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Abstract – Animal slurry contains plant nutrients that are essential for crop production. However, intensive livestock production may lead to a
surplus of plant nutrients on farms and, as a consequence, discharge or emission to the environment. In order to ensure that the slurry applied
to fields matches the nutrient requirements of the crops, techniques have been developed to reduce the nutrient content of slurry by means
of separation. This review discusses the separation technologies used for animal slurry treatment and the physical and chemical processes
involved in separation. These processes need to be understood before efficient, reliable and cheap separation technologies that take into account
the actual properties of slurry and the likely end-use of the separation products can be developed. A simple separation efficiency expression
can be used to assess the efficiency of slurry separation. It is indeed important to measure the amount and composition of the slurry before
treatment, the dry-matter-rich fraction and the liquid fraction. The separation efficiency of mechanical separators for the removal of dry matter
and phosphorus (P) is ranked as follows: centrifugation > sedimentation > non-pressurized filtration > pressurized filtration. In general, the
separation of total N and NH+4 follows the same pattern, but the separation efficiency is lower than for dry matter and P. Treatment with a
flocculant before separation improves separation efficiency significantly. Of the polyacrylamide polymers tested, high-molecular-weight, linear
cationic polymers with a medium charge density (20–40 mol%) were found to be the most efficient flocculants. The best mechanical separation
techniques for flocculated slurry are screens or filter belts. The separation efficiency of polyacrylamide-treated slurry can be improved by
adding a multivalent ion to coagulate particles and for precipitation of phosphorus. Aluminium sulfate (Al2(SO4)3) or ferric chloride (FeCl3)
seem to be very efficient for improving the mechanical separators. Alternatively, the mineral struvite (MgNH4PO4) may be formed by changing
the slurry characteristics, such as by the addition of magnesium (Mg) or by increasing the pH to 9. The struvite crystals are removed during
solid–liquid separation. The products of the solid–liquid separation may be further treated by evaporation, membrane filtration or ammonia
stripping in order to obtain the desired end-products; however, low-maintenance and/or cost-efficient operation of these post-treatments has not
yet been demonstrated. The separation should be developed as a whole-system approach, paying attention to parameters such as the value of
end-products, environmental consequences and economy.
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1. INTRODUCTION

Livestock production increased towards the end of the 20th
century and, due to increasing demand in developing coun-
tries, production is expected to increase further in Asia and
South America (FAOSTAT, 2006). Globally, the intensification
of agricultural systems increases the environmental impact of
food production, as high concentrations of livestock increase
the risk that organic waste nutrients are used for crop produc-
tion in excess of crop requirements.

This section briefly discusses current problems related to
discharge and the unsustainable use of slurry, with a focus on
how to optimize separation as a sustainable and cost-effective
treatment option for animal slurry.

Livestock slurry contains phosphorus (P) and potas-
sium (K), which have fertilizer values equivalent to those of
mineral fertilizers, while its nitrogen (N) content has a lower
and more variable fertilizer value than that of commercial fer-
tilizers. If applied at a rate higher than plant uptake, there
is a great risk of nutrient leaching and runoff that will pol-
lute surface- and groundwater (Burton and Turner, 2003). This
leads to an increased need for water purification to provide
safe drinking water supplies. Slurry is also harmful to the
environment when discharged directly into receiving waters
(Rattanarajcharkul et al., 2001; Steinfeld et al., 2006; Petersen
et al., 2007; Vu et al., 2007). Negative effects from heavy ap-
plications of slurry may include salinization in semi-arid re-
gions, toxic concentrations of heavy metals, and decreased
soil aeration (Bernal et al., 1992, 1993). Larger production

units may result in higher local emissions of odor and am-
monia gas from housing and stores. Intensive livestock pro-
duction may also lead to higher energy use for the transport of
livestock wastes to be recycled in crop production elsewhere
(Sørensen et al., 2003; Sørensen and Møller, 2006), and the
risk of spreading disease among livestock will increase.

