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ABSTRACT

Chemical synapses are asymmetric intercellular junc-
tions through which neurons send nerve impulses to
communicate with other neurons or excitable cells. The
appropriate formation of synapses, both spatially and
temporally, is essential for brain function and depends
on the intercellular protein-protein interactions of cell
adhesion molecules (CAMs) at synaptic clefts. The CAM
proteins link pre- and post-synaptic sites, and play
essential roles in promoting synapse formation and
maturation, maintaining synapse number and type,
accumulating neurotransmitter receptors and ion chan-
nels, controlling neuronal differentiation, and even reg-
ulating synaptic plasticity directly. Alteration of the
interactions of CAMs leads to structural and functional
impairments, which results in many neurological disor-
ders, such as autism, Alzheimer’s disease and schizo-
phrenia. Therefore, it is crucial to understand the
functions of CAMs during development and in the
mature neural system, as well as in the pathogenesis of
some neurological disorders. Here, we review the func-
tion of the major classes of CAMs, and how dysfunction
of CAMs relates to several neurological disorders.
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INTRODUCTION

The brain is characterized by an enormous degree of com-
plexity and diversity of neural networks, making it one of the
most complicated organs. This complexity and diversity
come from the vast numbers of neurons, but also from the
variety of synapses where neurons pass electrical or
chemical signals to other cells. Most of the synapses are
small in size (1 μm in diameter), but biochemical studies
reveal a high level of the molecular complexity. The post-
synaptic proteome of the excitatory synapse of a mammalian
brain contains more than 1000 proteins, indicating compli-
cated protein-protein interactions occurring both within and
between synapses (Collins et al., 2006; Cheng et al., 2006;
Peng et al., 2004; Bayés et al., 2011; Dosemeci et al., 2006;
Fernández et al., 2009; Trinidad et al., 2008; Hahn et al.,
2009; Satoh et al., 2002).

The synapse is the site where two neurons connect,
separated by a narrow (∼20 nm) layer of extracellular space
called a synaptic cleft (Akert et al., 1972). The molecular
composition of the synaptic cleft still remains largely unclear,
but early studies demonstrated the presence of mostly pro-
teins and carbohydrates (GRAY 1959; Pfenninger, 1971;
Bloom and Aghajanian, 1966). One of the obvious functions
of protein-protein interactions in the clefts is to serve as the
“glue” that connects the pre- and post-synaptic neurons.
Mounting evidence has confirmed that the adhesiveness of
the pre- and post-synaptic compartment (for example, the
attachment of pre- and post-synaptic membranes in a syn-
aptosome preparation) is resistant to treatments such as
calcium removal, high salt, or even low concentrations of
urea treatment (Pfenninger, 1971; Cotman and Taylor, 1972).
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intercellular protein-protein interactions at synapses, are
involved in the recognition and alignment of pre- and post-
synaptic sites, trans-synaptic signaling, and the precise
localization of neurotransmitter receptors and releasable
vesicles. Alterations in CAMs lead to changes in synaptic
morphology and function, and are associated with many
neurological disorders including autism, AD and schizo-
phrenia. Several families of CAMs are recognized, including
neurexins and neuroligins, leucine-rich repeat transmem-
brane neuronal proteins (LRRTMs), N-cadherin/β-catenin,
ephrins and Eph receptors, SynCAM, and integrins. In this
review we summarize the known CAMs, their physiology,
and their roles in brain pathologies involving protein-protein
interactions at synapses.

CAMS: BRIDGES ACROSS THE SYNAPTIC CLEFT

In the brain, neurons recognize each other and form stable
synaptic connections through CAMs. CAMs are proteins
locate on the cell surface that serve as “glue” for adhering
pre- and post-synaptic terminals together. These proteins
are responsible for mechanical stabilization of and organi-
zation of synaptic contacts. Typically, they contain three
domains: an intracellular domain that interacts with
the intracellular scaffold protein, a transmembrane domain,
and an extracellular domain that interacts with other CAMs
via either trans- or cis-interactions. Most CAMs (e.g., neu-
rexins and neuroligins, SynCAMs, and β1 integrin) localize
at the center of the synapse (Mortillo et al., 2012); whereas
others (e.g., the N-cadherin/β-catenin system) are found at
the outer rims of pre-synaptic active zones and post-synaptic
regions (Uchida et al., 1996).

The CAMs play a crucial role in determining synapse
specificity by mediating the initial target recognition between
pre- and post-synaptic neurons during synapse formation
(Sanes and Yamagata, 2009; Williams et al., 2010). Synaptic
components are enriched at pre- and post-synaptic terminals
in the early stages of synapse development with the help of
CAM interactions (Dalva et al., 2007; Chavis and Westbrook,
2001). During the later stages of synapse development and
in mature synapses, CAMs regulate synaptic structure and
function.

Neurexin and neuroligin

Neurexins (Nrxs) and neuroligins (NLs) form one of the best
studied molecule pairs in the CAM family. Nrxs, discovered
as receptors for α-latrotoxin (Südhof, 2008), are type-I
transmembrane proteins localized on the pre-synaptic
membrane (Berninghausen et al., 2007). Three different
genes coding for Nrxs (Nrx1, 2, 3) are present in mammalian
neurons. Each gene is driven by two different promoters,
resulting in two transcripts encoding a long form of α-Nrxs
1–3 and a short form of β-Nrxs 1–3 (Baudouin and Scheiff-
ele, 2010). NLs are also type-I proteins found on the post-

synaptic membrane. At present, at least 4 (in mice and rats)
or 5 (in humans) NL isoforms have been identified (Lisé and
El-Husseini, 2006; Jamain et al., 2008). The Nrxs and NLs
both contain an extracellular domain that participates in pre-
and post-synaptic interactions and an intracellular domain
that is involved in multiple functional interactions and regu-
lation processes (Südhof, 2008; Lisé and El-Husseini, 2006;
Craig and Kang, 2007).

Nrxs and NLs interact with each other with high affinity via
their extracellular regions (Scheiffele et al., 2000; Comoletti
et al., 2006). The crystal structures of Nrxs and NLs indicate
that these extracellular parts form a trans-synaptic complex
in the synaptic cleft (Araç et al., 2007). The binding of Nrxs
and NLs is Ca2+-dependent (Boucard et al., 2005; Chen
et al., 2008; Ichtchenko et al., 1995), as confirmed by
experiments showing Ca2+-dependent cell-cell adhesion
following the mixing of two cell populations separately
expressing NL-1 and β-Nrx (Boucard et al., 2005; Nguyen
and Südhof, 1997). Five canonical alternative splice sites are
identified in α-Nrxs and two in β-Nrxs (Resnick et al., 2008;
Tabuchi and Südhof, 2002), which predict more than a
thousand different splicing transcripts for Nrxs (Ullrich et al.,
1995; Missler et al., 1998). As shown by electron studies,
spliced sequence #2 (SS2) and #3 (SS#3) are located in the
core structure of extracellular domain of Nrxs, while SS#1
and SS#5 are found in distorted regions (Chen et al., 2011).
Different from other splicing sites, SS#4, which locates
between the fifth and sixth laminin-nectin-sex-hormone
binding globulin (LNS) domain, displays the most signifi-
cance to affect the binding affinity to NLs and other proteins
among the splicing sites (Boucard et al., 2005; Chih et al.,
2006; Reissner et al., 2013). NLs have two alternative
splicing sites (splice site A and B) (Ichtchenko et al., 1995).
Different splicing variants display distinct frequency of
occurrence and region specific expression, indicating their
synapse- or cell- specific roles (Ullrich et al., 1995). The
binding affinities of Nrxs and NLs are controlled by alterna-
tive splicing of both molecules (Comoletti et al., 2006; Bou-
card et al., 2005; Chih et al., 2006). The α-Nrxs and β-Nrxs
both bind to NL1 that lacks splice site B, and are indepen-
dent of SS#4 in Nrxs. In the presence of splice site B, NL1
binds only to β-Nrxs, but does not bind to α-Nrxs, without
SS#4 (Boucard et al., 2005). This apparent splice insert
dependency of Nrx/NL interaction raises a splice-code
hypothesis that specific pairings of Nrx/NL complex
according to their roles at different location (Nam and Chen,
2005; Boucard et al., 2005; Ichtchenko et al., 1995; Chih
et al., 2006).

