing the
satisfactory factor of the ISS using a specific amount of
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resources. The task scheduling algorithm should minimize
the execution time for the instantiation requests (i.e., tn),
by sharing the instantiation requests among the available
processors as equally as possible. No processor should be
underused while others are overloaded.
Both algorithms are executed during the ISS instanti-

ation, meaning before the IVR application is ready to re-
ceive end-users’ requests. The task scheduling is first
performed by the substrate IVR engine to assign the set
of instantiation tasks to a given number of processors,
and then each processor will run the computational re-
source sharing algorithm to select the resources that
should be assigned to each ISS to be created. These two
algorithms are described in the next section.

Resource management algorithms
Our computational resource sharing and task scheduling
algorithms are based on Genetic Algorithm (GA) [10].
In GA, a population of strings randomly generated from
a set of potential solutions (represented by chromo-
somes) is used to create new populations, based on the
fitness of each individual in the population and by apply-
ing different GA operators, such as selection, crossover
and mutation. The algorithm ends when a targeted fit-
ness level is reached for the population.
In this paper, GA is used to optimize 1) the computa-

tional resource sharing, and 2) the assignment of instanti-
ation requests to different processors provided by the
virtualization machine. For each algorithm, a specific fitness
function and specific GA operators are used. In the compu-
tational resource sharing algorithm, a population is repre-
sented by the resources required by each ISS to instantiate.
This population is of limited size (e.g., CPU, memory, band-
width, disk space). In the task scheduling algorithm, a
population is represented by the instantiation requests. The
size of the population depends on the number of instanti-
ation requests received by the substrate provider.
We first discuss the computational resource sharing,

followed by the task scheduling.

Computational resource sharing algorithm
Each processor performs resource computation for the in-
stantiation request that is assigned to it. As a first step in
the definition of the computational resource sharing algo-
rithm for IVR applications, we performed a set of experi-
mental measurements to quantify the resources used by a
given number of ISSs. This was done using the prototype
from our previous work [4]. The measurements were then
used as input to define the load measurement mathemat-
ical models and the resource computation algorithm to cal-
culate the required resources for each instantiation request
since we don’t have access to real arrival rate data from
IVR providers. We also defined a resource computation fit-
ness function.
Load measurement
Load measurement allows the quantification of the ISS
resource usage according to the number of users accessing
the ISS. It is performed to identify the required resources
(CPUr, Mr, Br, Dr) for each ISS. The measurements were
executed on a system providing a set of ISSs, and that had
the following capacity: CPUc = 1 GHz, Mc = 512 MB,
Dc = 20 GB and Bc = 1 Gbps bit rate. Knowing the system
capacity, we measured the used resources (CPUr, Mr, Br,
Dr) according to different call arrival rates. The results are
given in Figures 2, 3, 4 and 5. From these observed data,
we derived the functional models that fit these data and
that describe the relationship between the number of
users and the usage of each resource CPU, BW, Memory
and Disk space. We started from the models given in
Equation (1) where yCPU, yM, yB and yD are respectively
the CPU, memory, bandwidth, and disk space consump-
tion in percentage according to the call arrival rate (here
the variable λ). We propose to use a linear regression to
model CPU, Memory, disk space and Bandwidth.

yCPU;M;D ¼ a1 λ
5 þ a2 λ

4 þ a3 λ
3 þ a4 λ

2 þ a5 λþ a6
yB ¼ a1λ

4 þ a2 λ
3 þ a3 λ

2 þ a4 λþ a5

�
ð1Þ

For each model, we computed the R-square (coeffi-
cient of determination Rs

2) to assess the accuracy of the
model and how well it fits the measured data. The closer
the value of Rs

2 is to 1, the better the linear regression
models the data. This led to the identification of the
functional parameters ai, i = {1,2,3,…,6} presented in
Equation (2).

yCPU

a1 ¼ 85� 10−14; a2 ¼ −25:26� 10−10;
a3 ¼ 28:91� 10−7; a4 ¼ −14:48� 10−4;
a5 ¼ 34:69� 10−2; a6 ¼ 8:38
Rs