Until recently, European farmers have tried to minimize
the environmental problems caused by slurry management
through recycling on farm. It has been recognized that live-
stock slurry represents a valuable resource that, if used ap-
propriately with minimal loss, can replace significant amounts
of mineral fertilizers (Bouwman and Booij, 1998; Le, 1998).
However, an increasing number of large, intensive livestock
production units with insufficient area for the sustainable re-
cycling of slurry nutrients have emerged in recent years. This
specialization in livestock production tends to weaken the
link between livestock and plant production and increases the
farm’s impact on the environment. To facilitate the recycling
of slurry produced on these farms, there is a need to transport
the slurry to farms specializing in crop cultivation. The cost
of transporting slurry may be reduced, and its fertilizer value
increased, by separating the slurry into (1) a liquid fraction in-
tended for on-farm use, and (2) a dry-matter- and nutrient-rich
fraction that can be exported to farms with few or no animals
(Møller et al., 2000; Sørensen et al., 2003). Separation may
also contribute to a reduction in odor emission (Zhang and
Westerman, 1997) and assist in producing energy-rich biomass
that can be used for incineration or biogas production (Møller
et al., 2007a; Hjorth et al., 2009).
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In Asia, slurry from pig farms is often separated in-house
on small- to medium-sized farms by manual scraping, while on
large farms the solid fraction is separated from the liquid frac-
tion by filter separators or decanter centrifuges (Ong, 2002; Vu
et al., 2007). The liquid fraction is transferred to fish ponds,
where it fertilizes aquatic plants that are eaten by herbivorous
fish (Vu et al., 2007). The solid slurry produced by pigs and
cattle that is scraped off the floor is composted, and an organic
fertilizer is produced that is sold to vegetable and fruit produc-
ers as a highly valued product for soil amelioration.

In Europe and North America, the solid fraction is often not
considered to have much value and slurry processing is there-
fore considered as an additional cost of livestock production
(Petersen et al., 2007). Thus, the challenge is to reduce the
cost and improve the efficiency of the processes while adding
value to the separation products – especially the solid fraction,
which has a high energy and P content. In this context, it is im-
portant to understand that slurry management consists of sev-
eral interrelated operations carried out from the time the slurry
is removed from the animal house until it is used for bioenergy
production and to fertilize crops. Therefore, a whole-system
approach should be considered when developing the technol-
ogy for optimizing the recycling of plant nutrients in livestock
production and optimizing green energy production using live-
stock slurry (Petersen et al., 2007).

It should be borne in mind that the separation of animal
slurry may create new problems; for example, a change in the
ratio of plant nutrients to heavy metals in the biomass. A re-
cent study showed that solid–liquid separation with floccula-
tion as a pre-treatment transferred zinc (Zn), copper (Cu) and
cadmium (Cd) to the solid fraction (Møller et al., 2007b). The
additives used when optimizing the separation of slurry (e.g.
polymers and Al) may also pose an environmental problem
(Nahm, 2005; Schechter et al., 1995).

Overall, slurry separation and recycling of organic matter
and plant nutrients can mitigate the environmental hazards de-
scribed above, since it will contribute to the optimization of
crop fertilization, thereby reducing the need for external sup-
plies of N, P, K and micronutrients.

An effective separation system can only be designed if the
following three points are taken into account:

1. the chemical and physical properties of the slurry;

2. the desired end-products;

3. the potential separation techniques, including pre- and
post-treatments and combinations of different techniques.

Knowledge of these variables will provide the information
needed to produce separation products that can be used ef-
ficiently in crop production. Desirable separation products
would, for instance, comprise a liquid fraction containing N,
P and K at a ratio equivalent to the plant demand, and a solid
fraction with high P, a relatively high N content (including or-
ganic N), and a high content of DM, which could be used as a
carbon source for energy production (Hjorth et al., 2009).

A thorough understanding of the physical and chemical
processes involved in the separation of slurry is required in

order to develop reliable, efficient and cheap separation tech-
nologies, taking into account the actual slurry properties and
the end-use of the separation products. This review aims to
present a characterization of animal slurry relevant for slurry
separation, and to describe concepts of separation optimized
to treat slurry with the specified characteristics. The review in-
cludes the presentation of separation techniques, including the
use of additives as pre-treatments.

2. SLURRY PRODUCTION

The management of slurry will affect its physical and chem-
ical characteristics. Animal housing may be designed so that
both solid and liquid slurry are produced. Alternatively, some
animal houses are designed that have slatted floors with cellars
or channels beneath. Below the slats, a slurry consisting of a
mixture of feces and urine, strewing material, and spilt feed
and water is collected.

