
J Braz Comput Soc (2010) 16: 97–115
DOI 10.1007/s13173-010-0010-6

O R I G I NA L PA P E R

A multi-criteria distribution model for global software
development projects

Ansgar Lamersdorf · Jürgen Münch

Received: 18 December 2009 / Accepted: 23 April 2010 / Published online: 30 May 2010
© The Brazilian Computer Society 2010

Abstract The allocation of development tasks to sites is one
of the most important activities in the management of global
software development projects. Its various influences on the
risks and benefits of distributed projects require careful con-
sideration of multiple allocation criteria in a systematic way.
In practice, however, work is often allocated based on only
one single criterion such as cost, and defined processes or
algorithms for task allocation are typically not used. Exist-
ing research approaches mainly focus on selected aspects
such as the minimization of cross-site communication and
are difficult to adapt to specific environments. This article
presents a customizable multi-criteria model for task alloca-
tion in global software development projects. Based on an
analysis of the state of the practice, a set of requirements
was derived and used for evaluating existing task allocation
models from different domains. The Bokhari algorithm was
identified as a suitable starting point and modified with re-
spect to the fulfillment of the requirements. The modifica-
tion includes the development of mechanisms for customiza-
tion, the incorporation of cause-effect relationships, and the
use of probabilistic modeling of uncertainty with Bayesian
networks. The application of the model is demonstrated in
different scenarios that represent typical hypothetical and
real distribution decision problems in industrial contexts.
Experience from applying the model to such problems has

A. Lamersdorf (�)
Software Engineering Research Group: Processes and
Measurement, University of Kaiserslautern, PO Box 3049,
67653 Kaiserslautern, Germany
e-mail: a_lamers@informatik.uni-kl.de

J. Münch
Fraunhofer Institute for Experimental Software Engineering
(IESE), Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
e-mail: Juergen.Muench@iese.fraunhofer.de

shown, for instance, that depending on the weight of dif-
ferent criteria, very different task distributions will result.
This demonstrates, in consequence, the need for systematic
multi-criteria task allocation support in global software de-
velopment.

Keywords Global software development · Project
management · Task allocation · Work distribution · Work
assignment · Bayesian networks

1 Introduction

Global Software Development (GSD) can be seen ambiva-
lently: On the one hand, there are enormous potential ben-
efits in distributing development work globally, such as de-
creased labor cost rates, access to a worldwide talent pool,
and the possibility of developing in a follow-the-sun model
[1, 2]. On the other hand, many problems are reported that
are due to the immanent characteristics of distributed de-
velopment and that, despite the recent improvements in col-
laboration technology, have not been overcome yet: Prob-
lems in communication, coordination, and control (for ex-
ample, caused by cultural and language differences) [3–5],
difficulties in knowledge transfer [6], and issues regarding
the protection of intellectual property [7] are just a few ex-
amples. These problems can result in decreased productiv-
ity [8], loss of motivation [9], and a generally lower project
success rate [10] and may also contribute to the trend toward
“nearshoring” [11] or raise voices that argue for not starting
GSD at all [12].

The high number of both potential benefits and problems
of GSD show that successful implementation of distributed
development requires an emphasis on project management
[13], which in GSD especially includes project planning and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81071142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:a_lamers@informatik.uni-kl.de
mailto:Juergen.Muench@iese.fraunhofer.de


98 J Braz Comput Soc (2010) 16: 97–115

organizational design [3, 14]. One central aspect here is the
allocation of work to distributed teams [15, 16]. In contrast
to collocated development, the assignment of work not only
determines the quality and expertise of the workforce, but
also establishes the communication structure between sites,
and thus has a direct impact on the severity of GSD-specific
risks such as communication and coordination problems.
Therefore, the distribution of work across sites (i.e., “task al-
location”) is an activity that needs to be thoroughly planned
and systematically done in GSD.

In practice, however, work organization and task assign-
ment in GSD are usually not done systematically and the
result of different planning strategies and their impact on
the performance of distributed development projects is of-
ten unknown [13, 14, 17]. Instead, work is often distributed
based only on simple criteria such as labor cost [18, 19].

In this article, we present TAMRI (Task Allocation based
on Multiple cRIteria), a model for supporting a systematic
task allocation decision in distributed development projects
that is based on multiple criteria and influencing factors.
Reusing algorithms from task allocation in distributed sys-
tems as well as Bayesian networks for describing causal re-
lationships under the aspect of uncertainty that is inherent
to human behavior, the model is able to deliver a weighted
list of task assignment suggestions with respect to specific
project goals and characteristics. The influencing factors and
causal relationships of the decision model were collected in
an empirical study consisting of both a literature review and
an interview study with experienced practitioners and man-
agers of GSD projects. We will demonstrate the applicability
of the approach in two scenarios. One is based on a detailed
scenario for planning a distributed project [20]. The second
scenario is based on a detailed study of global software de-
velopment at Lucent [8], for which task allocation models
have already been proposed [21].

Specific aspects of the model development and applica-
tion have already been published [20, 22–24]. In addition to
these publications, this article contributes a demonstration
on how these aspects are built on each other, an integra-
tion with our current status of work, and an extension that
presents new application scenarios and provides an exten-
sive discussion of the model.

The remainder of this article is structured as follows.
First, the state of the practice in GSD task allocation is an-
alyzed, resulting in a list of requirements for a task distri-
bution model (Sect. 2). In Sect. 3, these requirements are
used to analyze existing task distribution approaches both in
GSD and in other domains. Section 4 introduces both the
theoretical concepts and the implementation of the model.
In Sect. 5, the empirical study conducted for gathering the
causal relationships and influences of work distribution on
project performance is presented. Section 6 demonstrates
the application of the model in different scenarios, followed
by a discussion of the model in Sect. 7.

2 State of the practice

The following section describes the results of a study on the
practice of task allocation in GSD [23] and derives a set of
requirements for a task distribution approach.

2.1 Task allocation practices

We conducted a qualitative interview study with practition-
ers from various companies in order to identify the practice
of task allocation and the applied criteria [23]. The main re-
search questions of the study were:

Question 1: What is the organization’s general background
in global software development?

Question 2: Which criteria are applied for task allocation in
GSD projects?

The complete study can be found in the respective publica-
tion [23]; here, we will focus only on a brief summary of the
findings related to task allocation.

We interviewed 12 subjects that came from 11 companies
in many different application domains, such as satellite de-
velopment, educational software, and software services, and
were based in the US, India, and Europe. They thus cover
a large proportion of existing global software development
types.

Interviews were conducted in a semi-structured form,
containing a mixture of both open and closed questions,
which is very common for qualitative studies in Software
Engineering [25]. The interviews were held primarily in per-
son. Some of them, however, had to be conducted over the
telephone since some interviewees were unavailable in per-
son. With the exception of two interviews for which detailed
notes were taken, all of the interviews were recorded and
transcribed literally. The transcribed interviews were ana-
lyzed using selective and axial coding [25].

One of the first results of the interview analysis was that
the interviewees’ answers regarding task allocation within
a specific project differed to a very large extent: They did
not only describe different criteria for task allocation but
also talked about very different ways of distributed devel-
opment and task allocations. Therefore, in order to make the
results comparable, the answers had to be grouped into sev-
eral types (see Fig. 1 for the types).

A first type of distributed development identified was
software development outsourcing. However, from the
client’s perspective, task allocation here means rather part-
ner selection. Usually, after the activities have been assigned
to a contractor, the client has little or no influence on the al-
location of tasks to sites by the contractor. We thus excluded
the case of software development outsourcing from our fur-
ther studies.



J Braz Comput Soc (2010) 16: 97–115 99

Fig. 1 Types of distributed software development

Table 1 Criteria for task allocation in standard and custom software
development

Standard software development Custom software development

Expertise Availability

Proximity to market Expertise

Labor costs Proximity to client

Turnover rate Labor cost

Availability Strategic planning

Strategic planning Personal reasons

Maturity of site Political decisions

Development quality

Personal trust

Product architecture

Time differences

Cultural differences

Willingness at site

Within in-house development, we found a significant dif-
ference between standard and custom software develop-
ment. A standard software development organization sells a
standardized software product to many different customers.
Often, those organizations create a relatively large amount
of proprietary knowledge and technology that is contained in
specialized teams. Consequently, the expertise of the teams
was the most important criterion for task allocation.

In custom software development, an organization devel-
ops individual software for clients. Compared to standard
software development, the specialization and the creation of
proprietary technology are usually much lower. Here, the ex-
pertise of the workforce was also an important criterion for
task allocation. However, in contrast to standard software
development, work was also frequently assigned based only
on availability—tasks were assigned to sites just because
there were people available. Table 1 gives an overview of
the identified criteria for task assignment with descending
order of importance.

In both types of distributed software development, how-
ever, many commonalities were also identified in the way
work is allocated: No company had a specific or systematic
process of allocating work; it was in all cases done based
solely on the expertise and estimations of the involved deci-

sion makers. Even though a large list of criteria was named
over all interviews, the individual decisions at the specific
companies were usually based only on a few criteria with no
systematic process of eliciting them.