The C-terminal of Nrxs and NLs interact with intracellular
scaffolding proteins to mediate pre- and post-synaptic dif-
ferentiation and function. Nrxs bind CASK (Ca2+/calmodulin-
activated Ser-Thr kinase) in the pre-synaptic terminal, while
CASK binds Velis/MALs proteins and Mints/X11 proteins
(Butz et al., 1998; Borg et al., 1999). In addition, CASK
phosphorylates the c-tail of Nrxs in an activity-dependent
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manner (Mukherjee et al., 2008), suggesting that Nrxs link
extracellular protein-protein interactions with intracellular
signaling cascade. NLs bind to PSD-95 (post-synaptic
density-95), which is the core scaffolding protein at gluta-
matergic synapses. At post-synaptic sites, the NLs/Nrxs
interaction causes an increase in PSD-95 clustering and
the recruitment of post-synapticNMDA (N-methyl-D-aspartate)
andAMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid) receptors (Nam and Chen, 2005; Heine et al., 2008; Chih
et al., 2005; Barrow et al., 2009). Thus, the binding of Nrxs and
NLs to their partners, helps to align the pre-synaptic release
machinery and post-synaptic receptors.

How exactly the Nrx/NL complex functions at synapses?
Initial studies showed that the expression of NLs in non-
neuronal cells induces pre-synaptic differentiation at the
contacting axons of cultured neurons, whereas expressing
β-Nrx in non-neuronal cells induces post-synaptic differenti-
ation at the contacting dendrites from neurons. The synap-
togenic effects of Nrxs are dependent on the LNS domain
(Gokce and Südhof, 2013). Overexpression of NLs in cul-
tured neurons increases synapse numbers in a synapse-
type and NL-isoform-dependent manner (Chih et al., 2004).
For example, overexpression of NL2 in neurons specifically
increases the number of inhibitory synapses, but not the
excitatory synapses, which is consistent with the preferred
localization of NL2 at inhibitory synapses (Chih et al., 2005;
Varoqueaux et al., 2004; Levinson et al., 2005). Suppression
of NL expression by RNA interference (RNAi) or disruption of
Nrx/NL interaction consistently reduces the number of syn-
apses (Chih et al., 2005; Levinson et al., 2005). Thus, in vitro
studies suggest that Nrx/NL interactions promote synapse
formation and may be necessary for synapse stability.

In vivo analysis from knockout (KO) mice showed that
NLs and Nrxs are essential for synaptic maturation and
function (Varoqueaux et al., 2006; Missler et al., 2003;
Chubykin et al., 2007). The α-Nrx KO mice show significant
impairments in Ca2+-triggered neurotransmitter release at
both excitatory and inhibitory synapses, possibly due to
effects on the pre-synaptic organization of voltage-gated Ca2
+ channels (Missler et al., 2003). KO of NL1 in mice reduces
the synaptic strength at excitatory synapses, whereas the
neurons lacking NL2 show synaptic dysfunction at inhibitory
synapses. NL1–3 triple KO mice are neonatal lethal, and
massive synaptic impairments have been observed from
both in vitro and in situ analysis of these mice. KO of NL1–3
in neurons has no effect on the density of synapses in either
the brain or in cultured neurons. However, the expression
levels of many synaptic proteins, and the basal synaptic
transmission and neural network activity are severely
impaired (Varoqueaux et al., 2006). These data suggest that
Nrxs and NLs are important in maintaining the basal synaptic
transmission. In addition, Nrxs and NLs also contribute to the
long-term plasticity of synapses via an activity-dependent
mechanism (Varoqueaux et al., 2004). The hippocampal
dentate gyrus shows inhibition of long-term potentiation

(LTP) in NL1-Null mice (Jedlicka et al., 2013). Constitutive
inclusion of an alternatively SS4 in Nrx-3 impairs the
recruitment of the post-synaptic AMPA receptor (AMPAR) in
mice during NMDA receptor (NMDAR)-dependent LTP (Aoto
et al., 2013).

The results showing NL1 and NL2 act on excitatory and
inhibitory synapses, respectively suggests an attractive
hypothesis; namely, that the excitation/inhibition ratio could
be regulated by relative expression levels of NL1 and NL2.
Indeed, the amounts of NL1 and NL2 in glutamatergic and
GABAergic synapses are restricted by small extracellular
splice insertions. The GABAergic associated NL isoforms
bind to α-Nrx1 and a subset of β-Nrx1, resulting in GAB-
Aergic but not glutamatergic post-synaptic differentiation
(Chih et al., 2006). Together, Nrx/NL interactions are suffi-
cient but not absolutely required for synapse formation, as
revealed by other KO studies. Other CAM proteins may
therefore contribute redundant intercellular functions.

LRRTMs

The LRRTM proteins are a group of brain-enriched type-I
transmembrane proteins that contain extracellular leucine-
rich repeats and a short cytoplasmic tail. Four known
LRRTMs are recognized (LRRTM 1–4) and are mainly
located at excitatory synapses. The LRRTM family is
expressed in both developing and adult brains and is
especially enriched in the post-synaptic density (PSD)
(Laurén et al., 2003). Non-neuronal cells expressing
LRRTMs induce pre-synaptic differentiation when co-cul-
tured with hippocampal neurons (Linhoff et al., 2009). In vitro
assays identify that knocking down LRRTM2 reduces,
whereas overexpression of LRRTM2 increases, the number
of excitatory synapses, but not inhibitory synapses (de Wit
et al., 2009; Ko et al., 2009). The extracellular LRR domain
of LRRTM2 is considered to induce this excitatory pre-syn-
aptic differentiation (Siddiqui et al., 2013). LRRTM4-Null
dentate gyrus granule cells show reduced numbers of
excitatory synapses and impairments in both miniature and
action-potential-evoked synaptic transmission at excitatory
synapses (Siddiqui et al., 2013). Recently, both α- and β-
Nrxs were identified as LRRTM2 ligands. Although the
LRRTM-Nrx interaction plays a key role in regulating excit-
atory synapse formation, the binding of LRRTMs to Nrxs has
a distinct regulatory mechanism that involves NLs. LRRTM2
only binds to Nrxs that lack an insert in SS#4 whereas NLs
bind to Nrxs regardless of the presence or absence of an
insert in SS#4. Recombinant β-Nrx1 also blocks LRRTMs/
Nrxs binding (Ko et al., 2009).

Since LRRTMs and NLs can both bind to Nrxs, an inter-
esting question is raised regarding whether LRRTMs and
NLs are functionally redundant, cooperative, or antagonistic.
Single, double, or triple knockdowns of LRRTM1, LRRTM2,
and NL-3 in cultured hippocampal neurons have no effect on
synapse numbers, whereas triple knockdown (TKD) of two
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LRRTMs and NL-3 in cultured NL-1 KO neurons leads to a
∼40 % reduction in excitatory synapses (Ko et al., 2011).
Knockdown of LRRTM1 and LRRTM2 selectively reduces
AMPA receptor-mediated synaptic currents, while knock-
down of both LRRTMs, together with NL-3, reduce AMPAR
and NMDAR-mediated currents in NL-1 deficiency mice in
synapses forming stage (Soler-Llavina et al., 2011). Knock-
down of NL-3 at the early stages of synapse formation has
no effect on excitatory synaptic transmission regardless of
NL-1 expression. These data clearly suggest a functional
redundancy between NLs and LRRTMs in developing
excitatory synapses. However, LRRTMs and NLs may act
differently in mature synapses. For example, inactivation of
LRRTM expression, starting from P21 to P35–40, has no
effect on excitatory synaptic transmission, while knockout
of NL1 reduces the NMDAR/AMPAR ratio at similar ages
(Soler-Llavina et al., 2011). In addition, mice lacking
LRRTM1 exhibit an increase in the size of pre-synaptic ter-
minals in the hippocampal CA1 region, and an extraordinary
phenotype where the animals show avoidance of small
enclosures, an increase in social interaction, and a decrease
in nest building (Linhoff et al., 2009; Voikar et al., 2013). In
acute hippocampal slices, double knockdown of LRRTM1
and LRRTM2 impairs LTP, which can be rescued by the
expression of the LRRTM2 extracellular domain (Soler-Lla-
vina et al., 2013). These results indicate that LRRTMs not
only play a key role in synapse development and maturation,
but also are directly involved in synaptic transmission and
more complicated behaviors.

N-cadherin/β-catenin

Cadherins, a large superfamily of CAMs (more than 100
members in humans), are grouped into subfamilies of classic
cadherins and protocadherins. These are also transmem-
brane proteins containing an extracellular domain with a
repeated “cadherin motif” or “cadherin repeat” sequence
(Takeichi, 1988).