2 ¼ 0:9964

8>><
>>:

yM

a1 ¼ 13:30� 10−14; a2 ¼ −361:93� 10−12;
a3 ¼ 3670:03� 10−10; a4 ¼ −17367:23� 10−8;
a5 ¼ 489:26� 10−4; a6 ¼ 12:21
Rs

2 ¼ 0:9958

8>><
>>:

yD

a1 ¼ −0:10� 10−14; a2 ¼ 3:08� 10−12;
a3 ¼ −19:10� 10−10; a4 ¼ 8:14� 10−8;
a5 ¼ 3:04� 10−4; a6 ¼ 0:07
Rs

2 ¼ 0:9965

8>><
>>:

yB

a1 ¼ 16:92� 10−12; a2 ¼ 73:49� 10−10;
a3 ¼ −48:85� 10−6; a4 ¼ 4:82� 10−2;
a5 ¼ 11:75
Rs

2 ¼ 0:9843

8>><
>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

Resource computation
Resource computation allows the computation of the re-
sources to be allocated for each ISS, in terms of CPU,



Figure 2 CPU usage.
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memory, bandwidth, and disc space. It is performed
using a GA-based method with the sliding window tech-
nique where two dimensional strings are used to repre-
sent the resource computation for each task in each
processor.
Two dimensional strings are used to represent the re-

source computation for each task in each processor. One
string identifies the resource combination types provided
Figure 3 Memory usage.
by the virtualization machine and the second identifies the
required resources for each task. A resource combination
type represents a possible configuration of a virtual ma-
chine that could be created by the virtualization machine.
These resources can be selected separately to configure a
virtual machine that will host an ISS.
In Figure 6, the resource string R1 for instance refers to

an assignment of (CPU = 1 GHz, M = 256 MB, B = 0.250



Figure 4 Bandwidth usage.
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Gbps, D = 1 GB), as defined in Table 1. These are discrete
values as offered by the substrate provider. A substrate
provider may for instance allow to only reserving 256 MB
and its multiples in terms of memory.
Figure 6 shows an example of two-dimensional strings,

where each resource in the second string is identified by

the resource valuesCj
i , where i is the type of resource

(CPU (1), memory (2), bandwidth (3) or disk space (4) and
j is the resources allocated to the instantiation request.
The resources to be allocated to each instantiation request
Figure 5 Disk space usage.
are identified using the resource computation selection,
crossover and mutation methods described in section 5.4.
Two main objectives are defined and used by the re-

source computation fitness function. The first objective is
to maximize the satisfactory factor of each ISS (τcpu, τM,
τB, τD). These values are given by Equation (3). These
satisfactory factors are used as fitness functions for the GA
resource computation algorithm. The closer the satisfactory
factors are to 1, the better the resource usage. If the satis-
factory factors are less than 0.75 or greater than 1, the



Figure 6 Resource sharing.
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resource is under or over loaded, respectively. The second
objective is to minimize the time tr to compute the re-
sources to be allocated. The resource computation selec-
tion, crossover and mutation method proposed in section
5.4 satisfies this objective.

τcpu ¼ ycpu

Cj
1

; j ¼ 1;…;m

τM ¼ yM
Cj

2

; j ¼ 1;…;m

τB ¼ yB
Cj

3

; j ¼ 1;…;m

τD ¼ yD
Cj

4

; j ¼ 1;…;m

ð3Þ
Table 1 Example of resource combination types

Type Capacity

CPU (GHz) RAM (MB) BW (Gbps) Disk space (GB)

1 1 256 0.250 1

2 1.5 512 0.350 2

3 2 1024 0.450 4

4 2.5 2048 0.550 8

5 3 3072 0.650 10

6 3.5 4096 0.750 20

7 4 5072 0.850 30

8 4.5 6096 0.950 40

9 5 7120 1.000 80
Resource computation crossover and mutation
The selection of strings in a population is based on the
models given in Equations (1–2). Knowing the expected
call arrival rate λ for each ISS, the required resources for
each task are estimated using these models. For instance,
if the call arrival rate for a given ISS is λ = 30 requests/
min, then the expected resource usage is:

yCPU ¼ 49:89% � 1GHz ¼ 0:4989GHz

yM ¼ 20:6659%� 512MB ¼ 105:8094MB

yB ¼ 25:31%� 1Gbps ¼ 0:2531Gbps

yD ¼ 0:1629%� 20GB ¼ 0:0326GB

ð4Þ

The expected resource usage levels for small IVR sys-
tems are given in Table 2 (for small-size IVR system, λ ≤60
requests/min). From these expected resource usage levels
we derive the resources to be allocated for each instanti-
ation request by selecting the appropriate strings in the
population described in Figure 6. For instance, an instanti-
ation request with λ = 60 requests/min requires 1.22 GHZ
of CPU, 130.74 MB of memory, 0.35 Gbps of bandwidth
and 0.12 GB of disk space. For this request, the string with
the closest values is selected (i.e., R1 CPU, memory, band-
width and disk space values). We compute the fitness
values using Equation (3). We find τCPU = 1.222, τM = 0.51,
τB = 1.4 and τD = 0.12. The values of the allocated



Table 2 Required resources according to the call arrival
rate

λ requests/min Required resources

yCPU (GHz) yM (MB) yB (Gbps) yD (GB)

15 0.41 92.35 0.21 0.02

30 0.50 105.81 0.26 0.03

45 0.76 118.17 0.27 0.05

54 0.99 123.80 0.32 0.08

60 1.22 130.74 0.35 0.12
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resources should be reduced for fitness values less than
0.75 and increased for a satisfactory factor greater than 1.
Therefore, the CPU and bandwidth values of string R1

(1 GHz and 0.250 Gbps) are swapped with that of string
R2 (1.5 GHz) and 0.35 Gbps) respectively. The memory
and disk space of string R1 remain unchanged because the
allocated resources are the smallest values provided by the
IVR substrate. The population derived from this mutation
process will have a satisfactory factors τCPU = 0.81 and
τB = 1. This new population will be selected to represent
the resources to allocate to the received instantiation request
that guarantee the best resource usage according to the re-
source combination types provided by the ISS substrate.
As a second example, let’s consider the case of an in-

stantiation request where λ = 160. This request requires
3.6 GHZ of CPU, 420 MB of memory, 1.05 Gbps of band-
width and 0.3 GB of disk space. For this request, a virtual
machine with resource type R6 will be selected to host the
new ISS. The memory, bandwidth and disk space of string
R6 are swapped with that of strings R2 (512 MB), R9

(1 Gbps) and R1 (1 GB) respectively, with satisfactory
factors τCPU ≅ 1, τM = 0.82, τB ≅ 1 and τD = 0.3.

Task scheduling
The substrate IVR engine receives a set of instantiation
tasks that should be assigned to a number of processors.
We propose to adapt the task scheduling algorithm pro-
posed in [6] for this purpose. Therefore, we propose to use
a GA-based method to perform load balancing and a slid-
ing window technique to initialize a population of tasks on
which the GA will be applied [6]. This new algorithm is
called ISI GA (Instantiation request scheduling for IVR
based on GA). At each time, the tasks that are within the
window are reordered using the GA selection, crossover
and mutation methods described in Section Task represen-
tation selection, crossover and mutation and then assigned
to the processors for execution. The window is dragged to
the next group, for a repeat of the assignment process,
when the tasks within the window are placed in processor
queues [11]. We first introduce how the set of available
processors and tasks are represented; we then describe our
task scheduling fitness function, and end with the task
scheduling algorithm.
Processor and task representation
The scheduling for parallel processors is represented by
two-dimensional strings. One string identifies the proces-
sors and the other represents the scheduled tasks in each
processor queue [11]. We identify each task with its task
size tn = tv + tr in unit of time, preceded by the number n
of tasks to be scheduled in the system (e.g. 2(tv + tr)). For
the example presented in Figure 7a, the processors’ string
will include the list of available processors. To perform the
GA algorithm, the strings are converted from two-
dimensional to one as shown in Figure 7b.
From the experimental measurements we carried out

using the implemented prototype and 8 processors, we
noticed that the tv value is the same for all ISSs. How-
ever, the tr differs from one ISS to another. This is one
of the differences between the original scheduling and
the adapted algorithms. In the original algorithm (pro-
posed in [6] and [11]), the tn value for each individual in
a GA population is supposed to be known in advance
and is the same for each individual in the population.
For the ISS instantiation scheduling, the tv is known in
advance but tr should be computed using our proposed
computational resource sharing algorithm. This may re-
sult in a different tn value for each individual in the same
population.