Finally, the interviewees were also asked about problems
in distributed development and factors causing these. Inter-
estingly, they named a large number of factors here that
were not considered in task allocation. For example, most
of them reported problems caused by cultural differences
between sites. However, only one interviewee said that in
his project, cultural differences were regarded in the deci-
sion on where to assign work. This demonstrates a need for
systematic decision-making in task allocation for global de-
velopment that includes all relevant criteria and influencing
factors that can cause the specific problems of global devel-
opment.

2.2 Requirements for systematic work distribution

Based on the result of the interview study, the main prob-
lems for task distribution in industrial global software de-
velopment we identified are: (1) There is no awareness of
the impact of task assignment on project results and (2) task
distribution in GSD is neither goal- nor risk-oriented. We
thus formulated the following requirements for an approach
to supporting systematic task allocation in GSD:

REQ 1. Evaluation of assignments based on criteria and in-
fluencing factors: It must be possible to evaluate and com-
pare different assignments in order to select the most suit-
able. This must be done with respect to several possible cri-
teria (e.g., development cost, expected quality) and influenc-
ing factors (e.g., cultural differences, workforce ability).

REQ 1.1. Use of multiple criteria and factors: As there are
various possible criteria and influencing factors, it must be
possible to regard several of them at the same time (and, for
example, not just focus on labor cost rates alone). The cri-
teria may sometimes even represent conflicting goals (e.g.,
cost minimization vs. development time reduction).

REQ 1.2. Empirical basis for criteria and factors: There are
many possibilities regarding criteria and influencing factors
that could be considered in task assignment. The specific im-
pact of a certain influencing factor on project goals is also
unknown. This data can only be gathered in empirical stud-
ies that analyze the practice of distributed development. The
approach therefore has to be based on empirical studies.

REQ 1.3. Consideration of site-specific characteristics: The
interviews show that task allocation has to take into account
specific characteristics of sites, such as the maturity of a site
and the ability to work on a specific task. Thus, it must be
possible to consider these characteristics.

REQ 1.4. Consideration of distributed overhead: Similarly,
the interviews show that dependencies between tasks and



100 J Braz Comput Soc (2010) 16: 97–115

between sites have to be considered, as they impact the prob-
lems of distributed development (e.g., cultural differences
between sites and coupling between tasks at different sites
impacting communication overhead). They thus have to be
regarded, too.

REQ 2. Causal relationships between influencing factors
and criteria: Some influencing factors might have complex
interactions with each other and with possible criteria: For
example, a time shift between sites can, one the one hand,
reduce total development time in a follow-the-sun scenario
(however, only under certain circumstances such as high
process maturity) and, at the same time, it can increase de-
velopment costs due to the increased overhead in commu-
nicating across time zones. Therefore, it must be possible
to systematically regard these types of causal relationships
between influencing factors and criteria.

REQ 3. Ability to make assignment suggestions: An ap-
proach for decision support should be able to deliver sug-
gestions for task assignment. This should be done on an al-
gorithmic basis, since there may exist an exponentially large
number of possible work assignments. The approach should
thus also have a certain degree of formality.

REQ 4. Adaptability: In different projects, there might be
different project goals with different weights (e.g., cost,
time, quality). It must be possible to adapt the goals to
project-specific environments by adding or removing goals.
In addition, it can depend on the organizational and project-
specific context which factors are relevant for a certain task
allocation decision. Thus, it must also be possible to add or
remove influencing factors.

3 Related work

The following section analyzes related work in decision sup-
port for task allocation. There exists a small body of re-
search on task allocation for GSD, but similar problems are
also considered in other domains such as distributed pro-
duction (where the problem is to distribute production tasks
across a network of sites) and distributed systems (where
computation tasks are assigned to processor nodes). The ap-
proaches presented here will be evaluated against the previ-
ously stated requirements. Afterward, selected approaches
are introduced in greater detail.

3.1 Description of the approaches

Some empirical studies in global software development
aimed at identifying the practice of task allocation and tried
to identify criteria, similar to the study presented in Sect. 2:
Grinter, Herbsleb, and Perry [26] identified different ways

of how distributed work is organized, e.g., by functional ex-
pertise, product structure, or process steps. Edwards et al.
[16] looked at specific criteria for task assignment to indi-
viduals and identified individual expertise and availability as
the most popular criteria. Westner and Strahringer [27] also
performed a similar study from the perspective of selecting
project candidates for offshore development. However, these
studies only tried to analyze the practice of task allocation
and did not aim at providing decision support. As the fo-
cus of our work is on decision support in task distribution,
we will in the following concentrate on related work regard-
ing the analysis of task distributions or support for decision
making.

Mockus and Weiss [21] developed a model for optimiz-
ing work assignments (which in this case are represented as
sets of files) that tries to minimize cross-site communica-
tion for modification requests, i.e., changes to existing files.
Based on this model, it was possible to formulate an algo-
rithm for automated identification of optimal work distrib-
utions. In the Global Studio Project [28, 29], a less formal
distribution approach was developed, in which the work was
split up into coherent packages together with their required
knowledge and temporal dependencies. Based on this data
and the knowledge of the teams, the packages were assigned
manually. Madachy [30] developed a cost model for esti-
mating effort in distributed projects that is based on COCO-
MOII [31] and allows for comparing different assignments
and selecting the most cost-effective one. Similarly, Sooraj
and Moahapatra [32] developed an index that can be used for
evaluating different task allocation alternatives with respect
to coordination overhead. Setamanit et al. [33, 34] suggest
a simulation model for studying different task allocation al-
ternatives.

A much different approach presented by Fenton et al.
[35] uses Bayesian networks for analyzing and evaluating
software development projects. As Bayesian networks are
very flexible and can be adapted to organization-specific en-
vironments, they can also be used for evaluating task distri-
butions. The model proposed by Fenton already contains a
subnet for distributed communications and management.

In distributed productions, models have been devel-
oped for optimally assigning production work to distributed
plants. As the problem of finding an optimal plant (i.e., site)
for a production (i.e., task) while systematically considering
the overhead for exchanging artifacts between plants (i.e.,
communication overhead) is, on an abstract level, very sim-
ilar to the assignment problem in GSD, these models were
also taken into consideration. Chen and Wang [36] present a
distribution model for steel production with the goal of min-
imizing transport and production costs. The optimal assign-
ment is calculated using linear programming. Similarly, Co-
hen and Moon [37] developed an approach and algorithms
for assigning work to plants, with the goal of minimizing



J Braz Comput Soc (2010) 16: 97–115 101

overall costs while satisfying all demands. A more complex
model was developed to optimize the distribution of car pro-
duction at BMW [38]. Here, the goal is also minimization
of the overall costs, but investment planning is regarded as
well.

A third domain was the area of distributed computer sys-
tems. Here, the problem lies in assigning a set of interrelated
computing tasks to processors with respect to both computa-
tion time and communication, which is again very similar to
the problem of GSD. Bokhari [39] developed an algorithm
that assigns software modules to nodes with the objective of
minimizing the weighted sum of communication and exe-
cution costs. For dynamic job assignment, Amir et al. [40]
developed a distribution model that, based on the expected
resource usage of incoming jobs, assigns jobs with the ob-
jective of minimizing the overall slowdown. Very similar is
the File Allocation Problem for assigning files to network
nodes, for which Chu [41] presented a mathematical model
aimed at minimizing both storage and transmission costs.

3.2 Evaluation

Table 2 presents the results of the evaluation of the presented
approaches against the previously stated requirements [22].
The approaches already existing within GSD focus only on
selected aspects in decision support: Except for the empir-
ical studies, none of them regards both site characteristics
and the effects of distribution overhead together. In addition,
only the approach by Mockus and Weiss is able to give deci-
sion support by algorithmically selecting assignments out of
all possibilities. Most of them are not truly multi-objective,
either; only isolated goals are considered.

Distribution models within the production domain are
more suited for making assignment suggestions. However,
they only focus on cost minimization and are therefore not
multi-objective. Besides, they have a strong focus on model-
ing production facilities while neglecting the details of tasks.

Approaches from the distributed systems domain seem
to fit better to the requirements. Particularly, the model
by Bokhari considers both site specific characteristics (i.e.,
characteristics of the processors) and the overhead of distri-
bution properties while at the same time being able to make
assignment suggestions.

Of all analyzed approaches from related work, none ful-
fills all requirements. However, it can be seen that a com-
bination of the Bayesian network approach with the proces-
sor allocation algorithm by Bokhari would fulfill all require-
ments despite not having an empirical basis. Thus, in the fol-
lowing, the two approaches will be presented in more detail.

3.3 The task distribution model by Bokhari

In the model of Bokhari [39], tasks are described as mod-
ules that communicate with each other and can be assigned Ta

bl
e

2
C

om
pa

ri
so

n
of

th
e

di
ff

er
en

td
is

tr
ib

ut
io

n
m

od
el

s
an

d
th

ei
r

fu
lfi

llm
en

to
f

th
e

re
qu

ir
em

en
ts

:n
ot

(−
),

pa
rt

ly
(!

),
m

os
tly

(+
)

or
to

ta
lly

(+
+)

fu
lfi

lle
d

(n
on

e:
no

tc
om

pa
ra

bl
e)

D
om

ai
n

A
pp

ro
ac

h
1

E
va

lu
-

at
io

n
1.

1
M

ul
tip

le
cr

ite
ri

a,
fa

ct
or

s
1.