N-cadherin is the most abundant cadherin in excitatory
synapses in the brain. It has five extracellular cadherin motifs
and a highly conserved cytoplasmic domain that can bind β-
catenin and p120-catenin (Takeichi, 1988; Takeichi, 2007).
N-cadherin mediates Ca2+-dependent homophilic protein
interactions (Hirano and Takeichi, 2012). During synaptic
maturation, the location of N-cadherin shifts from the cleft of
the synapses to the outer rims of the active zone (Uchida
et al., 1996; Fannon and Colman, 1996). Synapse matura-
tion in the active zone is associated with the clustering of
N-cadherin at puncta adherentia junctions (PAJs) (Benson
and Tanaka, 1998; Tallafuss et al., 2010).

Classical cadherins bind toβ-catenin at its central armadillo
repeat domain, and β-catenin interacts with the actin cyto-
skeleton through α-catenin. Functional studies reveal impor-
tant synaptic functions of cadherins and β-catenin, especially
at the excitatory synapses. Cultured neurons lacking

N-cadherin orβ-catenin show impairments in thedevelopment
of post-synaptic spines, including reduced spine number,
more filopodia-like spines, thinner spines, or spines with
smaller heads (Mendez et al., 2010; Saglietti et al., 2007;
Okuda et al., 2007). Hippocampal conditional KO mice show
reductions in the stability of coordinated spine enlargement
and LTP in the CA1 region, with spine density, morphology,
and basal synaptic neurotransmission untouched (Bozdagi
et al., 2010). The LTP-induced long-term stabilization of syn-
apses is also impaired in expressionmutants or knockdown of
N-cadherin (Mendez et al., 2010). The cooperation between
NL1 and N-cadherin has recently been revealed to promote
the formation of glutamatergic synapses in hippocampal cul-
tures and control vesicle clustering at nascent synapses (Aiga
et al., 2011; Stan et al., 2010). N-cadherin is also thought to
interact with the AMPA receptor subunit GluA2, thereby reg-
ulating the expression and trafficking of AMPARs (Saglietti
et al., 2007; Nuriya andHuganir, 2006). These results suggest
that N-cadherin-mediating adhesion may be responsible for
dendritic spine stabilization and synaptic transmission. In
primary hippocampal cultures, the suppression of β-catenin
expression decreases the amplitude but not the frequency of
spontaneous excitatory synaptic currents. Similar treatment
impairs synaptic scaling induced by a two-day blockade of
neural activity with tetrodotoxin or bicuculline (Okuda et al.,
2007). Down regulation of acetylcholine receptor (AChR)
clustering by β-catenin also results in an inhibition of post-
synaptic differentiation at the neuromuscular junction (Wang
and Luo, 2008).

Beyond the post-synaptic functions, N-cadherin and
β-catenin are also involved in regulating pre-synaptic vesicle
exocytosis. Overexpression of the extracellular domain of
N-cadherin increases the frequency of miniature excitatory
post-synaptic currents (mEPSCs) (Saglietti et al., 2007).
The absence of N-cadherin dramatically impairs short-term
plasticity from facilitation to depression at glutamatergic
synapses (Jüngling et al., 2006). Mice deficient in β-catenin
show a reduction in the number of reserved pool vesicles
and impairment in their response to prolonged repetitive
stimulation (Bamji et al., 2003). Recently, axonal knockdown
of β-catenin has been shown to affect the dynamics of
vesicle release (Taylor et al., 2013). Therefore, N-cadherin
and β-catenin are structurally and functionally linked in the
processes of synapse stabilization as well as in the pro-
cesses of synaptic transmission from both sides of the
synapses. Since the N-cadherin/β-catenin complex stands at
the intersection between pre- and post-synaptic functions, it
is important to investigate more for better understanding their
functions to connect synaptic sides together.

Ephrins and Eph receptors

Eph receptors (EphA and B) represent the largest family
of receptor tyrosine kinases. Eph receptors contain an
extracellular domain that comprises a globular ephrin ligand-
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binding domain, a cysteine-rich region, and two fibronectin
type III domains; a cytoplasmic domain composed of a
juxtamembrane region with two conserved tyrosine residues;
a tyrosine kinase domain; a sterile alpha motif (SAM); and
a PDZ-binding motif (Kullander and Klein, 2002; Himanen,
2012). EphA receptors bind to glycosylphosphatidylinositol
(GPI)-anchored proteins ephrinA, while EphB receptors bind
to transmembrane ephrinB ligands. EphA4, a known
exception, can bind to both classes of ephrins. Eph and
ephrin expressions are not restricted to synapses: they are
found at both the pre- and post-synaptic membranes, and
also, at least some isoforms, on astrocytes (Klein, 2009).
Eph signaling functions in both developing and mature
synapses. Eph-ephrin interaction also could mediate signal
transductions between the receptor-expressing cells and the
ligand-expressing cells in a bidirectional manner (Daar,
2012).

Eph and ephrin signaling is involved in many regulation
processes, including axon guidance and cell migration (Davy
and Soriano, 2005; Xu and Henkemeyer, 2012; Egea and
Klein, 2007). The activation of cyclin-dependent kinase 5
(Cdk5) and ephexin1 by ephrin-A1 promotes EphA4-
dependent spine retraction, followed by a scaling-down of
excitatory synaptic strength (Fu et al., 2007; Peng et al.,
2013). EphA4 also inhibits integrin signaling pathways
(Bourgin et al., 2007), and EphA4 activation by ephrin-A3
reduces tyrosine phosphorylation of the scaffolding protein
Crk-associated substrate (Cas), the tyrosine kinase focal
adhesion kinase (FAK), and proline-rich tyrosine kinase 2
(Pyk2) while down-regulating the association of Cas with the
Src family kinase Fyn and the adaptor Crk. The EphA4
receptor linked with spine-associated RapGAP (SPAR),
which is activated by GTPase, regulates the activities of the
Rap GTPase, and therefore neuronal morphology (Richter
et al., 2007). Cortical neurons with enhanced expression
levels of EphA4 show increased numbers of mature spines
(Clifford et al., 2011). EphA4 KO mice are disorganized,
confirming an involvement of EphA4 forward signaling in the
process of dendritic spine maturation (Murai et al., 2003).
Remodeling of the spines by the EphA receptor rearranges
the distribution of F-actin in spines (Zhou et al., 2012).

EphA-ephrinA signaling shapes the synaptic strength in
addition to regulating cell morphology (Hruska and Dalva,
2012). The activation of EphA4 decreases synaptic and
surface GluR1 and attenuates mEPSCs amplitude through
an APC (Cdh1)-dependent degradation pathway (Fu et al.,
2011). The Eph4-deficient hippocampal CA1 region shows
impairment of LTP and long-term depression (LTD); this
impairment is independent of the cytoplasmic domain of
Eph4, suggesting that ephrinBs are the active signaling
partners (Grunwald et al., 2004). Amygdala neurons also
have a requirement for EphA4 for synaptic plasticity. Rin1, a
brain-specific Rab5-GEF, mediates EphA4 endocytosis and
down-regulates EphA4 signaling, which in turn affects LTP
(Deininger et al., 2008). Post-synaptic expression of EphA4

and its ligand ephrin-A3 in astrocytes mediates neuron-glia
interactions, which are also required for LTP expression at
CA3-CA1 synapses in the hippocampus (Filosa et al., 2009).

EphB-ephrinB signaling at synapses is also well studied.
EphrinB3 expression is related to glutamatergic synapse
density on the dendritic shafts, but not on the spines (Aoto
et al., 2007). EphrinB binding to the EphB receptor elevates
excitatory synapse formation via degradation of Ephexin5, a
RhoA guanine nucleotide exchange factor (Margolis et al.,
2010). Suppression of the expression of the EphB receptor
reduces excitatory glutamatergic synapses and the cluster-
ing of NMDARs and AMPARs, and alters dendritic spine
formation as well (Henkemeyer et al., 2003). The PDZ
domain of EphB2 also controls localization of the AMPA-type
glutamate receptor, while the ephrin binding domain of
EphB2 initiates pre-synaptic differentiation (Kayser et al.,
2006). EphBs are thought to control synaptogenesis by
associating the motility of filopodia and the binding ability of
ephrin (Kayser et al., 2008). The Rho-GEF kalirin, Rac1, and
its effector PAK are involved in the ephrinB-EphB signaling
pathway during spine development (Penzes et al., 2003).
Tiam1, a Rac1 guanine nucleotide exchange factor, is
phosphorylated by EphBs and promotes Rac1-dependent
actin cytoskeletal remodeling for dendritic spine
morphogenesis (Tolias et al., 2007). Together, these data
indicate that EphB-ephrinB signaling promotes excitatory
synaptogenesis.