The range of animal housing design and methods of slurry
collection, storage and handling reflect the large differences in
climate and production objectives throughout the world. Slurry
management systems have been developed in order to reduce
the manual labor required. The animal slurry in these systems
is mainly stored and transported from animal houses via deep
pit, pull plug, pit recharge and flushing systems (Menzi, 2002;
Arogo et al., 2003). There is little or no seasonal variation
in untreated slurry composition (Petersen and Kjellerup 1990;
Conn et al., 2007), which reflects the fact that the diets given to
the animals and the slurry management normally do not vary
significantly throughout the year. With respect to the separa-
tion of animal slurry, the slurry removal system and method of
storage is important because the physical and chemical charac-
teristics of the slurry will change due to microbial transforma-
tion processes during storage (Hindrichsen et al., 2006). Slurry
characteristics may also be changed by introducing additives
or changes in feed, as these changes will be reflected in slurry
composition (Otto et al., 2003). The composition of the slurry
also varies significantly with depth in the slurry store due to
sedimentation and surface crust formation (Burton and Turner,
2003).

Separation of urine and feces may be carried out in the an-
imal house. In cattle houses with tethered cattle, the manure
may be separated into solid and liquid fractions by collecting
the solids from the floor behind the animals while the liquid
is drained through gutters. In these houses, the collected solid
manure mainly contains feces and straw and the liquid slurry
contains a mixture of water, urine and soluble fecal compo-
nents (Sommer and Hutchings, 2001; Sommer et al., 2007). In
modern pig houses, the animals move freely on slatted floors,
and therefore in-house separation of the slurry needs to be car-
ried out below the slatted floor (Kroodsma, 1986; Lachance
et al., 2004). However, farmers are still reluctant to install this
technology because of problems related to equipment main-
tenance; instead, the separation of mixed urine and feces, i.e.
slurry, will be the focus of this review.
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3. NITROGEN AND PHOSPHORUS
TRANSFORMATION DURING STORAGE

The distribution of nitrogen (N) and phosphorus (P) be-
tween the solid and liquid slurry fractions is affected by the mi-
crobial transformation of organic matter that takes place dur-
ing storage before slurry separation. As shown in Section 4,
the N and P are distributed between a solid phase (particles)
and a liquid phase, and this distribution is affected by excre-
tion and storage.

3.1. Nitrogen

In livestock farming, usually not more than 5–45% of the
nitrogen (N) in plant protein is transformed into animal pro-
tein, depending on the type of animal and livestock manage-
ment (Oenema et al., 2001). The remaining 55–95% is ex-
creted via urine and dung as organically bound N. Following
deposition on the floor of the animal house or in pastures, a
major fraction of the organic N is rapidly hydrolyzed into am-
monium (NH+4 ) by the enzyme urinase, which is present in the
feces (Sommer et al., 2006).

Immobilization of inorganic N into organically bound N is
a microbial process, which depends on the C:N ratio in the
degradable organic compounds. Slurry mixtures have C:N ra-
tios in a range between 4 for pig slurries and 10 for cattle slur-
ries (Chadwick et al., 2000). In general, there is no immobi-
lization of N in slurry mixtures, because the C:N ratio of the
easily degradable compounds is low (<15) (Kirchmann and
Witter, 1989; Thomsen, 2000). During in-house storage, most
of the digestible compounds containing N are transformed,
and about 10% of the organic N is mineralized (Zhang and
Day, 1996; Sørensen, 1998). During outdoor storage of slurry,
little N is mineralized and it is assumed that about 5% of the
organic N is transformed into inorganic N during the course of
6–9 months’ storage (Poulsen et al., 2001).

Approximately 70% of the N in slurry is dissolved and
most of the dissolved N is present as NH+4 (Christensen et al.,
2009). The NH+4 in slurry, as well as in the liquid and solid
separation fractions, may be lost due to volatilization as NH3
(pKa = 9.25) or after microbial transformation as nitrous ox-
ide or N2 (Hansen et al., 2006). Thus, the total loss of gaseous
N from animal housing and slurry storage ranges from about
10% of the excreted N in dung and urine from dairy cattle to
>30% for pigs and poultry in intensive livestock operations
(Oenema et al., 2001).