2
E

m
pi

ri
ca

l
ba

si
s

1.
3

Si
te

-
sp

ec
ifi

c
1.

4
D

is
tr

ib
ut

ed
ov

er
he

ad
2

C
au

sa
l

re
la

tio
ns

3
Su

gg
es

-
tio

ns
4

A
da

pt
ab

ili
ty

of
go

al
s

4
A

da
pt

ab
ili

ty
of

fa
ct

or
s

D
is

tr
ib

ut
ed

SW
D

ev
el

op
m

en
t

E
m

pi
ri

ca
lS

tu
di

es
−

!
++

+
+

!
−

M
od

ifi
ca

tio
n

R
eq

ue
st

s
[2

1]
−

−
!

!
!

−
++

−
−

G
lo

ba
lS

tu
di

o
Pr

oj
ec

t[
28

,2
9]

−
+

+
!

!
!

−
−

D
is

tr
ib

ut
ed

C
oC

oM
o

[3
0]

++
−

−
++

−
!

−
−

+
C

oo
rd

in
at

io
n

In
de

x
[3

2]
+

!
−

!
+

−
−

−
!

Si
m

ul
at

io
n

M
od

el
[3

3,
34

]
++

+
−

!
!

+
−

−
+

B
ay

es
ia

n
N

et
w

or
ks

[3
5]

++
++

−
++

!
++

−
++

++
D

is
tr

ib
ut

ed
Pr

od
uc

tio
n

L
in

ea
r

Pr
og

ra
m

m
in

g
[3

6]
−

−
!

−
!

+
−

−
Pl

an
tD

is
tr

ib
ut

io
n

[3
7]

−
−

+
−

!
+

−
−

B
M

W
Pr

od
uc

tio
n

[3
8]

−
−

+
−

!
+

−
−

D
is

tr
ib

ut
ed

Sy
st

em
s

Pr
oc

es
so

r
A

llo
ca

tio
n

[3
9]

−
!

+
+

!
+

!
!

O
pp

or
tu

ni
ty

C
os

ts
[4

0]
−

++
+

−
!

!
!

!

Fi
le

A
llo

ca
tio

n
[4

1]
−

+
+

!
!

+
−

−



102 J Braz Comput Soc (2010) 16: 97–115

to different processors. It is assumed that communication
between the modules follows a tree structure, the so-called
invocation tree.

The model considers two kinds of costs: the costs eip of
executing module i on processor p and the costs spq(dij ) of
transmitting data dij between module i and module j with i

assigned to processor p and j assigned to q .
With the invocation tree and these cost functions as in-

put, another graph, the so called assignment graph, is built.
This graph has one node for every combination of modules
and nodes, representing the assignment of modules to nodes.
The edges in the graph are labeled with the sum of execu-
tion and transmission costs. The problem of finding a cost-
minimal assignment is thus reduced to the problem of find-
ing a minimal subset of the assignment graph. Bokhari pro-
poses an algorithm that solves this problem in polynomial
time.

The model can be easily transferred to handling task as-
signment in GSD: Modules and processors represent tasks
and sites. The costs of executing module i on processor p

represents the effort of doing task i of a software develop-
ment project at site p without regarding any communication
overhead. This overhead is then represented by the costs of
transmitting data between module i and module j . As in the
model of Bokhari, this overhead does not only depend on
the communication need between the two tasks but also on
the communication efficiency between two sites.

However, adaptations are needed: First, the algorithm can
only handle tasks that are connected in a tree structure. How-
ever, tasks in a development project can have arbitrary con-
nections. Second, costs are the only criterion for compar-
ing different assignments. Therefore, the different conflict-
ing goals that may exist in global software development have
to be aggregated into one cost function. Finally, all costs are
described by a single, distinct number, which does not rep-
resent the reality of human development, which contains a
large amount of uncertainty. The first problem was solved
by developing an extension of Bokhari’s algorithm that con-
tains an additional first step of transferring arbitrary graphs
into a set of trees (however, with reduced efficiency). The
other two problems were solved by describing the cost func-
tions not with single numbers but by using Bayesian net-
works instead.

3.4 Bayesian networks for effort and cost modeling

Bayesian networks represent a method of formulating causal
relationships under conditions of uncertainty. This is done
by using statistical methods and probabilistic functions.
A Bayesian network (BN) consists of a directed acyclic
graph and a set of probability tables, one for each node in the
graph [42]. Each node represents a discrete uncertain vari-
able, whose value is usually not known exactly but which

has a known probability for every value. Edges between
nodes are directed and indicate causal relationships between
variables. The tables describe for each node the conditional
probability for its states for each combination of its parent
states.

Statistical reasoning makes it possible to infer through a
Bayesian network and make statements on the probability of
the values for one node with respect to other nodes’ values.
In particular, it is possible to model a causal network with
input and output nodes and calculate the probabilistic dis-
tribution over the values of the output nodes with respect to
the states of some of the input nodes.

In software engineering, BNs have been used several
times to model development projects and describe causal re-
lationships between project characteristics, effort, and soft-
ware quality [35, 43, 44]. Due to the stochastic nature of
BNs, the effort estimations do not result in a single num-
ber but in a probabilistic distribution over ranges of values
together with a median value. This explicitly reflects the un-
certainty in modeling and predicting human behavior.

4 The multi-criteria distribution model

In the following section, the multi-criteria distribution
model TAMRI is introduced in more detail. It mainly con-
sists of an approach for modeling the cost functions for ex-
ecution and transmission costs of the Bokhari model.

4.1 Model overview

Figure 2 gives a conceptual overview of the TAMRI model.
Its basic elements are the distributed system algorithm by
Bokhari (adapted in order to handle arbitrarily connected
tasks) and Bayesian networks for describing task execu-
tion and transmission cost. However, as the distributed sys-
tem algorithm requires distinct single numbers for execution
and transmission cost and the Bayesian networks work with
probabilistic distributions over discrete values, a simulation
algorithm was developed for selecting single numbers from
the distributions.

Figure 3 shows a Bayesian network for the cost of execut-
ing a task at a site. It contains several input nodes that model
certain characteristics of a task and a site that can influence
the outcomes of a development task. These are modeled as
output nodes representing abstract costs in terms of money,
time, and quality. Each is influenced individually by the in-
put nodes. If values are selected for these input variables,
the network makes it possible to describe the outcomes of
each possible assignment combination of a task and a site.
Thus, the model represents the execution cost function eip .
However, it does not return one single cost value, but rather



J Braz Comput Soc (2010) 16: 97–115 103

Fig. 2 Conceptual overview

Fig. 3 Bayesian network for
execution cost [24]

probabilistic distributions for the three output nodes. Simi-
larly, Fig. 4 shows the Bayesian network modeling the trans-
mission cost for each combination of two tasks assigned to
two sites. In this case, the input nodes mainly reflect the re-
lationships between two nodes and two sites.

BNs use ordinal scales for all variables. In this model
(similarly to [35]), every variable operates on a five-level
scale (from “very low” to “very high” or using numeric
ranges), which makes calculation and inference between
variables easy. The output nodes (i.e., the different types of
cost) are normalized to five levels between 0 and 1 in order
to make them comparable. They can thus be aggregated into
one cost value using project-specific weights.

For the BN modeling the transmission costs, the levels
of the output nodes describe relative increases of the execu-
tion costs (in percent). The increase can sometimes also be
negative: In a perfect environment, a time zone difference
between two sites can result in a reduction of the total devel-
opment time due to the possibility of “follow-the-sun” [45].

Therefore, the lowest state in the “Time costs” node of the
transmission cost BN is labeled with a negative number.

The link between the Bayesian networks results and the
(adapted) algorithm of Bokhari is provided by a randomiza-
tion algorithm similar to Monte–Carlo simulation. It basi-
cally consists of three steps [24]:

• Collect the probabilistic distributions by executing the
BNs for every combination of tasks and sites.

• Repeat for a large number of runs: Randomly pick one
number out of every probabilistic distribution and aggre-
gate all types of costs into one cost value. The probabili-
ties for every random pick are provided by the probabilis-
tic distributions. Store the numbers as cost functions for
the distributed systems algorithm. Execute the distributed
systems algorithm and store the returned assignment.

• Return the stored assignments in an ordered list with a
decreasing number of occurrences.



104 J Braz Comput Soc (2010) 16: 97–115

Fig. 4 Bayesian network for
transmission cost [24]

In short, the algorithm simulates a number of scenarios with
randomly chosen numbers for the individual cost functions,
based on their probabilistic distributions. This ensures, on
the one hand, that across all scenarios, the costs reflect the
predictions of the Bayesian networks. On the other hand,
within each individual scenario, costs are represented by dis-
tinct numbers, which enables the execution of Bokhari’s al-
gorithm. Thus, for every scenario, an individual optimal as-
signment is identified by the distributed systems algorithm.

As a result, the algorithm returns not one but several as-
signments together with information on the number of sce-
narios in which each distribution was optimal. This makes
the uncertainty in predicting human behavior explicit and
gives the project manager the opportunity to choose from an
ordered set of assignments.

An additional advantage of BNs used in TAMRI is the
fact that they can handle missing data: Not all input variables
have to be set to distinct states in order to get an output; if a
variable is not set to a specific value, it is assumed to have
equal distribution across all states. Thus, it is also possible
to execute the model without specifically setting all input
parameters.