In addition to its synaptogenesis function, EphB-ephrinB
signaling also plays an important role in regulating synaptic
plasticity. The suppression of EphB2 expression by siRNA in
the post-synaptic neuron reduces mEPSCs frequency in
cultured cortical neurons (Kayser et al., 2006). EphB2
deficient mice show reduced NMDA-mediated synaptic
responses and impaired LTP (Henderson et al., 2001). This
impairment of LTP can be rescued by expressing C-terminal
truncated EphB2, indicating that EphB2 kinase signaling is
not responsible for these functions (Grunwald et al., 2001).
The tyrosine phosphorylation sites in ephrinB2 are neces-
sary for maintaining LTP but not LTD, whereas the C-termi-
nal PDZ interaction site is required for both (Bouzioukh et al.,
2007). EphrinB3-deficient mice show reduced amplitude of
mEPSCs, but increased NMDA/AMPA ratios in CA1 neurons
(Antion et al., 2010). Blocking the interaction between EphRs
and the PDZ protein GRIP or extracellular application of
soluble forms of B-ephrins (which are pre-synaptic ligands
for the EphB receptors) reduces mossy fiber LTPs in the
CA3 region, suggesting a requirement for trans-synaptic
interactions between post-synaptic EphB receptors and pre-
synaptic B-ephrins (Contractor et al., 2002). Replacement of
the cytoplasmic C-terminal signaling domain of the ephrinB3
with β-galactosidase selectively blocks mossy fiber
LTPs (Armstrong et al., 2006). Therefore, trans-synaptic
ephrin-Eph adhesion regulates synaptic maturation and
plasticity in a bidirectional way in both developing and adult
brains.
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NCAM

The neural cell adhesion molecule (NCAM) is a glycoprotein
of the immunoglobulin (Ig) superfamily, expressed in both the
pre- and post-synaptic membranes. The extracellular part of
NCAM has five Ig domains that bind to NCAM, and two
fibronectin type III (FNIII) domains related to neurite out-
growth. At least 27 alternatively spliced NCAM mRNAs are
present in rat brain, suggesting wide and diverse functions of
NCAM (Reyes et al., 1991).

Numerous studies have shown that NCAM regulates
synapse formation, maturation, and function through homo-
and hetero-philic interactions (Bukalo and Dityatev, 2012).
The ablation of NCAM reduces the number of synapses
(Dityatev et al., 2000). NCAM controls axonal branching and
button formation in GABAergic synapses in basket inter-
neurons (Chattopadhyaya et al., 2013). NCAM associates
with the post-synaptic spectrin-based scaffold to form a
complex that is responsible for recruiting NMDARs and
Ca2+/calmodulin-dependent protein kinase II alpha (CaM-
KIIalpha) to synapses and is important for NMDAR-depen-
dent LTP and LTD (Sytnyk et al., 2006; Bukalo et al., 2004;
Muller et al., 1996). Therefore, NCAM recruits the NMDAR
and other PSD components for both synapse formation and
synaptic plasticity.

NCAM also has pre-synaptic functions. Deleting NCAM at
the neuromuscular junction (NMJ) leads to smaller NMJs
and impaired accumulation of pre-synaptic proteins. The
number of docked vesicles is reduced and the paired-pulse
facilitation (PPF) is lacking at NCAM null junctions (Rafuse
et al., 2000). Multiple alterations including vesicle mobiliza-
tion/cycling in pre-synaptic terminals are also observed in
NCAM-deficient mice (Polo-Parada et al., 2001). The C-ter-
minal of NCAM plays a key role in maintaining effective
transmission via a pathway involving myosin light chain
kinase (MLCK) and probably MLC and myosin II (Polo-Pa-
rada et al., 2005). This pathway is thought to control the
replenishment of synaptic vesicles during high levels of
exocytosis through the facilitation of myosin-driven delivery
of vesicles to active zones for subsequent exocytosis.
Chromaffin cells show impairment of catecholamine granule
trafficking between the readily releasable pool and the highly
release-competent immediately releasable pool in the
absence of NCAM, resulting in a reduced rate of granule
fusion under physiological stimulation. These findings sug-
gest that NCAM is involved in vesicle recycling in both
neuronal and endocrine cells (Chan et al., 2005).

L1-CAMs

The L1 is a family of transmembrane proteins, known as
neuronal cell adhesion molecules (L1-CAMs). At least four
members are recognized in vertebrates: L1CAM, Close
Homolog of L1 (CHL1), NgCAM-related cell adhesion mol-
ecule (NrCAM), and Neurofascin. L1CAM contains an
ectodomain with six Ig-like domains and five fibronectin type

III repeats, followed by a transmembrane region and a highly
conserved cytoplasmic tail (Moos et al., 1988). The intra-
cellular domain of L1 interacts with many other synaptic
organizers, including ankyrin, actin, spectrin, and 14-3-3
proteins (Hortsch et al., 2009; Ramser et al., 2010; Herron
et al., 2009; Loers and Schachner, 2007). The L1-CAMs are
involved in many neuronal functions, including axonal guid-
ance, neurite outgrowth and fasciculation, and cell migration
(Chang et al., 1987; Lindner et al., 1983; Fischer et al., 1986;
Maness and Schachner, 2007).

L1-deficient mice show a significant reduction in fre-
quency, but not amplitude, of miniature inhibitory post-syn-
aptic currents (mIPSCs), and a reduction in the mean
amplitude of putative unitary IPSCs, whereas the basal
excitatory synaptic transmission is normal (Saghatelyan
et al., 2004). However, the conditional inactivation of L1 in
the adult brain increases the basal excitatory synaptic
transmission and decreases anxiety in the open field, which
differs from the response seen in L1 constitutive KO mice
(Law et al., 2003). These differences might arise from the
developmental function of L1, as no structural abnormalities
in morphology are observed in these mice when compared
to constitutive KO mice. The L1/ankyrin interactions are
important in regulating the functions of inhibitory synapses.
The ankyrin-mediated localization of L1CAMs is implicated
in the organization of GABAergic synapses in Purkinje
neurons (Ango et al., 2004). Loss of the L1/ankyrin interac-
tion impairs branching of GABAergic interneurons and spe-
cifically reduces the number of perisomatic synapses (Guan
and Maness, 2010).

CHL1, another member of the L1 subfamily, has a
reported involvement in synaptogenesis of inhibitory inter-
neurons, although it functions differently from L1. The hip-
pocampal CA1 region in juvenile CHL1 mutant mice shows
an increase in inhibitory post-synaptic currents and a
decrease in LTP at CA3-CA1 excitatory synapses. The
length and linear density of active zones, and the numbers of
perisomatic puncta containing inhibitory axonal markers, are
also increased (Nikonenko et al., 2006). CHL1-deficient mice
show enhancement of basal synaptic transmission in the
lateral and medial perforant path projections to the dentate
gyrus, whereas reactivity to environmental stimuli and
expression of social behaviors are reduced (Morellini et al.,
2007). CHL1 also maintains inhibitory synapses between
stellate axons and Purkinje dendrites, indicating a role in
connecting glia and neuron (Ango et al., 2008).

IgCAMs, including the previously mentioned NCAM and
L1CAM, are capable of binding in both trans- and cis- ori-
entations. Early structural studies identified the involvement
of the multiple Ig domains of NCAM and L1 in trans binding
(Bateman et al., 1996; De Angelis et al., 1999; Jensen et al.,
1999). Both NCAM and L1 family members could be palm-
itoylated and targeted to lipid rafts, indicating cis interactions
between these CAMs (Little et al., 1998; Ren and Bennett,
1998). NCAM and L1 can stimulate neurite growth via a
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mitogen-activated protein kinase (MAPK) dependent path-
way. In PC12 cells, the MAP kinase extracellular signal-
regulated kinases ERK1 and ERK2 are phosphorylated
through interaction of NCAM with a synthetic NCAM peptide
ligand (Kolkova et al., 2000). In 3T3 cells, L1 cross-linking
can activate ERK2, a component of the MAPK cascade
(Schaefer et al., 1999). The fibroblast growth factor (FGF)
receptor is also proposed to share downstream signaling
pathways with CAMs during the stimulation of neurite growth
(Kolkova et al., 2000).

These CAMs transduce signals from outside to inside, but
they also can transduce signals in the opposite direction
because of their functions in cell migration and synaptic
plasticity. For example, L1 can bind ankyrin, resulting in
oligomerization of CAMs and an enhancement of homophilic
trans-adhesion on the membrane (Tuvia et al., 1997). Dif-
ferent members of L1CAMs can interact with ankyrin to form
hetero-oligomers with different affinities, and different regu-
lation by homophilic or heterophilic ligand binding to the
CAMs (Malhotra et al., 1998). Together, the CAMs mediate
the adhesion response to external stimuli, and inside-out
signaling transduction.