Task representation fitness function
The fitness function allows the evaluation of the task
scheduling performance according to specific objectives.
The main goal here is to identify task assignments that
guarantee maximum processors utilization, to balance
the traffic load across processors and to guarantee mini-
mum execution time of tasks.
In [6], the following objectives apply: 1) a minimization

of the largest task completion time (i.e., Maxspan) across
processors to guarantee that assignment tasks will be exe-
cuted in the shortest time possible [8]; 2) increase of the
average processor utilization based on the Maxspan value,
and 3) optimization of the number of tasks in each proces-
sor queue, in order to ensure proper load balancing across
the processors.
We propose to combine the first and the second ob-

jectives by defining the TaskSpan as the difference be-
tween the largest task completion time and the smallest
task completion time among all the processors in the
system. The TaskSpan is calculated as in Equation (5),
where n is the number of tasks in each processor queue.

TaskSpan¼ max
i¼1;…;m

Xn
j¼1

tv þ trj
� � !

− min
i¼1;…;m

Xn
j¼1

tv þ trj
� � !

ð5Þ
In the example given in Figure 8, we assume that tv is

equal to 6 units of time and the times tr to compute the



Figure 7 Task scheduling: (a) two-dimensional task scheduling strings: one identifying the processors and the other the scheduled
tasks. (b) Conversion of two-dimensional task scheduling strings into one dimensional string.
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required resources for tasks 1 to 10 are respectively 4, 3,
8, 9, 8, 5, 7, 10, 8 and 12.
Then, the processor 1 will execute tasks 2, 5, 1 and 6

within 44 units of time. Tasks 4 and 7 will be executed
on processor 2 within 28 units of time, while tasks 3,
9, 8 and 10 will be executed within 44 and 18 units of
time, respectively. Therefore, the TaskSpan for this
task schedule example is 26 (Equation (6)).

TaskSpan ¼ max
i¼1 ;:::;4

44; 28; 44; 18ð Þ � min
i¼1 ;:::;4

44; 28; 44; 18ð Þ ¼ 26

ð6Þ
We propose to use the difference between the lar-

gest and the smallest task completion times rather
Figure 8 TaskSpan.
than the MaxSpan value (as used in [6] and [8]) be-
cause guaranteeing a minimum TaskSpan value not
only ensures a shorter task completion time but also a
proper load balancing between all processors.
The second objective that we propose to define is

the average processor utilization value. In [6], this
value is the sum of all processor utilization levels by
the total number of processors. Each processor
utilization is calculated by dividing the task comple-
tion time by the MaxSpan value. The higher the aver-
age processor utilization, the better is the load
balancing across the processors [6]. However, this ob-
jective does not guarantee that the load is well
balanced across processors. We propose to define a
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utilization factor U of all processors as the product of
all processor utilizations.

U ¼
Ym
i¼1

ð

Xn
j¼1

tv þ trj
� �

MaxSpan
Þ ð7Þ

Using the example given in Figure 8, this will lead to:

P1 :

Xn
j¼1

tv þ trj
� �

MaxSpan
¼ 24þ 3þ 8þ 4þ 5

44
¼ 44

44
¼ 1

P2 :

Xn
j¼1

tv þ trj
� �

MaxSpan
¼ 12þ 9þ 7

44
¼ 28

44
¼ 0:64

P3 :

Xn
j¼1

tv þ trj
� �

MaxSpan
¼ 18þ 8þ 8þ 10

44
¼ 44

44
¼ 1

P4 :

Xn
j¼1

tv þ trj
� �

MaxSpan
¼ 6þ 12

44
¼ 18

44
¼ 0:41

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ

Therefore, the U for this task schedule will be 0.26
and the average utilization value as defined in [6] will be
0.76. If we assign task 6 to processor 4 rather than to
processor 1 in order to better balance the load in term
of task completion time, this lead to:

P1 :

Xn
j¼1

tv þ trj
� �

MaxSpan
¼ 18þ 3þ 8þ 4

44
¼ 33

44
¼ 0:75

P2 :

Xn
j¼1

tv þ trj
� �

MaxSpan
¼ 12þ 9þ 7

44
¼ 28

44
¼ 0:64

P3 :

Xn
j¼1

tv þ trj
� �

MaxSpan
¼ 18þ 8þ 8þ 10

44
¼ 44

44
¼ 1

P4 :

Xn
j¼1

tv þ trj
� �

MaxSpan
¼ 12þ 12þ 5

44
¼ 29

44
¼ 0:66

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð9Þ

The utilization factor is then equal to 0.31, but the
average utilization value as defined in [6] will remain un-
changed 0.76. Therefore, the greater the utilization fac-
tor, the better the load balancing.
TaskSpan and utilization factor U are the two main

objectives used by the fitness function of the GA task
scheduling algorithm we propose. This function is de-
fined as follow:

f ¼ U
TaskSpan

ð10Þ

The higher the fitness function, the better is the task
scheduling. The single objective function f derived from
this multi-criterion optimization problem reduces the
problem’s complexity while satisfying the multiple objec-
tives predefined. Using a single objective function also
helps in meeting our requirement on minimizing the
execution time for the instantiation requests, as multi-
objective functions are known to require a longer pro-
cessing time.

Task representation selection, crossover and mutation
We propose to reuse the selection, the crossover and the
mutation methods described in [6]. The selection oper-
ator is based on the roulette wheel method [10]. In this
method, the selection of strings in a population is based
on their fitness values. These values are used to assign a
probability of being selected to each string. These prob-
abilities are computed by dividing the fitness of each
string by the sum of the fitness values of the current set
of strings in the population. The slots of the roulette
wheel are created by adding the probability of the
current string to the probability of the previous string.
The probabilities are then assigned until the value of 1 is
reached. Then, the strings are selected randomly by gen-
erating a random number between 0 and 1. To perform
the crossover operation, the selected strings are then
converted from two dimensions to one. We use this two
dimensions string to balance the number of tasks across
the processors. For instance, for 12 tasks and 8 proces-
sors, this procedure ensures that each processor will
have at least one task, and no more than 2 tasks. Hence,
8 tasks are allocated to 8 processors and 4 tasks are ran-
domly assigned to 4 processors. This will allow the GA
to converge for a fixed number of generation cycles.
The crossover operator is based on the cycle crossover

method [6]. In this case, two one dimension strings S1
and S2 are selected. The crossover operation begins by
selecting a random starting point between 1 and the
length of the strings S1 and S2. Let us assume that this
starting point is S1,n which denotes the task at the pos-
ition n in string 1. This task is marked as finished, and
its corresponding task at S2,n is then also marked off as
finished. The task in S1whose position is the value of S2,n
is marked as finished and its corresponding task in S2is
then marked off as finished as well. This process ends
when the starting point S1,n is reached once again. Then,
the remaining tasks S1,n that were not marked off are
swapped with their corresponding tasks in S2 (e.g., S1,4 is
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swapped with S2,4). When all tasks in the two strings are
crossed over, they are reordered and converted to a two-
dimensional form to compute their new fitness values.
The third GA operator is based on swap mutation. It

randomly selects and then swaps two tasks. Each task is
taken on randomly selected processors which should be
different in order to ensure that the two selected tasks
are not the same. New fitness values are then computed
using the population derived from this swapping muta-
tion process.
Performance results and analysis
For the computational resource sharing algorithm, we
propose to compare the required resources (CPUr, Mr,
Br, Dr) with the allocated ones. The required resources
are estimated based on Equations (1–2), whereas the al-
located ones are estimated using the proposed GA com-
putational resource sharing algorithm. The comparison
will allow us to see if the example of resource combin-
ation types given in Table 2 and which is usually used in
cloud computing environment is suitable to well manage
the available resources (CPUc, Mc, Bc, Dc).
For the instantiation request scheduling algorithm, we