The separation between Bayesian network cost models
and the algorithms for identifying assignment suggestions
makes the distribution model very generic: New goals and
influencing factors can be added easily, causal relationships
can be altered, and the weights on the goals and the rela-
tionships can be changed by simply modifying the networks
while the rest of the model remains untouched.

4.2 Model implementation

TAMRI was implemented as a Java prototype with a ba-
sic graphical user interface. This implementation was kept

very generic in order to make it possible to easily add cus-
tomized models with specific Bayesian networks. Thus, the
code consists, on the one hand, of the generic implementa-
tion of the model algorithms together with abstract classes
for BNs and the user interface. On the other hand, it con-
tains specific instantiations of the Bayesian networks for ex-
ecution and transmission cost and the corresponding user
interface.

The generic part provides a framework for the Bayesian
networks and user interfaces as well as mathematical func-
tions and the implementation of the algorithm for suggesting
assignments. It uses external libraries for inferring through
the BNs [46] and basic statistical calculations [47].

The custom part of the implementation contains organiz-
ation-specific Bayesian networks and the user interfaces for
setting project-specific values to the custom BNs. If an orga-
nization wants to describe custom causal relationships with
organization-specific influencing factors and criteria, it only
has to adapt this custom part. This makes it relatively easy
to adapt the underlying model to individual environments.

Figure 5 shows an example of the user interface of
TAMRI, where project-specific values can be set to the in-
fluencing factors. When all known input values are set, the
calculation can be started by the user, executing the algo-
rithms as described in Sect. 4.1.

5 An empirically based instantiation of the distribution
model

The previous section provided an overview of the basic
TAMRI model and the algorithm for deriving assignment
suggestions from a causal model (described in Bayesian net-
works) and project-specific values for the influencing fac-
tors. However, this basic model does not come with specific



J Braz Comput Soc (2010) 16: 97–115 105

Fig. 5 Parameter window

influencing factors, criteria, and causal relationships. This is
due to the fact that in our opinion, the underlying causalities
are organization-specific and have to be identified individu-
ally for every environment.

In order to demonstrate the use of the model, we devel-
oped a first instance by identifying goals, influencing fac-
tors, and their relationships in an empirical study. The result-
ing model has to be further adapted to specific environments.
However, it describes typical characteristics of distributed
development and will be used in this article for several fea-
sibility studies.

The main research questions of the empirical study
were:

Question 1: What are the goals of distributed development
projects?

Question 2: What characteristics of distributed develop-
ment should be regarded during task assignment?

Question 3: What are the relationships between the charac-
teristics of distributed development and project goals?

The study consisted of a literature review and an interview
study, which will be explained in the following.

5.1 Literature study

A literature review was conducted in order to gather prac-
tical experiences and extract information on goals, influ-
encing factors, and their relationships. For this, the data-
bases ProQuest and Web of Science were searched using
the keywords “Global Software Development” and “Dis-
tributed Software Development”, as were special issues of

IEEE Software and the proceedings of the “International
Conference on Global Software Engineering” and the “In-
ternational Workshop on Global Software Development for
the Practitioner”.

Based on the title and abstract, the findings were nar-
rowed down to practical experience reports and descriptions
of problems in practical applications of GSD. Other kinds
of publications such as literature surveys, reports on tac-
tics for alleviating the problems of distance, or presenta-
tions of technical solutions for collaborative work, were fil-
tered out. In the end, we identified 26 publications, which
were classified into case studies, empirical studies, and oth-
ers. Case studies presented the experiences of singular soft-
ware projects, while empirical studies reported aggregated
experiences from multiple projects. Other types of literature
mainly included personal experiences of highly experienced
practitioners or researchers. Table 3 gives an overview of the
included literature.

As a result, six goals of GSD projects were identified.
These were influenced by 15 influencing factors. However,
most of the influences were not direct but via some inter-
mediate factors (e.g., cultural differences causing communi-
cation overhead, which impacts productivity and thus devel-
opment time). We thus included “intermediate factors” as an
additional layer between influencing factors and goals. Ta-
ble 4 shows the results in the three different categories.

5.2 Interview study

In order to not only get a theoretical but also a practical view
on the causal relationships and to identify relative weights



106 J Braz Comput Soc (2010) 16: 97–115

Table 3 Included literature

Case Studies Ebert & De Neve (2001) [48], Casey & Richardson (2006) [9], Treinen & Miller-Frost (2006) [45], Battin et al. (2001) [49],
Lindqvist et al. (2006) [50], Heeks et al. (2001) [51], Kobitzsch et al. (2001) [52], Mullick et al. (2006) [28]

Empirical Studies Alami et al. (2008) [53], Gareiss (2002) [54], Kommeren & Parviainan (2007) [55], DeLone et al. (2005) [56], Pilatti et al.
(2006) [57], Smite & Moe (2007) [58], Ramasubbu & Balan (2007) [59], Smite (2004) [60], Oza & Hall (2007) [61],
Komi-Sirvio & Tihinen (2005) [62], Herbsleb et al. (2005) [63], Espinosa et al. (2007) [64], Herbsleb & Mockus (2003)
[65], Espinosa et al. (2007) [66]

Other Sakthivel (2007) [7], Carmel (1997) [67], Gurung & Prater (2006) [68]

Table 4 Literature results

Influencing factors Labor costs, Expertise and Knowledge, Local government, process maturity, IP security, available resources, physical
distance, language difference, cultural difference, organizational difference, infrastructure distance, time shift, common
working experiences, needed knowledge for task, coupling

Intermediate factors Cost overhead, lack of trust, productivity, fit between knowledge needed for task and available at site, problems in
communication, coordination, and control

Goals Costs, proximity to customer, time, quality, IP protection, staffing

for the identified factors, the literature findings were vali-
dated in an interview study. Thus, interviews with experi-
enced practitioners were conducted and the literature find-
ings were presented to them. The interviewees were given
the overall model as well as each causal relationship indi-
vidually and were asked to comment on them. In addition,
they were asked to weight the existing influencing factors
and—if necessary—add or remove factors or relationships.

Ten of the participants of the interview study presented in
Sect. 2 were interviewed. The interviews were recorded and
the transcriptions were analyzed.

Based on the analysis results, several modifications were
made to the findings of the literature study. The main
changes were:

(1) The goals of “Resource utilization” and “Proximity to
customer” did not appear to be official project goals in
most cases. Resource utilization seemed to be more a
constraint (i.e., work can only be assigned to sites with
available resources) and proximity to customer a factor
influencing effort and quality. They were thus removed
as goals.

(2) “IP protection”, on the other hand, could presumably be
an issue and goal in GSD projects. However, the practi-
tioners for which this was the case refused to talk about
this in detail. Since no information could be gathered, it
was also removed as a goal.

(3) The benefit of round-the-clock development (or “follow-
the-sun”) is mentioned in several publications [45, 66,
69]. In the interviews, it turned out that the benefit in
round-the-clock development can only be achieved with
certain types of tasks and with very high process matu-
rity.

(4) While some literature reports explicitly mentioned the
additional costs due to traveling between distant sites,

most practitioners found this cost factor negligible com-
pared to other cost drivers in GSD such as labor cost
rates.

(5) “Lack of trust” as a factor mentioned was confirmed
as relevant by many of the practitioners. However, it
is very hard to specify and was interpreted differently
by the interviewees. It was therefore not included in the
model.

Figure 6 shows the final causal model with goals, influ-
encing factors, and causal relationships. These relationships
describe how certain factors increase (+) or decrease (−)

others based on the findings in the literature and the inter-
views (e.g., “high process maturity increases the benefit of
follow-the-sun”, “the benefit of follow-the-sun decreases de-
velopment time”). The figure also contains weights for the
causal relationships according to the answers of the inter-
viewees. However, the weighs were hard to gather: Only for
few influences (marked with “+++” or “− − −”) did most
practitioners agree on their importance. Others were only
seen important by some of the interviewees (“++”, “−−”)
or were subject to very different views (“+”, “−”). This
shows again that many influencing factors and their weights
depend on the environment and emphasizes the need for a
distribution model to be adaptable.

From the results of the study, the initial Bayesian net-
works for execution and transmission costs shown in Figs. 3
and 4 were derived as follows:

First, the causal model was split into two parts, with one
containing the characteristics of tasks and sites and the other
one containing the relationships between tasks and sites.
Afterward, a Bayesian network was constructed for each
model.

As the probabilistic tables for a node in a BN grow ex-
ponentially with the number of input nodes, new interme-
diate nodes were created in order to reduce the number of



J Braz Comput Soc (2010) 16: 97–115 107

Fig. 6 Causal model after interview study

Fig. 7 Development (left) and
test process (right) [71]

inputs per node. For the node “communication problems”,
the causal relationship to its input nodes was reversed, with
the influencing factors being indicators for the problems in
communication. This was done because in BNs, both de-
ductive and inductive reasoning is possible [35] and because
complexity is reduced largely.