3.2. Phosphorus

Phosphorus is fed to the animals via plants, but also as ad-
ditives in the form of inorganic phosphate. Cattle are able to
utilize P very efficiently and only the plant P that is not mo-
bilized and adsorbed in the digestive system is excreted. Most
of this P is excreted in feces and very little in urine (Meyer
et al., 2007). Higher amounts of dietary P may lead to higher

P excretion in feces (Dou et al., 2003; Chapuis-Lardy et al.,
2004).

The digestive system of pigs is not as efficient as that of cat-
tle in absorbing P in feed, and pigs excrete about 50–60% of
their P intake in feces and urine. Surplus P intake is excreted
in urine. The enzyme phytase is added to pig feed to improve P
uptake. Phytase degrades the organic P compound phytate and
makes the P more easily available; consequently, the inorganic
P supplement can be reduced and P excretion reduced signifi-
cantly, i.e. by >20% (Pfeiffer, 1995; Han et al., 2001; Sommer
et al., 2008). This reduction mostly affects the amount of P
in urine (Poulsen, 2000) and is affected by P digestibility, the
amount of feed in relation to the requirements of the pig, and
the age and category of animal. Production systems will also
affect P excretion; for instance, changing the group size of fat-
tening pigs may increase welfare and reduce P excretion. In
contrast, group housing of sows and the addition of straw may
increase P excretion (Krieter, 2002).

In slurry >80% of the dissolved P is orthophosphate. The
orthophosphate fraction may vary during storage, i.e. increase
immediately after excretion and reach a maximum, and there-
after it will decrease slightly (Christensen et al., 2009).

4. PHYSICAL AND CHEMICAL
CHARACTERIZATION OF SLURRY

Animal slurry from housing is a mixture of feces and urine,
bedding material (e.g. straw, wood shavings, sawdust, sphag-
num), spilt feed and drinking water, and water used for wash-
ing floors. Factors of importance for optimizing the efficiency
of slurry separation include particle size, concentration of or-
ganic and inorganic components, pH and buffer systems of the
slurry. The physical and electrochemical properties of the par-
ticles are also important for separation.

Water use will vary due to differences in animal hous-
ing systems and management; therefore, due to the amount
of dilution, the composition of the animal slurry will vary.
In pig slurry, in particular, the concentration of the compo-
nents varies due to variations in use of water, for instance, be-
cause more water is used in sow than in pig houses (Conn
et al., 2007), and because a large amount of water is used
in Asian pig production to cool the pigs and to clean solid
floors (Taiganides, 1992; Sommer et al., 2005). Thus, in slurry
from finishing pig houses, the total N, P and K concentrations
may be 2.3, 2.5 and 1.7 times greater, respectively, than in
sow slurry (Conn et al., 2007). Also, the average DM content
in slurry from finishing pigs is six times greater in European
slurry than in Asian slurry (Sommer et al., 2005).

4.1. Particle size

Particle size distribution in the slurry is important for sep-
aration; for example, filtration will only retain particles above
a certain size, and during sedimentation particles in the range
between 1 nm and 1 μm (i.e. colloids) are subject to Brownian
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motion and move by diffusion in the liquid, and therefore settle
very slowly or not at all.

The amount of DM in the particle size fraction below
0.025 mm is greater in pig slurry than in cattle slurry; 66–
70% and 50–55% in pig and cattle slurry, respectively (Møller
et al., 2002; Sommer et al., 2008). Feed composition may af-
fect particle size distribution; for instance, the proportion of
DM in the particle size fraction >1 mm was lower in slurry
from cows fed only roughage compared with slurry from cows
whose diet was supplemented with concentrates (Nørgaard,
2006; Sommer et al., 2008). The effects of diet and category of
animal are also reflected in the variation in total solids found in
the <0.125 mm category of fresh feces from cattle, being 50%,
41% and 44% (±1.4) for lactating cows, heifers and calves, re-
spectively (Meyer et al., 2007).

Microbial transformation of the organic pool (see Sect. 3)
will change the particle size distribution. The amount of or-
ganic matter in slurry decreases due to microbial transforma-
tion into CH4 and CO2 during anaerobic storage. The DM con-
tent may decrease by 25% during 5 months of storage at 20 ◦C
(Møller et al., 2002). At low storage temperatures, anaerobic
transformation of organic material – and therefore DM reduc-
tion – will be significantly lower (Christensen et al., 2009),
i.e. about 10 times lower at 10 ◦C than the reduction at 20 ◦C
(Sommer et al., 2006).