compute the total completion times and average proces-
sors utilization in order to compare the resource usage
efficiency of the proposed fitness function with those an-
alyzed in [6] (dynamic and random algorithms). We
choose to compare with the dynamic algorithm because
it is the basis of our algorithm which we enhanced; and
with the random algorithm because the dynamic one
was compared to it. The different proposed algorithms
were simulated using Matlab and the results were mea-
sured via the same simulator.
Figure 9 Required and allocated CPU.
Computational resource sharing
The required and allocated CPU, memory and band-
width were computed according to the call arrival rate.
As described in Table 2, the required resources for call
arrival rates less than 60 requests/min are less than 1
GHZ of CPU, 256 MB of memory, 350 Mbps of band-
width and 1GB of disk space. Because the performance
measurements are too small for a small-sized IVR, we
computed the required and allocated resources for a
large-sized IVR (i.e., for λ ≥60 requests/min).
For instance, for λ = 60 requests/min, the required

CPU was almost 1.2 GHz and the estimated resource
was 1.5 GHZ which represents a typical resource com-
bination type provided by the virtualization machine.
The required memory was almost 131 MB and the esti-
mated resource was 256 MB. The required bandwidth
was almost 350 Mbps and the estimated resource was
350 Mbps. For its part the required disk space was very
small even for higher call arrival rates (e.g., λ = 600 re-
quests/min) always staying under 1GB. This is due to
the nature of the IVR applications, which need little disk
space. The disk space measurements were therefore not
included in this section because the estimated value was
the same (i.e. 1 GB).
As shown in Figures 9, 10 and 11, the required and al-

located resources increased as the call arrival rates were
increased. These performances were expected because
each IVR call requires specific ISS resources (CPU,
memory and bandwidth) to be executed. In Figure 9, the
difference between the required CPU and the allocated
value was small and according to the CPU satisfactory
factor (Figure 12) the resource usage percentage was
greater than 90%.
For λ greater than 350 requests/min, this percentage

was more than 95%. The required and the allocated



Figure 10 Required and allocated bandwidth.
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bandwidth were almost the same and the bandwidth
usage was almost 100% (Figure 12). The required and al-
located memory measurements were different due to the
fact that the sizes of the resource combination types were
predefined 256, 512, 1024, etc. For instance, for λ = 60 re-
quests/min the required memory was almost 131 MB
while the allocated memory was 256. Only half the cap-
acity memory was therefore used. For λ = 100 requests/
min, the required memory was almost 500 MB and the
Figure 11 Required and allocated memory.
allocated memory was 512 MB, representing 97% memory
usage. Therefore, for a large-sized IVR, the higher the in-
stantiation request arrival rate, the higher the percentage
of CPU and Bandwidth resource usage. Unlike the CPU
and bandwidth performance improvement in terms of re-
source usage, Figures 11 and 12 show that the memory
usage was efficient.
In fact, the memory resource needs for an IVR appli-

cation are small. The difference between the required



Figure 12 CPU, memory and bandwidth satisfactory factors.

Table 4 Default simulation values

Variation of Variation of Variation of
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memory and the allocated value varies according to the
instantiation request arrival rate (Figure 11). The per-
centage of the resource usage varies from 50 to almost
100% for instantiation request arrival rates less than 250
requests/min and varies from 70% to 100% otherwise.
We also compute the time required to allocate resources
and to serve all the IVR instantiation requests. The com-
putational resource sharing was fast because the slicing
window technique allows reducing the total number of
iteration of the GA algorithm. Table 3 gives some values
of the required time according to the number of IVR in-
stantiation requests.
As a conclusion, the resource combination types usually

used in cloud environments do not allow for efficient re-
source usage. New combination types are therefore needed.