Many of the resulting model’s influencing factors are in
accordance with the criteria for task allocation we identi-
fied in practice (see Table 1). However, there are also several
differences that are mainly due to two reasons: First, many
of the criteria that were named as being applied in practice
were very fuzzy and could not be included in a systematic



108 J Braz Comput Soc (2010) 16: 97–115

model (e.g., “political reasons” or “personal reasons”). Sec-
ond, there were some factors that were not named as criteria
for work allocation but were included as influencing factors
(e.g., “language differences”). These factors were named by
both literature and practitioners as having an influence on
project outcomes (e.g., by impacting productivity) and we
therefore believe that it is important to include them in a
systematic task allocation decision process.

6 Model application

In the following, we will now demonstrate how the model
can be applied in typical project planning situations. Thus,
we will use the instantiation of the model described in
Sect. 5, set the values of the influencing factors according
to different scenarios, and apply the algorithms described in
Sect. 4 using the TAMRI tool. In order to do so, we imple-
mented the causal model derived from the empirical study
(see Fig. 6) as Bayesian networks (see Figs. 3 and 4) in the
custom part of the TAMRI tool (see Sect. 4.2).

The application was done in two environments. First, a
previously defined scenario for distributed process planning
[20] is presented and extended. The other application repli-
cates a real-world scenario [3, 8, 70] that already was subject
to another optimization approach for task distribution [21].

In all scenarios (unless explicitly stated otherwise), we
used the causal model derived from the empirical study
(Figs. 3, 4, 6). However, in order to reduce the complex-
ity of the examples, not all variables of the model were used
in each scenario: Variables that were not described in a sce-
nario were set to medium values for all involved tasks and
sites.

6.1 Distributed process planning

The following application uses a scenario for distributed
process planning of development and testing activities. It
stems from an application of an approach for integrated de-
sign support developed by Goldman et al. [71]. The scenario
consists of two activities, component development and com-
ponent testing, whose specifications are shown in Fig. 7.

In the original scenario, the focus is on the assignment of
activities to individuals at already determined sites and on
process management. This is extended by adding the step of
choosing a development or testing site and is demonstrated
in three cases [20]. In the scenario, three sites (A, B, C) are
available, with Fig. 8 showing some of their characteristics.

Case 1: In the basic scenario, development and testing of
one single component are regarded. It was already decided
to assign the development to site A. Testing can now be as-
signed either to site B or C. As component development and

Fig. 8 Available sites [20]

Fig. 9 Tasks in Scenario 2 [20]

testing are complementary activities, round-the-clock devel-
opment is possible between the two activities. The time shift
between A and C would make round-the-clock development
possible if testing was assigned to C. However, at B, people
are more familiar with the component and thus have higher
testing skills. Thus, the decision maker in task assignment
has to weigh the benefits of round-the-clock development
against the impact of specific knowledge on effort and time.

The assignment suggestions made by TAMRI for this
case depend on the project weights regarding different goals
time, cost, and quality. Table 5 shows the suggestions for
two different weights. First, the strongest weight is put on
quality, which results in the model strongly (in 74% of the
simulation runs) suggesting assigning testing to B due to the
higher expertise at this site. If more emphasis is put on de-
velopment time, assigning testing to C is suggested. How-
ever, this suggestion is much weaker, as it was only optimal
in 52% of the runs.

Case 2: The basic scenario is extended to three compo-
nents that are to be developed and tested. The components
are coupled differently, thus requiring different amounts of
communication between the teams developing them. Fig-
ure 9 gives an overview of the tasks. From the viewpoint
of expertise and skills, the best abilities are located at A for
developing the components and at B for testing them. How-
ever, labor costs are much lower at C and the time shift to C
would enable round-the-clock development.

Table 6 shows the result for case 2. Here, the focus was
put on quality (however, with smaller weights on cost and
time as well). It can be seen that due to the high number



J Braz Comput Soc (2010) 16: 97–115 109

Table 5 Results for scenario 1
with focus on quality (top) and
development time (bottom)

Focus on quality

1.: 74% 2.: 26%

Site A Site B Site C Site A Site B Site C

Development X Development X

Testing X Testing X

Focus on development time

1.: 52% 2.: 47%

Site A Site B Site C Site A Site B Site C

Development X Development X

Testing X Testing X

Fig. 10 Tasks at Scenario 3 [20]

of possible assignments, the suggestions are less clear: The
best-rated assignment was optimal in only 17% of the simu-
lations. However, the results give some implicit suggestions:
Due to the emphasis on quality, work should, in principle,
be assigned to the sites with the best skills: Development
should be done at A and testing at B. Nevertheless, single
test tasks could also be done at C in order to profit from the
low labor rates and the possibility of round-the-clock devel-
opment.

Case 3: Finally, the development step of Fig. 7 was split
into design and (code) development. The same three com-
ponents are to be designed, developed, and tested as in the
previous scenario (see Fig. 10). Additionally, an integration
step was added, which can only be done at customer site A.
Design would also benefit from being at the customer site,
but the people at C have the most expertise in design. Due to
staff availability, development can only be done at B or C.

Table 7 shows the model suggestions with an emphasis
on quality and cost. It can be seen that due to the strong
coupling between the different tasks, it is suggested keeping
most tasks together at one site. With quality in focus, no
assignment was suggested strongly, but again some rules can
be identified (e.g., that in most cases it is better to do design
at A or that either very little or all work should be assigned to

B in order to reduce the communication overhead). If more
emphasis is put on cost, then the model suggests assigning
large chunks of work to C, as it is the site with the lowest
labor rates.

6.2 The Lucent scenario

Herbsleb et al. [3, 8, 70] conducted empirical studies on
distributed development at Lucent Technologies that are re-
ported in multiple publications. They describe the impact
of work distribution on the length of work intervals and
conclude that remote collaboration significantly increases
the amount of time needed for single work packages [70].
Based on these findings, Mockus and Weiss [21] developed
a model for selecting candidates of code files that should
be assigned to one site in order to minimize the number
of multi-site modification requests (i.e., work packages that
include changes to files assigned to multiple sites). How-
ever, this approach only considers the needed communica-
tion and does not regard other influencing factors as identi-
fied in Sect. 5. In the following, we will thus show how the
distribution model could be applied in this scenario.

The sites involved in the scenario are described in detail
in the original publications. Four sites are reported, two in
India, one in Germany, and one in the UK. Based on the
descriptions of the sites, assumptions about the site charac-
teristics and their dependencies can be made as illustrated in
Tables 8 and 9.

In order to keep consistent the model presented by
Mockus and Weiss [21], we try to optimize the assignment
of code chunks (or subsystems) to sites and regard the num-
ber of modification requests between two code chunks as
a measure of the needed communication. However, we ad-
ditionally assume that each site is specialized in different
subsystems and that the code chunks require different levels
of interaction with the customer.

We assume that six code chunks A—F are to be assigned.
Table 10 shows the coupling between these chunks based on
the number of modification requests that include each pair
of chunks. It shows that the system consists of two closely
coupled sub-components ACD and BEF.



110 J Braz Comput Soc (2010) 16: 97–115

Table 6 Results for Scenario 2:
first three suggested
assignments

1. 17% 2. 5% 3. 5%

Site A Site B Site C Site A Site B Site C Site A Site B Site C

Dev Comp 1 X X X

Dev Comp 2 X X X

Dev Comp 3 X X X

Test Comp 1 X X X

Test Comp 2 X X X

Test Comp 3 X X X

Table 7 Results for scenario 3 with focus on quality (top) and cost (bottom)

Focus on quality

1.: 2% 2.: 1% 3.: 1%

Site A Site B Site C Site A Site B Site C Site A Site B Site C

Des Comp 1 X X X

Des Comp 2 X X X

Des Comp 3 X X X

Dev Comp 1 X X X

Dev Comp 2 X X X

Dev Comp 3 X X X

Test Comp 1 X X X

Test Comp 2 X X X

Test Comp 3 X X X

Integration X X X

Focus on cost

1.: 37% 2.: 4% 3.: 2%

Site A Site B Site C Site A Site B Site C Site A Site B Site C

Des Comp 1 X X X

Des Comp 2 X X X

Des Comp 3 X X X

Dev Comp 1 X X X

Dev Comp 2 X X X

Dev Comp 3 X X X

Test Comp 1 X X X

Test Comp 2 X X X

Test Comp 3 X X X

Integration X X X

Table 8 Characteristics of sites
in Lucent scenario Germany UK India 1 (Luc) India 2 (Contract)

Cost Factor High Very high Low Low

Proximity to Customer High Very High Very Low Very Low

Staff Capability High High Medium Medium

Process Maturity Medium Medium High High

The Indian sites have high knowledge about the code
chunks E and F. The UK site has high knowledge about all

code parts, while the German site is specialized in A and C.
The chunks A, B, and C contain user-specific models and



J Braz Comput Soc (2010) 16: 97–115 111

Table 9 Dependencies between sites in Lucent scenario

Germany–UK Germany–India 1 Germany–India 2 UK–India 1 UK–India 2 India 1–India 2

Language Diff Medium High High Low Low Very low

Cultural Diff Very low High Very high Medium High Low

Common Exp Low Medium Very high Low Very high Medium

Infrastructure Link Very high Very high Medium Very high Medium Medium

Time Shift Low High High High High Very low

Table 10 Coupling between code chunks

A B C D E F

A Low High High Low Low

B Low Low Low High High

C High Low High Low Low

D High Low High Low Low

E Low High Low Low High

F Low High Low Low High

thus require high interaction with the customer. Due to avail-
ability constraints, A can only be done at the German site
and F can only be done at the Lucent Indian site.