Anaerobic digestion reduces the DM concentration of an-
imal slurry, and changes the particle size distribution. It has
been observed that particles <10 μm account for 64% of DM
in raw slurry, while it increases to 84% of DM in anaerobi-
cally digested slurry (Massé et al., 2005). In contrast, the con-
centration of particles <1.6 μm is reduced most during anaer-
obic storage in slurry stores (Møller et al., 2002). In anaerobic
digesters, stirring and high temperatures facilitate microbial
degradation of large particles, leaving relatively small parti-
cles with slowly degradable material. In a cold unstirred slurry,
the slow transformation of particles primarily degrades small
particles, transforming only a minor fraction of the large par-
ticulate material.

In cattle slurry >80% of N and P is in the particle fraction
below 0.125 mm (Meyer et al., 2007), and a very detailed anal-
ysis of particle size fractions showed that in slurry more than
about 70% of the undissolved N and P was in the particle size
fraction 0.45–250 μm (Massé et al., 2005). Because approx-
imately 30% and 80% of N and P, respectively, is contained
in particles (see Sect. 3), the small particles contain a large
percentage of the total P in slurry. The addition of phytase to
the diet of pigs or supplementing the diet of dairy cows with
concentrates does not affect the distribution of total P in the
different particle size fractions (Sommer et al., 2007).

4.2. Organic components

The composition of the organic components may affect sep-
aration, as charge and pH will influence flocculation and also
the cation absorption on and charge neutralization of the par-
ticles being separated from the liquid. Animal slurry contains
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Figure 1. Distribution of phosphorus between the particles, colloids
and dissolved fraction of pig slurry (adapted from Christensen et al.,
2009).

short-chain volatile fatty acids (VFA) with 1–5 atoms of car-
bon, organic lipids, proteins, carbohydrates and lignin, which
also contains non-carbohydrate organic components such as
phenols (Møller et al., 2004; Massé et al., 2005; Christensen
et al., 2009). Carbohydrates comprise the largest fraction of
the organic material, followed by proteins, lipids, lignin and
VFA. The organic components in slurry include compounds
with the functional groups carboxylates, hydroxyls, sulfur
hydryls and phenols (Massé et al., 2005) which, at the pH in-
terval in slurry, will contribute to a negative charge of both
dissolved and particulate organic matter.

Most of the P in animal slurry is in the particle fraction of
slurry, and >30% is dissolved in the liquid phase (Fig. 1). One
study showed that organic P in solution only constitutes about
5% of the P in slurry (Fordham and Schwertmann, 1977a).
The remaining P is mainly associated with the particle frac-
tion, where it may be bound inorganically in crystalline form
or is adsorbed onto particles.

4.3. Inorganic components

The separation efficiency of different technologies is greatly
affected by the slurry composition; for instance, large minerals
will end up in the solid fraction. In addition, electrical conduc-
tivity will affect flocculation, and the relative concentration of
cations will affect crystallization of compounds such as stru-
vite.

The composition of ions in animal slurry varies signifi-
cantly among slurry from different animals and is affected
by the diets fed to the animals and slurry management
(Tab. I). Electrical conductivity depends on the concentra-
tion and species of ions in solution and varies from 0.008 to
0.026 S cm−1 (Sommer and Husted, 1995a; Christensen et al.,
2009). Cattle slurry contains more sodium, potassium and cal-
cium than pig slurry (i.e. 2–3 times more) due to an intake
of roughage having a high content of these cations (Sommer
and Husted, 1995a; Massé et al., 2007a). In cattle slurry, the
content of these ions varies twofold due to variation in diets
(Chapuis-Lardy et al., 2004).
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Table I. Variability in the composition of animal slurries from one site and between slurries from different sites. DM: dry matter. TAN: total
ammoniacal nitrogen.