Instantiation request scheduling
We computed the total completion times and average pro-
cessor utilization according to the number of tasks, the
sizes of window and number of generation cycles. These
performances were compared to dynamic GA as well as to
random allocation strategies that were analyzed in [6].The
dynamic algorithm is based on the selection, crossover
and mutation methods described in 5.3.
A set of tests were performed using the following de-

fault values: 100 instantiation requests, 8 processors,
Table 3 Time required allocating resources

Number of IVR instantiation requests Required time (seconds)

14 0.38

18 0.46

22 0.62

24 0.86
window size of 10 requests, generation cycles of 10 and
population size of 10. As instantiation requests’ length
(tn) we used 20 units of time for the following three rea-
sons. First, this is the average time measured using the
implemented IVR prototype: tv = 6 ms and tr = 14 ms in
average given the prototype setup. The second reason is
that we wanted to compare our algorithm to those of
reference [6] which use the same task size for all of the
individuals in the population. Third, using a fixed tn
value will not affect the performance of our algorithm.
We have also tested the proposed algorithm for different
numbers of generation cycles (10, 20, and 30) and we
noticed very slight changes.
To compute the total completion time and the average

processor utilization, the test parameters were set to the
default values and we varied the number of tasks from 0
to 1500. These values are summarized in Table 4.
As shown in Figure 13, the total completion time for

the three algorithms increased as the number of tasks
increased.
Hence, the higher the number of tasks to be sched-

uled, the longer is the total completion time. Moreover,
the instantiation request scheduling algorithm provided
number of tasks window size generation size

Number of
processors

8 8 8

Window size 10 10 to 60 10

Generation
size

10 10 10 to 60

Number of
tasks

0 to 1500 0 to 1500 0 to 1500



Figure 13 Completion time according to number of tasks.
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a better performance than the two other algorithms. In
Figure 14, the average processors utilization is much
higher for instantiation request scheduling algorithm
than for the dynamic and the random algorithms. The
means of these utilizations were 0.83, 0.74 and 0.58
for instantiation request Scheduling, dynamic and ran-
dom algorithms, respectively. These performance be-
haviors are due to the fact that the instantiation
request scheduling algorithm provides a fitness func-
tion that guarantees a better processors utilization and
the faster task execution times than those defined for
Figure 14 Processors utilization according to number of tasks.
the dynamic and random algorithms. It therefore re-
quires less processing.
We also computed the total completion time and the

average processor utilization according to the window size.
Figures 15 and 16 both illustrate these performances for
10 tasks.
The total completion time decreased as the window size

was increased and the average processor utilization im-
proved as the window size increased for instantiation re-
quest and dynamic algorithms. Moreover, the instantiation
request scheduling algorithm outperformed the dynamic



Figure 15 Completion time according to window size.
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scheduling and random algorithms. This performance im-
provement shows that the increasing number of tasks to
be scheduled was well handled by the 8 processors.
Furthermore, we analyzed the effect of the number of

generation cycles on the instantiation request scheduling
algorithm. We varied the number of generation from 0
to 60 for a 10 request window size and a task number of
10. Figures 17 and 18 show the total completion time
and average processor utilization according to the num-
ber of generation cycles. The total completion time and
Figure 16 Processors utilization according to window size.
the average processor utilization decrease as the number
of generation cycles increase. A significant reduction in
completion time and improvement in processor utilization
were noticed when varying the number of generation cy-
cles from 10 to 30. These performances were expected be-
cause increasing the number of generation cycles improves
the task assignment quality.
However, through the simulation we noticed that after a

certain number of generation cycles (~25 cycles), the aver-
age processor utilization results are slightly different. This



Figure 17 Completion time according to number of generation.
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finding can be used to configure an upper limit for the
generation cycles, in order to meet our requirement on
minimizing the algorithm execution time. Moreover, the
instantiation request scheduling performed better than the
dynamic and random algorithms. As a conclusion, the
proposed instantiation request scheduling algorithm out-
performs the dynamic and random algorithms in almost
all of the taken measurements. Furthermore, the algorithm
performances are enhanced when the windows size is in-
creased and the number of generation cycles increases.
Figure 18 Average Utilization according to number of generation.
State of the art review
This work joins many efforts devoted to task scheduling
and load balancing across processors or computers in non-
virtualized and virtualized environments. It complements
them by defining new task scheduling and computational
resource sharing strategies based on genetic algorithms for
virtualized IVR application. Moreover, it proposes new task
assignment that guarantees maximum utilization of
resources while minimizing the execution time of tasks for
virtualized IVR applications. We also propose a
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resource allocation strategy that minimizes substrate
resource utilization and the resource allocation time.
The issue of load balancing based on genetic algorithm