Table 11 shows the resulting suggestions of the model
in two different executions: One execution is consistent to
the model by Mockus and Weiss [21] and the second in-
cludes various other influencing factors. First, the model
only considers the communication overhead between sites,
disregarding the different characteristics and abilities at the
sites (here we did not use all influencing factors described in
Fig. 6). Thus, it tries to minimize the number of multi-site
requests (as do Mockus and Weiss). It can be seen that the
model suggests keeping as much work as possible together
at one site, assigning coherent components to one site, or us-
ing the UK site as a bridge between the German and Indian
sites.

However, if the various influencing factors of our distrib-
ution model are considered, the model suggests very differ-
ent assignments: It now suggests assigning most of the work
to the UK site due to the high staff capability and proximity
to customer there. In this case, the focus was set on qual-
ity rather than on development costs. If the focus was set
more on cost minimization, the model would assign much
less work to the UK site due to the high labor cost rates
there.

The application of the model to the Lucent scenario
shows that whether an assignment is “optimal” depends very
much on the included influencing factors and on their spe-
cific weights. Thus, a decision support model should include
various different factors and include the possibility to adjust
their weights to project-specific preferences.

7 Discussion

In this final section, we will discuss the applicability and
practical use of the model by first evaluating the model
against the previously stated requirements and then sketch-
ing a process for applying the model in new environments.

7.1 Evaluation of the Model

In Sect. 2.2, a set of requirements for a task distribution
model was formulated. The TAMRI model addresses them
in the following manner:

REQ 1. Evaluation of assignments: The Bayesian networks
are able to evaluate task assignments with respect to individ-
ual goals and influencing factors. The assignment sugges-
tions made by TAMRI are based on this evaluation. How-
ever, the evaluation is not very transparent to the user, since
it is based on abstract aggregated numbers. The TAMRI tool
also does not present the evaluation to the user, working as
a black box that presents only the final assignment sugges-
tions to the user. The model can therefore not be used to
transparently evaluate different assignment alternatives.

REQ 1.1. Use of multiple criteria and factors: The Bayesian
networks allow for using multiple nodes as influencing fac-
tors or assignment criteria.

REQ 1.2. Empirical basis: The basic model consists only of
abstract concepts and algorithms. However, the instantiation
of the model presented in this article is based on an empirical
literature and interview study.

REQ 1.3. Consideration of site-specific characteristics: The
BN for execution costs can handle various task- and site-
specific characteristics.

REQ 1.4. Consideration of distributed overhead: The BN
for transmission costs is able to model the overhead of dis-
tributed collaboration with respect to multiple influencing
factors.

REQ 2. Causal relationships: Causal relationships are de-
scribed by the BNs.

REQ 3. Suggestion ability: The algorithms of the Bokhari
model provide the ability to return an ordered list of assign-
ment suggestions.



112 J Braz Comput Soc (2010) 16: 97–115

Table 11 Results for Lucent
Scenario with focus on task and
site dependencies only (top) and
on all influencing factors
(bottom)

Only task dependencies and site relations considered

1.: 40% 2.: 5% 3.: 4%

Ger UK Ind1 Ind2 Ger UK Ind1 Ind2 Ger UK Ind1 Ind2

A X X X

B X X X

C X X X

D X X X

E X X X

F X X X

Complete model including various influencing factors

1.: 16% 2.: 14% 3.: 8%

Ger UK Ind1 Ind2 Ger UK Ind1 Ind2 Ger UK Ind1 Ind2

A X X X

B X X X

C X X X

D X X X

E X X X

F X X X

REQ 4. Adaptability: As the Bayesian networks can be ex-
changed or adapted to organization-specific environments,
goals and influencing factors can be altered freely.

The evaluation of the model shows that all requirements
are completely fulfilled with the exception of the ability to
evaluate task assignment alternatives. Further limitations of
the model are:

– The model does not provide a process for identifying
organization-specific Bayesian networks for custom en-
vironments.

– The model assumes that it is possible to identify and char-
acterize distinct tasks at the time the decision is made
(e.g., after architecture definition). In some cases, this
might not be possible.

– A certain degree of formality and quantifiability of the
underlying causal model is required in order to apply the
model. It is, for example, necessary to explicitly weight
the relative impact of cultural and language differences
on communication overhead. Even though this problem is
reduced by the use of Bayesian networks, it is sometimes
hard to explicitly weight all causal relationships.

In order to address these limitations, we are develop-
ing a process for an organization-specific application of a
model-based task assignment decision that includes both the
TAMRI model and models for evaluating task assignment
alternatives. The following section will give an overview of
this process.

7.2 Applying systematic task assignment to
organization-specific contexts

In specific GSD contexts (i.e., a software development or-
ganization), the knowledge on causal relationships between
influencing factors and goals of distributed development is
typically not available explicitly. Hence, there thus must be
a process for gathering this knowledge and transforming it
into the Bayesian networks needed for the TAMRI model. In
addition, further models are needed to transparently evalu-
ate different assignment scenarios. We suggest the following
process steps:

(1) Collect lessons learned: By interviewing project man-
agers or analyzing data from past projects, the organization-
specific experiences in distributed development are gathered
as a set of lessons learned or rules that describe simple rela-
tionships (e.g., “cultural differences decrease productivity”).

(2) Derive causal relationships: The lessons learned are
formalized as a set of causal relationships between influenc-
ing factors (e.g., “cultural differences”), intermediate factors
(e.g., “productivity”), and goals (e.g., “development time”).

(3) Enhance causal model: In incremental rounds of dis-
cussion with practitioners, the causal rules are aggregated
into a causal model. The model is enhanced by further causal
relationships until finally all output nodes describe project
goals and all relevant influences are covered by the model
(see Fig. 6).

(4) Develop BNs from causal model: The causal model
is split up into models describing the characteristics of the
tasks and sites (i.e., the BN for execution costs, see Fig. 3)



J Braz Comput Soc (2010) 16: 97–115 113

and the dependencies between tasks and sites (i.e., the BN
for transmission cost, see Fig. 4). For every sub-model,
the number of inputs for every node is reduced by adding
new nodes and basic functions, and weights are selected for
defining the probabilistic tables, resulting in two Bayesian
networks. These networks are implemented in the custom
part of the TAMRI tool.

(5) Develop cost model: In addition, the influencing fac-
tors and causal relationships identified in step 3 are used for
deriving effort drivers in a cost model. In a different publi-
cation [72], we describe how such a cost model for evaluat-
ing task allocation alternatives can be derived from a causal
model.

(6) Characterize project: If a task allocation decision has
to be made for a new project, the project is split up into
distinct tasks and the available sites are identified. They are
then characterized according to the previously identified in-
fluencing factors.

(7) Apply TAMRI on project: The project characteristics
are inserted into the customized TAMRI tool. An execution
of the tool results in a list of assignment suggestions.

(8) Apply cost model on project: The assignment sug-
gestions are using the cost model developed in step 5. This
allows for a transparent evaluation of task assignment alter-
natives.

(9) Select task assignment: Based on the results of the
TAMRI application and the evaluation of the suggested al-
ternatives, an assignment decision is made.

7.3 Conclusion

In this article, we described a model for making systematic
task assignment decisions in GSD projects based on mul-
tiple criteria. Its main contributions are that the model is
able to handle various, customizable influencing factors and
goals and can make project-specific assignment suggestions
that are based on these criteria. An analysis of the Lucent
scenario shows that this inclusion of multiple criteria yields
very different results compared to models that only focus on
selected aspects.

In addition, the model is able to handle the inherent un-
certainty by applying stochastic methods and weighting the
suggestions with the probability (in percent) of every sug-
gestion being optimal. In many cases, this results in very
low numbers for the suggested assignments (e.g., scenario 3,
Table 7), which raises the question of whether these sugges-
tions can be seen as trustworthy. However, our experience
with applying the model shows that in these cases, the as-
signment suggestions typically differ only in selected as-
pects and general assignment rules can be extracted with
higher trustworthiness (as also in scenario 3). In practice,
it will depend on the organizational environment and the ex-
perience of the user which percentage of the suggestions can
be seen as trustworthy.

The model still has some limitations such as not mak-
ing the evaluation of assignments transparent. We are ad-
dressing some of these limitations by embedding the model
into a larger process for systematic task assignment that in-
cludes other evaluation models. Others, such as the ability
to identify and characterize influencing factors before the
task assignment decision, may still hinder the application of
the approach in every context. However, we see the princi-
ple of having various influencing factors that determine the
applicability of a certain task allocation alternative as a gen-
eral basis for systematic task allocation and for planning and
managing global software development projects.

Acknowledgements The authors would like to thank all participants
of the interview study for giving their time and for providing insights
into the practices of distributed software development. Most of the
work was done during a stay at the Fraunhofer Center for Experimen-
tal Software Engineering, Maryland, and was financially supported by
the Otto A. Wipprecht Foundation. The authors also thank Sonnhild
Namingha for proofreading this paper.