Nectins

Nectins are Ca2+-independent Ig-CAMs (Takai et al., 2003).
At present, four nectins have been identified in humans. All
nectins can form homo-cis dimers followed by trans-inter-
action in an either heterophilic or homophilic manner through
their extracellular domains (Mizoguchi et al., 2002). Nectin-3
interacts with Nectin-1 or -2 to form a hetero-trans-dimer with
a higher binding ability than homo-trans-dimers (Rikitake
et al., 2012).

Nectins interact with actin-binding protein afadin, an
α-catenin interacting protein, through the C-terminal PDZ
binding domain, which predicts an involvement with the
cadherin/catenin adhesion complex (Giagtzoglou et al.,
2009). Nectin-1 and afadin form clusters at developing syn-
apses, and these clusters colocalize with the N-cadherin-
catenin complex, implying a role of these two bimolecular
pairs during initial synapse formation. Similar to N-cadherin,
Nectin-1 mainly locates at matured excitatory synapses
although it is initially found at both excitatory and inhibitory
synapses (Lim et al., 2008). The CA3 area of the adult hip-
pocampus shows an asymmetric localization of Nectin-1 and
-3 at the pre- and post-synaptic sides, in contrast to the
symmetrically localization of afadin expression. Reduction in
nectin-based adhesion leads to a decrease in synapse size
and an accompanying increase in synapse number, sug-
gesting a role of the nectin-afadin system in synaptogenesis
(Mizoguchi et al., 2002). Mice deficient in either Nectin-1 or
Nectin-3 show a reduced number of puncta adherentia
junctions (PAJs) and abnormal mossy fiber trajectory (Honda
et al., 2006). Nectin-1, but not Nectin-3, plays a role in
increasing contextual fear memory (Fantin et al., 2013).

On the other hand, conditional absence of afadin largely
reduces the signal of nectins, N-cadherin, and β-catenin, and
disrupts PAJs, whereas it increases the numbers of perfo-
rated synapses. Thus the nectin-afadin interaction appears
to participate in synaptic remodeling by regulating the sta-
bility of synaptic junctions (Majima et al., 2009).

The nectin-afadin complex also interacts with many
synaptic proteins that function at synapses. The synaptic
scaffolding molecule (S-SCAM) has been reported to co-
localize with nectins via the PDZ domain-binding domain
of the latter (Yamada et al., 2003). S-SCAM is involved in
the pre-synaptic vesicle clustering mediated by N-cadherin
and NL-1 cooperation (Stan et al., 2010). NL-1 induces the
release probability and enhances mEPSCs frequency in
the presence of N-cadherin. Several cell adhesion
molecules therefore can function either separately or
synergistically in synapse maturation (Sakisaka et al.,
2007).

Contactins

Contactins (CNTN) are a group of GPI-linked Ig-CAMs
containing six N-terminal Ig-like domains and four fibronectin
III-like domains. Six members are recognized in the CNTN
family: CNTN-1, CNTN-2/TAG-1, CNTN-3/BIG-1, CNTN-4/
BIG-2, CNTN-5/NB2, and CNTN-6/NB3. CNTNs play an
important role in the formation of axon connections in
the developing nervous system. Both CNTN-1 and CNTN-2
are involved in axon growth and guidance (Buttiglione et al.,
1996; Perrin et al., 2001). CNTN-6 is prominently expressed
pre-synaptically in the developing nervous system. Hippo-
campal neurons show co-expression of CNTN-6 with the
excitatory synaptic markers vesicular glutamate transporter
1 (VGLUT1) and 2 (VGLUT2), but not with the inhibitory
synapse marker vesicular GABA transporter (VGAT).
CNTN-6 deficient mice show increased numbers of imma-
ture granule cells in the internal granule cell layer (IGL) and a
decreased density of parallel fiber synaptic terminals in the
cerebellum (Sakurai et al., 2009). KO of CNTN-6 selectively
reduces excitatory but not inhibitory synapse density (Sak-
urai et al., 2010). Thus, CNTN-6 seems to be required for
postnatal glutamatergic synapse development. CNTN 4 and
5 are also involved in synapse differentiation, especially at
early stages. CNTN-4 extends the length of neurites, while
CNTN-5 increases the number of roots (Mercati et al., 2013).
Unlike the pre-synaptic localization of CNTN-6, CNTN-1 has
been detected in PSD in CA1 pyramidal cells. Inactivation of
CNTN-1 expression leaves the basal transmission and LTP
level intact, without altering synaptic morphology either
(Murai et al., 2002), but PPF and NMDA receptor-dependent
LTD are impaired in these mice. In adult mice, overexpres-
sion of contactin increases LTP and spatial and object rec-
ognition memory (Puzzo et al., 2013). CNTNs may therefore
function at both pre- and post-synaptic sites, although the
mechanisms remain unclear.
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SynCAM

Synaptic cell adhesion molecules (SynCAM) have been
identified as a family of proteins that contain three extracellular
Ig-like domains, a single transmembrane domain and a cyto-
plasmic tail (Thomas et al., 2008). Four SynCAM isoforms are
recognized: SynCAMs 1–4. All SynCAMs are highly enriched
in the brain, and SynCAM 1 is also found in the lung and testis
(Fogel et al., 2007). Like the NLs, SynCAM recruits synaptic
proteins and promotes neuron differentiation pre-synaptically
in co-culture assays (Sara et al., 2005). During synapse
development, SynCAMs are located in both pre- and post-
synaptic plasmamembranes and undergo homo- and hetero-
philic adhesive interactions. Interestingly, unlike NCAM and
L1CAM, SynCAMs are preferentially assembled into hetero-
philic rather than homophilic complexes. SynCAMs 1 and 2
bind to each other across the synaptic cleft to form a trans-
synaptic SynCAM 1/2 complex that is subject to glycosylation
modifications (Fogel et al., 2007). The number of pre-synaptic
terminals and the level of excitatory synaptic transmission are
increased via the binding of SynCAM 1 and 2 (Fogel et al.,
2007; Sara et al., 2005). Consistently, loss of SynCAM 1
decreases excitatory synapse number in the nucleus ac-
cumbens (Gizaet al., 2013). Lateral self-assembly of SynCAM
1has also been reported. This lateral interaction is required for
synaptogenic activity in immature neurons, while restricting
synaptic size in mature synapses (Fogel et al., 2011).

In addition to their homo- and hetero-philic interaction,
SynCAMs also bind many other proteins via the C-terminal
domain. SynCAMs bind to the scaffold proteins syntenin and
CASK via the C-terminal PDZ domain, and recruit CASK to
the plasma membrane (Biederer et al., 2002). SynCAM1
also binds to protein 4.1B intracellularly, which in turn recruits
NMDAR to the post-synaptic plasma membrane, resulting in
an increase in the frequency of NMDAR-mediated mEPSCs
in cultured hippocampal neurons (Hoy et al., 2009).

In vivo studies have revealed a role for SynCAM 1 in the
regulation of synapse numbers and plasticity. Mouse neu-
rons form fewer excitatory synapses in the absence of
SynCAM 1, while overexpression of SynCAM 1 results in an
increase in excitatory synapse number. The LTD and spatial
learning are also regulated by the expression of SynCAM 1
(Robbins et al., 2010).

Although SynCAMs and NLs both function in the pre-
synaptic induction of synapses, the mechanisms underlying
this response might be distinct. Co-culture assays show that
both spontaneous and evoked neurotransmitter release
induced by SynCAM and NLs are indistinguishable. How-
ever, electrophysiological analysis reveals that only SynCAM
increases the early development of the excitatory neurons by
its intracellular cytoplasmic domain. Morphological analysis
shows that only NL1 increases the synapse number and
spine density (Sara et al., 2005). These contradictions
observed in different assays could be reconciled by
assuming that the role of SynCAM is to increase the vesicle

pool size of previously existing synapses whereas the role of
NL1 is to lead synapse formation without altered recruitment
of AMPARs in the post-synaptic site or proper assembly of
pre-synaptic secretory apparatus. Therefore, proper syna-
ptogenesis probably requires more than just one ‘master
molecule’, with many molecules functioning instead, either
separately or in cooperation, in the discrete steps of synapse
formation.