in non-virtualized environments has been addressed in
[6-8]. It has been addressed by Y. Albert Zomaya et al.
in [6] to propose a framework for using genetic algo-
rithm to solve scheduling problem for parallel processor
systems and to highlight the condition under which this
algorithm outperform the ones based on heuristics. The
genetic algorithms proposed in this paper are based on
this framework.
In [11], authors propose task scheduling algorithm to

achieve minimum execution time, maximum processor
utilization and optimal load balancing across different
processors by defining tree objective functions. In this
work, we have demonstrated how two of these objective
functions did not guarantee minimum execution time
and maximum processor utilization and this independ-
ently of the virtualized application to which the sched-
uled tasks belong. We have proposed new objective
functions that maximize resource utilization while min-
imizing task execution time. Several task scheduling
methods based on modified genetic algorithm have been
proposed [12-14]. In [12,13], authors propose to modify
GA to control the task duplication and reduce the length
of the processor queues. In [14], a modified genetic algo-
rithm is proposed to handle task scheduling in parallel
multiprocessor systems. Unfortunately, these modified
algorithms yield to task scheduling time greater than
that obtained with non-modified GA.
In [8], genetic-based algorithm has been proposed

where a dedicated processor has been used to schedule
tasks across processors. This paper has shown that this
algorithm outperforms a genetic algorithm based on
first-in first-out scheduling approach. However, these
performances depend on the number and the distribu-
tion of tasks being executed. Moreover, it uses the same
objective function as defined in [11]. We believe that
this objective function that allows minimization of the
largest task completion time does not guarantee the
minimum execution time.
The load balancing issue based on genetic algorithm

has also been addressed in virtualized computing envi-
ronments [11,15,16]. In [11] and [15], authors propose
to minimize task execution time by using an objective
function that minimizes the largest task completion time
as defined in [11] and [8].
In [16], author proposes task scheduling algorithm for

Hadoop MapReduce framework. This framework is used
to satisfy the data-processing needs in environments where
high parallel computing and huge data storage are needed.
The proposed genetic algorithm is based on statistical
prediction model KCCA (Kenel Canonical Correlation
Analysis) to identify the expect task execution time [16,17].
However, this paper neither describes how KCCA is used
to predict the task execution time nor gives performance
analysis of such algorithm. In [18], authors have described
a non-genetic scheduling algorithm based KCCA and dem-
onstrated that KCCA could be a good prediction mechan-
ism. They stress the need for the task scheduling in
Hadoop but not for optimizing resource usage in cloud en-
vironment (ex., CPU, memory, etc.). In our work, we have
addressed this issue too. This issue has been also neglected
by some research projects on grid computing [19,20]. Sev-
eral research projects tackle the task scheduling issue in
cloud for many applications like workflow and e-learning
applications [21-24], but no resource optimization mechan-
ism is provided in order to guarantee both efficient task
scheduling and resource usage. Finally to the best of our
knowledge, these two issues have been recently addressed
in [25].
Our work is similar to this effort in that it considers the

optimization of each required resource (CPU, memory,
disk space, Bandwidth) according to specific applications
needs: IVR application.

Conclusion
This paper proposes two resource management-related al-
gorithms for virtualized IVR applications. The first algo-
rithm concerns computational resource sharing, whereas
the second relates to the scheduling of IVR application in-
stantiation requests. Both algorithms are GA-based and
they both consider several objectives regarding the
optimization of resource usage and sharing at the sub-
strate layer. The scheduling algorithm maximizes re-
sources utilization while minimizing task execution time.
The computational resource sharing algorithm minimizes
the substrate resource utilization and the resource alloca-
tion time while maximizing the satisfactory factor of IVR
applications.
The performance measurements conducted showed

that the proposed algorithms are promising. Indeed,
compared to dynamic and random algorithms, the pro-
posed instantiation request task scheduling GA outper-
formed in terms of total completion time and average
processors utilization. The computational resource shar-
ing algorithm allows efficient CPU and bandwidth usage.
However, due to the resource combination types used
and because the memory resource needs are small for
IVR applications, the memory resource usage was not
that efficient.
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