References

1. Herbsleb JD, Moitra D (2001) Guest editors’ introduc-
tion: Global software development. IEEE Softw 18(2):16–20.
doi:10.1109/52.914732

2. Damian D, Moitra D (2006) Global software development:
How far have we come? IEEE Softw 23(5):17–19. doi:10.1109/
MS.2006.126

3. Herbsleb JD, Grinter RE (1999) Splitting the organization and in-
tegrating the code: Conway’s law revisited. In: Proceedings of the
21st international conference on software engineering, pp 85–95

4. Krishna S, Sahay S, Walsham G (2004) Managing cross-cultural
issues in global software outsourcing. Commun ACM 47(4):62–
66. doi:10.1145/975817.975818

5. Casey V (2009) Leveraging or Exploiting Cultural Difference? In:
Proceedings of the fourth IEEE international conference on global
software engineering, pp 8–17. doi:10.1109/ICGSE.2009.9

6. Chua AL, Pan S (2006) Knowledge transfer in offshore insourc-
ing. In: Proceedings of the 27th international conference on infor-
mation systems, pp 1039–1053

7. Sakthivel S (2007) Managing risks in offshore systems de-
velopment. Commun ACM 50(4):69–75. doi:10.1145/1232743.
1232750

8. Herbsleb JD, Mockus A, Finholt TA, Grinter RE (2001) An em-
pirical study of global software development: distance and speed.
In: Proceedings of the 23rd international conference on software
engineering, pp 81–90. doi:10.1109/ICSE.2001.919083

9. Casey V, Richardson I (2006) Uncovering the reality within
virtual software teams. In: International conference on soft-
ware engineering, Proc of the international workshop on
global software development for the practitioner, pp 66-72.
doi:10.1145/1138506.1138523

10. Fabriek M, Brand M, Brinkkemper S, Harmsen F, Helms RW
(2008) Reasons for success and failure in offshore software devel-
opment projects. In: European conference on information systems,
pp 446–457

11. Carmel E, Abbott P (2007) Why ‘nearshore’ means that
distance matters. Commun ACM 50(10):40–46. doi:10.1145/
1290958.1290959

12. Seshagiri G (2006) GSD: Not a business necessity, but a march of
folly. IEEE Softw 23(5):63f. doi:10.1109/MS.2006.138

http://dx.doi.org/10.1109/52.914732
http://dx.doi.org/10.1109/MS.2006.126
http://dx.doi.org/10.1109/MS.2006.126
http://dx.doi.org/10.1145/975817.975818
http://dx.doi.org/10.1109/ICGSE.2009.9
http://dx.doi.org/10.1145/1232743.1232750
http://dx.doi.org/10.1145/1232743.1232750
http://dx.doi.org/10.1109/ICSE.2001.919083
http://dx.doi.org/10.1145/1138506.1138523
http://dx.doi.org/10.1145/1290958.1290959
http://dx.doi.org/10.1145/1290958.1290959
http://dx.doi.org/10.1109/MS.2006.138


114 J Braz Comput Soc (2010) 16: 97–115

13. Betz S, Mäkiö J (2007) Amplification of the COCOMO II regard-
ing offshore software projects. Workshop on offshoring of soft-
ware development-methods and tools for risk management at the
second international conference on global software engineering,
pp 33–46

14. Herbsleb JD (2007) Global software engineering: The future of
socio-technical coordination. In: Proceedings of the future of soft-
ware engineering, FOSE 2007, pp 188–198. doi:10.1109/FOSE.
2007.11

15. Prikladnicki R, Yamaguti MH (2004) Risk management in global
software development: a position paper. In: International confer-
ence on software engineering, Proc of the third international work-
shop on global software development, pp 18–20

16. Edwards HK, Kim JH, Park S, Al-Ani B (2008) Global software
development: project decomposition and task allocation. In: Inter-
national conference on business and information (BAI2008) Acad-
emy of Taiwan Information Systems Research. ISSN:1729-9322

17. Raffo D, Setamanit S (2005) A simulation model for global soft-
ware development project. In: The international workshop on soft-
ware process simulation and modeling

18. Bass M, Paulish D (2004) Global software development process
research at Siemens. In: International conference on software en-
gineering, Proc third International workshop on global software
development, pp 8–11

19. Keil P, Paulish DJ, Sangwan R (2006) Cost estimation for
global software development. In: International workshop on
economics driven software engineering, pp 7–10. doi:10.1145/
1139113.1139117

20. Lamersdorf A, Münch J (2009) TAMRI: a tool for supporting task
distribution in global software development projects. In: Interna-
tional workshop on tool support development and management
in distributed software projects, Proceedings of the fourth inter-
national conference on global software engineering, pp 322–327.
doi:10.1109/ICGSE.2009.50

21. Mockus A, Weiss DM (2001) Globalization by chunking: a quan-
titative approach. IEEE Softw 18(2):30–37. doi:10.1109/52.
914737

22. Lamersdorf A, Münch J, Rombach D (2008) Towards a multi-
criteria development distribution Model: an analysis of existing
task distribution approaches. In: Proceedings of the third interna-
tional conference on global software development, pp 109–118.
doi:10.1109/ICGSE.2008.15

23. Lamersdorf A, Münch J, Rombach D (2009) A survey on the
state of the practice in distributed software development: cri-
teria for task allocation. In: Proceedings of the fourth inter-
national conference on global software engineering, pp 41–50.
doi:10.1109/ICGSE.2009.12

24. Lamersdorf A, Münch J, Rombach D (2009) A decision model
for supporting task allocation processes in global software devel-
opment. In: Proceedings of the 10th international conference on
product focused software development and process improvement,
pp 332–346. doi:10.1007/978-3-642-02152-7_25

25. Seaman C (2008) Qualitative methods. In: Shull F et al (eds)
Guide to advanced empirical software engineering. Springer, Hei-
delberg, pp 35–62

26. Grinter RE, Herbsleb JD, Perry DE (1999) The geography of
coordination: dealing with distance in R&D work. In: Proceed-
ings ACM conference on supporting group work, pp 306–315.
doi:10.1145/320297.320333

27. Westner MK, Strahringer S (2008) Evaluation criteria for select-
ing offshoring candidates: an analysis of practices in German busi-
nesses. J Inf Technol Manage 19(4):16–34

28. Mullick N, Bass M, Houda Z, Paulish DJ, Cataldo M, Herbsleb
JD, Bass, L (2008) Siemens global studio project: experiences
adopting an integrated GSD infrastructure. In: Proceedings first
international conference on global software engineering, pp 203–
212. doi:10.1109/ICGSE.2006.261234

29. Raghvinder S, Bass M, Mullick N, Paulish DJ, Kazmeier J (2006)
Global software development handbook. Auerbach Publications,
London

30. Madachy R (2007) Distributed global development parametric
cost modeling. In: Proceedings international conference on soft-
ware process, pp 159–168. doi:10.1007/978-3-540-72426-1_14

31. Boehm B, Abts C, Brown A, Chulani S, Clark B, Horowitz E,
Madachy R, Reifer D, Steece B (2000) Software cost estimation
with COCOMO II. Prentice-Hall, New Jersey

32. Sooraj P, Mohapatra PKJ (2008) Developing an Inter-site Coordi-
nation Index for Global Software Development. In: Proceedings of
the third international conference on global software development,
pp 119–128. doi:10.1109/ICGSE.2008.30

33. Setamanit S, Raffo D (2008) Identifying key success fac-
tors for globally distributed software development project us-
ing simulation: a case study. In: International proceedings con-
ference on software process, pp 320–332. doi:10.1007/978-3-
540-79588-9_28

34. Setamanit S, Wakeland WW, Raffo D (2007) Using simulation
to evaluate global software development task allocation strate-
gies. Softw Process Improv Pract 12(5):491–503. doi:10.1002/
spip.v12:5

35. Fenton N, Marsh W, Neil M, Cates P, Forey S, Tailor M (2004)
Making resource decisions for software projects. In: Proceed-
ings of the 26th international conference on software engineering,
pp 397–406

36. Cheng M, Wang W (1997) A linear programming model for inte-
grated steel production and distribution planning. Int J Oper Prod
Manag 17(6):592–610

37. MA Cohen, Moon S (1991) An integrated plant loading model
with economies of scale and scope. Eur J Oper Res 50(3):266–
279

38. Fleischmann B, Ferber S, Henrich P (2006) Strategic planning of
BMW’s global production network. Interfaces 36(3):194–208

39. Bokhari SH (1981) A shortest tree algorithm for optimal as-
signments across space and time in a distributed processor
system. IEEE Trans Softw Eng 7(6):583–589. doi:10.1109/
TSE.1981.226469

40. Amir Y, Awerbuch B, Barak A, Borgstrom RS, Keren A (2000) An
opportunity cost approach for job assignment in a scalable com-
puting cluster. IEEE Trans Parallel Distrib Syst 11(7):760–768.
doi:10.1109/71.877834

41. Chu WW (1969) Optimal file allocation in a multiple com-
puter system. IEEE Trans Comput 18(10):885–889. doi:10.1109/
T-C.1969.222542

42. Ben-Gal I (2007) Bayesian networks. In: Ruggeri F, Kenett R,
Faltin F (eds) Encyclopedia of statistics in quality and reliability.
Wiley, New York