SALMs

Synaptic adhesion-like molecules (SALMs) are a newly dis-
covered family of adhesion molecules: at least five members
have been identified in the central nervous system. SALMs
1–3 contain an extracellular region consisting of a leucine-
rich repeat (LRR), a fibronectin type III domain, Ig-like
domains, a transmembrane domain, and a C-terminal PDZ-
binding motif that interacts with PSD-95. SALMs 4 and 5 lack
the PDZ-binding domain (Seabold et al., 2008). SALMs 1–3
bind to each other, while SALMs 4 and 5 form homomeric
complexes in brain. Transfected heterologous cells show that
only SALMs 4 and 5 form homomeric associations mediated
by the extracellular N-terminus (Seabold et al., 2008).

SALMs undergo multiple interactions with other proteins.
SALM1 interacts with post-synaptic NMDA receptors, pos-
sibly through the extracellular or transmembrane regions,
and with scaffold proteins PSD-95, SAP 97, and SAP 102 via
the PDZ-binding domain. Immunostaining experiments show
that SALM1 recruits PSD-95 and NMDA receptors to post-
synaptic sites (Wang et al., 2006; Seabold et al., 2012).
SALM2 interacts with PSD-95 and other post-synaptic pro-
teins, including guanylate kinase-associated protein (GKAP)
and AMPA receptors at excitatory synapses (Ko et al., 2006).
SALM3 and SALM5 recruit VGluT and VGAT (which are pre-
synaptic proteins localized at excitatory and inhibitory syn-
apses, respectively), the pre-synaptic vesicle protein syn-
aptophysin, and the pre-synaptic active zone protein Piccolo,
although SALM3 has higher affinity for complex formation
with PSD-95 compared to SALM5 (Mah et al., 2010).
Functional assays revealed that overexpression of SALMs
promotes neurite outgrowth in cultured neurons (Wang et al.,
2008). Suppression of SALM2 expression decreases the
number of excitatory synapses and dendritic spines, and
selectively reduces the frequency but not the amplitude of
mEPSCs (Ko et al., 2006). On the other hand, knockdown of
SALM5 significantly reduces both spontaneous excitatory
and inhibitory synaptic transmissions, affecting both fre-
quency and amplitude (Mah et al., 2010). Thus, SALMs
regulate excitatory and inhibitory synapse function through
distinct mechanisms.

NGLs

NGL (netrin-G ligand) proteins are a family of LRR-contain-
ing CAMs consisting of three members: NGL1–3. NGLs are
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mainly located post-synaptically at excitatory synapses.
NGL-1 and -2 bind to netrin-G1 and netrin-G2 through their
cytosolic tails in an isoform-specific manner (Kim et al.,
2006). The LRR domain of NGL-3 interacts with pre-synaptic
LAR protein to induce synapse formation (Kwon et al., 2010).
PTPσ interacts with NGL-3 to promote a bidirectional syn-
apse formation, whereas PTPδ-NGL-3 interaction induces
pre-synaptic differentiation in only a unidirectional manner.
Receptor tyrosine phosphatases LAR, the NGL-3 binding
partner, is also required for maintaining the number of
excitatory synapses and dendritic spines, the expression of
surface AMPARs, and the targeting of the cadherin-β-cate-
nin complex (Dunah et al., 2005).

Cultured neurons overexpressing NGL-2 show an
increase in the number of dendritic protrusions. Suppression
or competitive inhibition of NGL-2 reduced the number of
excitatory synapses (Kim et al., 2006). Suppression of
NGL-2 or NGL-3 selectively decreases excitatory synaptic
currents (Kim et al., 2006; Woo et al., 2009). In the retina,
loss of NGL-2 impairs branching of horizontal cell axons that
stratify in the outer plexiform layer and reduces synapse
formation between horizontal cell axons and rods (Soto
et al., 2013). LAR knockdown reduces both the amplitude
and frequency of mEPSCs (Dunah et al., 2005). Thus, like
other cell adhesion molecules, NGLs are also involved in
synaptic function.

IgLONs

IgLONs are a group of adhesion molecules with three
extracellular C2 domains and a GPI anchor attach to the
membrane. Four genes are presently identified in this family:
LAMP (limbic system-associated membrane protein), OB-
CAM (opioid-binding cell adhesion molecule), Ntm (neuro-
trimin), and Kilon. The LAMP, Ntm, and OBCAM molecules
interact homophilically with themselves and heterophilically
with each other (Lodge et al., 2000; Gil et al., 2002). During
development, IgLONs show both overlapping and distinct
patterns in protein localization. For example, Kilon is dis-
tributed in axons and pre-synaptic terminals at early stages,
but is mainly observed in the post-synaptic sites of dendritic
and somatic synapses in adults (Miyata et al., 2003; Ha-
shimoto et al., 2008). LAMP alters its location from restriction
at post-synaptic sites to wide expression on somata, den-
drites, and axons in the process of maturation (Pimenta
et al., 1996).

The IgLONs are implicated in synaptogenesis. Overex-
pression of LAMP or OBCAM increases synapse number in
hippocampal neurons (Hashimoto et al., 2009). Consistently,
down regulation of OBCAM expression reduces synapse
number, impairing synapse formation (Yamada et al., 2007).
OBCAM also regulates neuronal activity via a raft-dependent
pathway. Overexpression of Kilon reduces synapse number
at early stages but increases the number of dendritic syn-
apses in mature neurons with the alteration of lipid raft

dependence (Hashimoto et al., 2008). However, more data
are needed to determine the precise nature of the IgLON
involvement in synaptic transmission and plasticity.

Integrins

Integrins are transmembrane receptors found in organisms
ranging from sponges to mammals. Integrins form hetero-
dimers with two type-I transmembrane chains, α subunit and
β subunit. At least eighteen α subunits and eight β subunits
are known, resulting in 24 unique heterodimers in mammals.
Interaction of integrins with other proteins, including cad-
herins and Ig-CAMs allow transmission of signals across the
plasma membrane in both directions and mediate cell-cell
and cell-matrix interactions and communication (Hynes,
2002). Some integrin subunits are concentrated at syn-
apses, indicating a role in synaptic function. For example,
post-synaptic β3 integrin directly interacts with AMPARs in
primary hippocampal cultures (Cingolani et al., 2008). In
addition, β3 integrin binds to the GluA2 subunit of AMPARs
through their cytoplasmic tails (Pozo et al., 2012). Through
the regulation of AMPAR trafficking, similar to that conducted
by N-cadherin, β3 integrin is involved in synaptic scaling. β1
integrin, another integrin subunit, shows an altered expres-
sion in either limbic seizures or muscle stretch (Pinkstaff
et al., 1998; Chen and Grinnell, 1995). Deletion of post-
synaptic β1 integrin increases the expression of N-cadherin
and NLs, possibly implying a compensatory effect (Mortillo
et al., 2012). Overexpression of β3 integrin in the post-syn-
aptic neurons reduces the amplitude of mEPSCs and alters
the subunit composition of AMPAR, while inactivation of β3
integrin abolishes the synaptic scaling induced by pharma-
cological silencing of neuronal activity (Harburger and Cal-
derwood, 2009). In addition to cis-regulation, integrins
organize the synapse assembly in a trans-synaptic manner.
Deleting β1 integrin only in the pre-synaptic terminals alters
the ratio of mature and immature spines numbers in cultured
neurons (Ning et al., 2013).

Homeostatic synaptic scaling requires β3 integrin, but the
function of this protein in synaptic transmission is still not
very clear. Excitatory synaptic currents in primary hippo-
campal pyramidal neurons are increased or decreased by
the overexpression of wild type or dominant-negative β3
integrin, respectively (Cingolani et al., 2008). However,
expressing β3 integrin mutants, including wild-type, in con-
stitutively inactive or constitutively active mutants has no
differential effects in excitatory synaptic responses (Pozo
et al., 2012). Deletion of β3 integrin also leaves LTP, LTD,
and short-term plasticity unaltered (McGeachie et al., 2012).
More investigations are therefore needed to determine the
exact role of integrins in synaptic transmission.

LAR-RPTPs

Leukocyte antigen-related receptor protein tyrosine phos-
phatases (LAR-RPTPs) have recently been proposed to
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have a role in pre-synaptic development. The LAR-RPTP
proteins have a single transmembrane domain, two intra-
cellular PTP domains, and an extracellular domain (Pulido
et al., 1995). Three vertebrate members (LAR, PTPδ, and
PTPσ) and a few invertebrate members have been identi-
fied in the family (Chagnon et al., 2004). LAR-RPTPs are
widely distributed in the brain. LAR and PTPσ are enriched
in glutamatergic synapses, and LAR is associated with
AMPARs (Wyszynski et al., 2002; Takahashi et al., 2011);
whereas PTPδ mainly localized in inhibitory synapses (Ta-
kahashi et al., 2012). LAR-RPTPs regulate synapse for-
mation via various protein interactions; for instance, PTPσ
and PTPδ are reported to interact with NGL-3 and to pro-
mote synapse formation (Kwon et al., 2010). Overexpres-
sion of dominant-negative LAR impairs the normal function
of β-catenin-cadherin complex that regulates synaptic dif-
ferentiation (Brigidi and Bamji, 2011). Similarly, RNAi
experiments show a reduction in dendritic targeting of the β-
catenin-cadherin complex, suggesting that LAR-RPTPs
function in maintaining excitatory synapses and dendritic
spines (Dunah et al., 2005). PTPσ and PTPδ are required
for excitatory and inhibitory synaptic differentiation,
respectively, via interactions with Slit- and Trk-like proteins
(Slitrks), a family of proteins belonging to the LRR super-
family (Yim et al., 2013).