43. Fenton N, Hearty P, Neil M, Radliński Ł (2009) Software project
and quality modelling using Bayesian networks. In: Meziane F,
Vadera S (eds) Artificial intelligence applications for improved
software engineering development: new prospects. Information
Science Reference, pp 223–231

44. Pai GJ, Dugan JB (2007) Empirical analysis of software fault
content and fault proneness using Bayesian methods. IEEE Trans
Softw Eng 33(10):675–686. doi:10.1109/TSE.2007.70722

45. Treinen JJ, Miller-Frost SL (2006) Following the sun: case studies
in global software development. IBM Syst J 45(4):773–783

46. Cozman FG (2001) JavaBayes—Bayesian networks in Java.
http://www.cs.cmu.edu/~javabayes/ Retrieved at 09-15-08

47. Flanagan MT (2008) Java Scientific Library. http://www.ee.ucl.
ac.uk/~mflanaga/java/ Retrieved at 09-16-08

48. Ebert C, De Neve P (2001) Surviving global software develop-
ment. IEEE Softw 18(2):62–69. doi:10.1109/52.914748

49. Battin RD, Crocker R, Kreidler J, Subramanian K (2001) Lever-
aging resources in global software development. IEEE Softw
18(2):70–77. doi:10.1109/52.914750

http://dx.doi.org/10.1109/FOSE.2007.11
http://dx.doi.org/10.1109/FOSE.2007.11
http://dx.doi.org/10.1145/1139113.1139117
http://dx.doi.org/10.1145/1139113.1139117
http://dx.doi.org/10.1109/ICGSE.2009.50
http://dx.doi.org/10.1109/52.914737
http://dx.doi.org/10.1109/52.914737
http://dx.doi.org/10.1109/ICGSE.2008.15
http://dx.doi.org/10.1109/ICGSE.2009.12
http://dx.doi.org/10.1007/978-3-642-02152-7_25
http://dx.doi.org/10.1145/320297.320333
http://dx.doi.org/10.1109/ICGSE.2006.261234
http://dx.doi.org/10.1007/978-3-540-72426-1_14
http://dx.doi.org/10.1109/ICGSE.2008.30
http://dx.doi.org/10.1007/978-3-540-79588-9_28
http://dx.doi.org/10.1007/978-3-540-79588-9_28
http://dx.doi.org/10.1002/spip.v12:5
http://dx.doi.org/10.1002/spip.v12:5
http://dx.doi.org/10.1109/TSE.1981.226469
http://dx.doi.org/10.1109/TSE.1981.226469
http://dx.doi.org/10.1109/71.877834
http://dx.doi.org/10.1109/T-C.1969.222542
http://dx.doi.org/10.1109/T-C.1969.222542
http://dx.doi.org/10.1109/TSE.2007.70722
http://www.cs.cmu.edu/~javabayes/
http://www.ee.ucl.ac.uk/~mflanaga/java/
http://www.ee.ucl.ac.uk/~mflanaga/java/
http://dx.doi.org/10.1109/52.914748
http://dx.doi.org/10.1109/52.914750


J Braz Comput Soc (2010) 16: 97–115 115

50. Lindqvist E, Lundell B, Lings B (2006) Distributed development
in an intra-national, intra-organizational context: an experience re-
port. In: International conference on software engineering, Proc
international workshop on global software development for the
practitioner, pp 80–86. doi:10.1145/1138506.1138525

51. Heeks R, Krishna S, Nicholson B, Sahay S (2001) Synching or
sinking: global software outsourcing relationships. IEEE Softw
18(2):54–60. doi:10.1109/52.914744

52. Kobitzsch W, Rombach HD, Feldmann RL (2001) Outsourcing in
India. IEEE Softw 18(2):78–86. doi:10.1109/52.914751

53. Alami A, Wong B, McBride T (2008) Relationship issues in global
software development enterprises. J Glob Inf Technol Manag
11(1):49–68

54. Gareiss R (2002) Analyzing the outsourcers. Information Week,
Nov. 18, 2002

55. Kommeren R, Parviainan P (2007) Philips experiences in global
distributed software development. Empir Softw Eng 12(6):647–
660. doi:10.1007/s10664-007-9047-3

56. DeLone W, Espinosa JA, Lee G, Carmel E (2005) Bridg-
ing global boundaries for IS project success. In: Proceedings
38th Hawaii international conference on system sciences 48:2.
doi:10.1109/HICSS.2005.126

57. Pilatti L, Audy J, Prikladnicki R (2006) Software configura-
tion management over a global software development environ-
ment: lessons learned from a case study. In: International con-
ference on software engineering, Proc international workshop
on global software development for the practitioner, pp 45–50.
doi:10.1145/1138506.1138517

58. Smite D, Moe NB (2007) Understanding lacking trust in global
software teams: a multi-case study. In: Proceedings international
conference on product focused software development and process
improvement, pp 20–34. doi:10.1007/978-3-540-73460-4_6

59. Ramasubbu N, Balan RK (2007) Globally distributed software
development project performance: an empirical analysis. In:
Proceedings of the 6th joint meeting of the European soft-
ware engineering conference and the ACM SIGSOFT sympo-
sium on the foundations of software engineering, pp 125–134.
doi:10.1145/1287624.1287643

60. Smite D (2004) Global software development project
management—distance overcoming. In: European conference on
software process improvement, pp 23–33. doi:10.1007/b102170

61. Oza NV, Hall T (2005) Difficulties in managing offshore software
outsourcing relationships: an empirical analysis of 18 high ma-
turity Indian software companies. J Inf Technol Case Appl Res
7(3):25–41

62. Komi-Sirvio S, Tihinen M (2005) Lessons learned by partici-
pants of distributed software development. Knowl Process Manag
12(2):108–122

63. Herbsleb JD, Paulish DJ, Bass M (2005) Global software devel-
opment at Siemens: experience from nine projects. In: Proceed-
ings international conference on software engineering, pp 524–
533. doi:10.1145/1062455.1062550

64. Espinosa A, Slaughter SA, Kraut RE, Herbsleb JD (2007) Fa-
miliarity, complexity, and team performance in geographically
distributed software development. Organ Sci 18(4):613–630.
doi:10.1287/orsc.1070.0297

65. Herbsleb JD, Mockus A (2003) An empirical study of
speed and communication in globally-distributed soft-
ware development. IEEE Trans Softw Eng 29(6):481–494.
doi:10.1109/TSE.2003.1205177

66. Espinosa JA, Nan N, Carmel E (2007) Do gradations of time zone
separation make a difference in performance? A first laboratory
study. In: Proceedings second international conference on global
software engineering, pp 12-22. doi:10.1109/ICGSE.2007.20

67. Carmel E (1997) The explosion of global software teams. Com-
puterworld 31(49):C6

68. Gurung A, Prater E (2006) A research framework for the impact
of cultural differences on IT outsourcing. J Global Inf Technol
Manag 9(1):24–43

69. Carmel E, Agarwal R (2001) Tactical approaches for alleviating
distance in global software development. IEEE Softw 18(2):22–
29. doi:10.1109/52.914734

70. Herbsleb JD, Mockus A, Finholt TA, Grinter RE (2000) Distance,
dependencies, and delay in a global collaboration. In: Proc ACM
2000 conf computer-supported cooperative work, pp 319–328.
doi:10.1145/358916.359003

71. Goldmann S, Münch J, Holz H (2000) Distributed process plan-
ning support with MILOS. Int J Softw Eng Knowl Eng 10(4):511–
525

72. Münch J, Lamersdorf A (2009) Systematic task allocation evalua-
tion in distributed software development. In: Meersman R, Herrero
P, Dillon T (eds) OTM 2009 Workshops, LNCS 5872, pp 228–237.
doi:10.1007/978-3-642-05290-3_34

http://dx.doi.org/10.1145/1138506.1138525
http://dx.doi.org/10.1109/52.914744
http://dx.doi.org/10.1109/52.914751
http://dx.doi.org/10.1007/s10664-007-9047-3
http://dx.doi.org/10.1109/HICSS.2005.126
http://dx.doi.org/10.1145/1138506.1138517
http://dx.doi.org/10.1007/978-3-540-73460-4_6
http://dx.doi.org/10.1145/1287624.1287643
http://dx.doi.org/10.1007/b102170
http://dx.doi.org/10.1145/1062455.1062550
http://dx.doi.org/10.1287/orsc.1070.0297
http://dx.doi.org/10.1109/TSE.2003.1205177
http://dx.doi.org/10.1109/ICGSE.2007.20
http://dx.doi.org/10.1109/52.914734
http://dx.doi.org/10.1145/358916.359003
http://dx.doi.org/10.1007/978-3-642-05290-3_34

	A multi-criteria distribution model for global software development projects
	Abstract
	Introduction
	State of the practice
	Task allocation practices
	Requirements for systematic work distribution

	Related work
	Description of the approaches
	Evaluation
	The task distribution model by Bokhari
	Bayesian networks for effort and cost modeling

	The multi-criteria distribution model
	Model overview
	Model implementation

	An empirically based instantiation of the distribution model
	Literature study
	Interview study

	Model application
	Distributed process planning
	Case 1:
	Case 2:
	Case 3:

	The Lucent scenario

	Discussion
	Evaluation of the Model
	Applying systematic task assignment to organization-specific contexts
	Conclusion

	Acknowledgements
	References