Electrophysiology studies have revealed synaptic func-
tions for LAR-RPTPs. Excitatory synaptic transmission is
dramatically impaired by overexpression of LAR dominant-
negative constructs (Dunah et al., 2005). Similarly, loss of
LAR-RPTPs reduces the amplitude and frequency of mE-
PSCs. Mice deficient in PTPδ show increased PPF and LTP
in the hippocampus (Uetani et al., 2000). Surprisingly,
receptor protein tyrosine phosphatase σ (RPTPσ) null mice
show an increase in PPF and mEPSCs frequency, but
reduced LTP (Horn et al., 2012). Activation of LAR-RPTPs
results in specific mAChR-LTD, but not mGluR-LTD (Dick-
inson et al., 2009).

Mice that lack LAR phosphatase domains exhibit spatial
learning impairment in performance of the Morris water
maze, and are more active in exploration and nest-building
(Kolkman et al., 2004). Similar learning impairment has been
found in mice lacking PTPδ (Uetani et al., 2000). On the
contrary, loss of RPTPσ in mice causes an enhancement in
novel object recognition memory (Horn et al., 2012). Several
studies suggest important functions of LAR-RPTPs at syn-
apses, but the underlying mechanisms still remain to be
established (Table 1).

CAMS IN NEUROLOGICAL DISORDERS

The incidence of neurological disorders is increasing in the
human population. For example, in 2006, there were 26.6
million AD patients in the world (Brookmeyer et al., 2007).
Autism spectrum disorders (ASD), neurodevelopmental dis-
orders, now affects about 1 % of children (Newschaffer et al.,Ta
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2007). Most neurological disorders originate as dysfunction
of neural circuits, whose function is highly reliant on precisely
controlled cell-cell adhesions.

As we discussed above, CAMs, which connect neurons
with each other, play a key role in synapse formation and
synaptic plasticity. Mounting evidence now connects several
neurological disorders with CAMs, as many mutations or
aberrant expressions of CAMs are associated with neuro-
logical disorders. For example, mutations in Nrxs and NLs
are found in ASD patients (Südhof, 2008) and Eph receptor
alterations are highly related with AD (Chen et al., 2012).
Therefore, research on CAM function will help to provide a
better understanding of the mechanisms underlying patho-
genic neurological disorders.

CAMs in autism

ASD are neural development disorders that are often asso-
ciated with other genetic disorders such as Down syndrome,
tuberous sclerosis, and Fragile-X Mental Retardation. ASD
are characterized by impairments in social interaction and
communication, and stereotypic or repetitive behaviors
(Südhof, 2008). ASD alter the connection and organization
of nerve cells and their synapses in the brain. Genetic
studies have revealed many mutations in CAMs in ASD
patients: for example, five ultra-rare structural variants
including a predicted splicing mutation have been found in
α-Nrx1 gene from 116 Caucasian patients with autism but
only one ultra-rare structural variant occurred in controls
(Yan et al., 2008). The β-Nrx1 gene has two putative mis-
sense structural variants that were detected in four Cauca-
sian patients with autism and not in healthy controls (Feng
et al., 2006). On post-synaptic side, two NL genes (NL3 and
4) located on the X-chromosome are associated with autism.
Two base pair deletions in NL4 have been found in male
autistic patients, resulting in altered interactions with β-Nrxs
(Laumonnier et al., 2004). The R451C and R87 W substi-
tutions in the NL3 and NL4 genes, respectively, have been
associated with autistic patients (Comoletti et al., 2004;
Zhang et al., 2009). This R451C mutation impairs NL3 traf-
ficking, resulting in lower cell surface expression of NL3 and
largely reducing β-Nrx1 binding activity.

Mice with a R451C knock-in show increased spatial
learning and impairments in social interactions, accompa-
nied by specific increases in inhibitory synaptic transmission
(Tabuchi et al., 2007). The R451C mutation is a gain-of-
function substitution because NL3 KO mice did not pheno-
copy any of the phenotypes observed in the knock-in mice
(Tabuchi et al., 2007). The largely decreased cell surface
expression of NL3 in R451C mutant mice (Comoletti et al.,
2004) indicates that the remaining protein must change
synaptic function tremendously. Unlike the R451C knock-in
mice, a loss-of-function mutation in the mouse NL4 impairs
reciprocal social interactions and communication (Jamain
et al., 2008). Thus, both NL3 knock-in and NL4 KO mice

display autism-like phenotypes, providing partial animal
models for this disorder.

Other CAMs are also involved in autism. Genetic studies
shows an involvement of cadherin 10 (CDH10) and cadherin
9 (CDH9) in the pathogenesis of autism (Wang et al. 2009).
A scan for the IQ discrepancy in autism revealed a unique
truncated cadherin, cadherin 13 (CDH13), which has also
been suggested as a candidate for autism (Chapman et al.
2011). A genome-wide recurrent de novo analysis also
includes the CDH13 gene in rare copy-number variations in
autism families (Sanders et al. 2011). Cadherin 15 (CDH15)
gene has been found in a sporadic patient with autism
(Willemsen et al. 2010). Cadherin 8 (CDH8), which presents
in the developing human cortex, is reported as an autism
susceptibility gene in other recent research (Pagnamenta
et al., 2011). A meta-analysis identified several genes close
to cadherin with possible links to autism. Protocadherin 10
(PCDH10), which regulates neuronal activity and controls
axon outgrowth, is a potential candidate gene for autism
(Morrow et al. 2008; Uemura et al. 2007).

CNTN is another family of cell adhesion molecules related
to autism. Currently, CNTN4, CNTN5, and CNTN6 are sug-
gested as potential disease genes for autism. First, a dele-
tion at the 5′ end of the CNTN4 gene has been identified in
an autism patient (Cottrell et al. 2011). Disruption of the
CNTN4 gene causes the 3p deletion syndrome and impairs
normal CNS development (Fernandez et al. 2004). Rare
copy number variations (CNVs) in CNTN4 have been
reported to influence autism susceptibility in Asian popula-
tions (Guo et al. 2012). A loss of CNTN5 co-segregated with
autism in one family, and one de novo CNV and one non-
cosegregating inherited CNV in CNTN6 were found in a
Utrecht cohort (van Daalen et al. 2011). Current data clearly
suggest a link between mutations in different CAMs and
autism, but how these mutant proteins give rise to the altered
human behavior seen in autism patients is still a mystery.

CAMs in AD

AD, first defined in 1906 by Alois Alzheimer, is the most
common form of dementia, with an increasing risk with age.
In Europe, millions of patients suffer from the disease and
the numbers of patients are expected to increase dramati-
cally (Di Luca et al. 2011). Multiple neurochemical, neuro-
logical, psychological, and physical abnormalities have been
reported in AD patients, indicating AD to be a multifactorial
disease. It is a slowly progressive disorder, where early
memory loss originates from synapse failure before neuron
death. Therefore, AD is expected to show a strong rela-
tionship with CAMs that play essential roles in intercellular
synaptic connections.

One very viable hypothesis suggests that synaptic failure
in AD is due to altered synaptic protein composition and
function. Ephs and ephrins, which are known to regulate
synapse formation and synaptic plasticity, are related with
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cognitive impairments in AD (Chen et al., 2012). The
expression and function of Ephrins and Eph receptors
changes in AD patients. In AD model mice, abnormal
expression of EphA4 and EphB2 are detected much earlier
than the decrease in synaptic proteins and the onset of
cognitive decline (Simón et al., 2009), indicating that Eph
receptors may act as early stage markers of AD. EphA4 has
been reported to colocalize with γ-secretase, the key
enzyme that cleaves amyloid precursor protein (APP) to
generate Aβ (De Strooper 2003); EphA4 is processed by
γ-secretase upon synaptic activity (Inoue et al., 2009). At the
synapses, γ-secretase processes EphA4 to generate
EphA4-ICD, a short intracellular domain. However, familial
mutations in presenilin 1 (PS1) in AD’s patients slow down
this process, resulting in a reduced formation of dendritic
spines, implying that down-regulated processing of EphA4
may be involved in AD pathogenesis. Moreover, Rac1, which
is activated by EphA4-ICD, has been reported to control the
activity of the p21-activated kinase (PAK) pathway, leading
to memory impairment (Zhao et al., 2006). Indeed, the
amount of Rac1 decreases dramatically corresponding with
the level of EphA4-ICD in AD patients (Matsui et al., 2012).
The processing of the EphB2 receptor is also regulated by
γ-secretase and inhibited by familial AD mutations of PS1
(Litterst et al., 2007). The NMDA receptor is phosphorylated
by the C-terminal of EphB2, while reduced processing of
EphB2 may decrease the cell surface expression of
NMDAR, resulting in learning and memory impairment
(Xu et al., 2009). The Aβ peptide binds to the extracellular
domain of EphB2 and triggers EphB2 degradation in the
proteasome, leading to a decrease in surface and total
EphB2 in neurons. A lack of EphB2 expression causes
neuronal dysfunction and memory impairments through the
NMDAR dependent pathway (Cissé et al., 2011). More
interestingly, increasing EphB2 level can reverse these
impairments.

Many other CAMs are also involved in AD pathogenesis.
For example, soluble intercellular adhesion molecule-1 (s-
ICAM-1) levels are higher in patients with AD (Rentzos et al.,
2005). A genome-wide late-onset AD analysis associates
PCDH11X with disease in individuals of European descent
from the United States (Carrasquillo et al., 2009). The
interactions of Nrxs and NLs not only control the balance
between excitatory and inhibitory neurotransmitter release,
but they also function in β-amyloid metabolism, suggesting
roles in AD (Sindi et al., 2014). Processing of Nrx3β can be
altered by several PS1 mutations of the γ-secretase that
cause early-onset familial AD (Bot et al., 2011). In hippo-
campal neurons, the accumulation of Nrx C-terminal frag-
ments is associated with the inhibition of presenilin/
γ-secretase (Saura et al., 2011). N-cadherin enhances APP
dimerization, while its C-terminal fragment accelerates Aβ
and causes synapse damage (Asada-Utsugi et al., 2011;
Andreyeva et al., 2012). β-catenin mediates the structural
changes associated with memory formation, suggesting a

role in memory impairment (Maguschak and Ressler 2012).
Nectin-1 serves as a substrate for PS/γ-secretase-like in-
tramembrane proteolytic activity (Kim et al., 2002). Nectin-3
is also cleaved by intramembrane PS1/γ-secretase (Kim
et al., 2011). Therefore, altered functions in various CAMs
contribute to the pathogenesis of AD, although the precise
underlying mechanism is still unknown.

CAMs in other diseases

CAMs are involved in many other neurological diseases
beyond autism and AD. Schizophrenia, a mental disorder
characterized by social withdrawal, paranoid delusions, and
hallucinations, is associated with abnormal expression and
function of CAMs. Embryonic NCAM dysfunction was linked
with schizophrenia more than 20 years ago (Conrad and
Scheibel 1987). Unlike the case of ASD patients (Plioplys
et al., 1990), NCAM levels in serum and cerebrospinal fluid
(CSF) increase in schizophrenic patients (Lyons et al., 1988;
Poltorak et al., 1996). Interestingly, the hippocampus of
schizophrenic patients shows a reduction of polysialylated
NCAM (Barbeau et al., 1995). An increase in the cytosolic
isoform of NCAM has also been observed in the hippo-
campus of schizophrenia patients (Vawter et al., 1998a). The
ratio of NCAM/synaptic proteins is also changed in some
cases, indicating alterations in mature/immature synapses.
For example, an increase in the cytosolic NCAM/synapto-
physin ratio was demonstrated in the hippocampus of
schizophrenia patients (Vawter et al., 1999). Similarly, the
cingulate cortex of schizophrenics also showed elevated
NCAM/synaptophysin ratios (Honer et al., 1997). Much
research in autism and mental retardation has implicated
Nrxs in schizophrenia (Kirov et al., 2008). Whole-genome
analysis conducted in 2008 identified a deletion in two
affected siblings that disrupted Nrx1 (Kirov et al., 2008).
Nrx1α exonic deletions have since been found in three
patients with paranoid-type schizophrenia (Vrijenhoek et al.,
2008). A later study of 2977 schizophrenia patients and
33746 controls examined Nrx1 for copy number variants
(CNVs) and identified 66 deletions and 5 duplications in
NRXN1 from the patients, confirming that Nrx1 is a risk gene
for schizophrenia (Rujescu et al., 2009). Bipolar (BP) disor-
der is another neuropsychiatric disorder that is related to
CAMs. Recently, a genome-wide association scan of BP 1
disorder patients identified some single nucleotide polymor-
phisms (SNPs) in close vicinity to cadherin 7 (CDH7) (Sklar
et al., 2008; Soronen et al., 2010). In 2010, PCDH9 was
recognized as one of the target genes of β-catenin for
schizophrenia and BP disorders (Pedrosa et al., 2010).
Susceptibility to BP disorder was also found associated with
FAT, a cadherin gene, in four independent cohorts (Blair
et al., 2006).

The cytosolic NCAM isoform (cN-CAM) undergoes a tre-
mendous reduction in BP disorder (−140%) in hippocampal
tissue (Vawter 2000). Quantitative Western blot analysis
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revealed that cytosolic NCAM protein and mRNA levels
increased in the hippocampus and prefrontal cortex in BP
disorder patients (Vawter et al., 1998b). Interestingly, NCAM
infusion reduced astrocyte division, while BP disorder
decreased glia numbers (Krushel et al., 1995; Ongür et al.,
1998). Thus, different NCAM isoforms may play multiple
roles in different brain regions in BP disorder patients.

Although only some superficial evidence that try to reveal
the underlying mechanisms how CAMs are involved in
neurological diseases pathogenesis can be observed, two
points are seemed quite certain: on one hand, many CAMs
could contribute in one neurological disease; on the other
hand, one altered CAM could result in several neurological
disorders, both in either separate or in cooperative way.
Thus no ‘leading’ protein represents a common pathway for
each of the neurological diseases, it is more likely that ‘many
hands make light work’ in nature. Therefore more invest-
ments are required to deepen our understanding of the
mechanisms of the molecular regulation of synapses.

SUMMARY

Neurons communicate via synaptic connection mostly
mediated by precisely-controlled intercellular interactions.
CAMs are involved in all stages of synapse formation and
stabilization, providing ‘bridges’ between pre- and post-syn-
aptic sites. At present, mounting evidence clearly indicates
that no single pair of CAMs is necessary or sufficient for the
organization of synapse developments from initiation to
maturation, indicating overlapping or redundant functions of
CAMs. The diversity of the isoforms and functions of CAMs
may contribute to the complexity of neuronal network.
Abnormalities in CAMs often cause neurological diseases.

The involvement of CAMs in synaptogenesis and syn-
aptic connection is now well accepted. However, it remains
unclear that actually how many and which proteins are
involved in the process of synaptogenesis, how these dis-
tinct CAMs contribute to the specific synapse sybtypes and
functions and how the CAMs cooperate together. At present,
in view of the large variety of synapses in the brain, the
number of known CAMs is surprisingly low. It is natural to
speculate that more proteins are involved in this process,
perhaps even some ‘old’ molecules with recognized activi-
ties in other aspects of functions. For instance, SNAP25, one
component of the SNARE complex required for synaptic
exocytosis, regulates dendritic spine maturation and function
through its expression level (Tomasoni et al., 2013). Com-
plexin2, a key regulator of neurotransmitter release, also has
a role in synaptogenesis (Lee et al., 2005). A deficit in
Munc18 or Munc13 also reduces the outgrowth speed of
neurite at the early stage of development (Broeke et al.,
2010). Thrombospondins (TSPs), proteins known in angio-
genesis and many immune regulations, promote neuronal
synaptogenesis in vitro and in vivo (Christopherson et al.,
2005). Although these proteins may interfere with CAM-

mediated intercellular interactions or receptors trafficking
rather than function in synaptogenesis directly and make the
cases even more complicate. Together, determining the
proteins that take part in synapse developments is one of the
highest priorities in neuroscience research. Clearly, large-
scale screening with better technology or improved design
might be an inspiring way to uncover additional new CAMs,
or identify already known synaptic proteins such as CAMs, to
provide a better understanding of the physiology and
pathology occurring during synapse development.
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