Slurry Component content (g/kg slurry)
origin DM Total-P Total-N TAN K Ca Mg Cu Zn Reference
Sows Mean 23 0.8 3.2 2.0 2.0 0.7 0.2 0.0 Møller et al., 2007a; Conn et al., 2007

Standard deviation (15) (0.2) (0.9) (0.7) (0.3) (0.4) (0.1)
Finishing Mean 67 2.1 7.5 4.5 3.3 2.1 0.9 0.0 0.1 Conn et al., 2007; Ye et al., 2005; Massé et al., 2005;
pigs Standard deviation (26) (0.8) (2.5) (2.1) (1.1) (0.9) 0.4 0.0 (0.1) Møller et al., 2004, 2007a; Saeys et al., 2005; Sommer

and Husted, 1995a; Sommer et al., 2008
Dairy Mean 82 1.0 3.7 5.0 4.3 1.6 0.6 0.0 Amon et al., 2006; Clemens et al., 2006; Møller et al.,
cows Standard deviation (24) (0.2) (1.7) (9.3) (1.8) 2007a; Sommer and Husted, 1995a; Sommer et al., 2008

The distribution of P between the solid and liquid phases is
affected by pH, with more P being dissolved at a decreased
pH. The distribution is almost constant down to pH = 6.5,
whereas the concentration of dissolved P increases by a factor
of 5 when pH is lowered from 6.5 to 5.5; mainly due to dis-
solution of struvite (Christensen et al., 2009). In slurry, P may
be crystallized as struvite (MgNH4PO4 × 6H2O) and differ-
ent forms of calcium phosphates (Fordham and Schwertmann,
1977b, c), i.e. calcium dihydrogen phosphate Ca(H2PO4)2,
calcium hydrogen phosphate CaHPO4 and tricalcium phos-
phate Ca3(PO4)2. The forms of phosphate will be affected by
the pH of the slurry (Eq. (1)).

Ca3(PO4)2 + 2H2SO4 + 4H2O ↔
2CaSO4 · 2H2O + Ca(H2PO4)2 · 2H2O (1)

Studies suggest that, in slurry, phosphate can crystallize as
struvite (Fordham and Schwertmann, 1977b, c; Bril and
Salomons, 1990; Sommer and Husted, 1995a; Gungor and
Karthikeyan, 2005). Ammonium is present in large excess for
struvite formation, thus crystallization is mainly controlled by
magnesium concentration and pH.

An increase in the amount of iron (Fe3+) dissolved in the
slurry will reduce pH; for example, if the Fe3+ precipitates as
crystalline iron phosphate.

Fe3+ + H3POn−3
4 ↔ FePO4(s) + nH+ (2)

Precipitation of calcite (CaCO3) is mainly controlled by the
concentration of calcium (Ca2+), because carbonate (CO2−

3 ) is
present in large excess in slurry. Slurry pH is reduced signifi-
cantly by adding Ca2+, thereby precipitating CO2−

3 and produc-
ing the crystal calcite (Witter and Kirchmann, 1989; Husted
et al., 1991).

Ca2+ + HCO−
3 + H+ � CaCO3(s) + 2H+ (3)

Part of the inorganic P may precipitate as calcium phos-
phate, or it may absorb to CaCO3 (Fordham and Schwertmann,
1977a, b).

Most K+ and NH+4 salts are very soluble, and struvite (see
Sect. 6.2) is the only crystal that in practice contributes to set-
tling or separation of ammonium (Bril and Salomons, 1990).
Thus, most K+ and NH+4 is dissolved in the liquid phase
(Masse et al., 2005).

4.4. pH buffer systems

When considering which process or technology is optimal
for the separation of slurry, the pH needs to be known, since
struvite precipitation is greatly affected by pH, as is the precip-
itation of P and ammonia stripping. It has been shown that the
main buffer components in animal slurry controlling [H+] are
total inorganic carbon (TIC = CO2 + HCO−

3 + H2CO3), total
ammoniacal nitrogen (TAN = NH3 + NH+4 ) and volatile fatty
acids (VFA = C2–C5 acids) (Angelidaki et al., 1993; Sommer
and Husted, 1995a, b; Vavilin et al., 1998). In stored slurry,
the concentration of TIC may be larger than those of TAN and
VFA; so this component is therefore of major importance in
controlling slurry pH (Japenga and Harmsen, 1990; Sommer
and Husted, 1995b). In addition to inorganic buffers, nega-
tively charged particles in the slurry will contribute to acid
groups with pKa values from 5 to 9 (Christensen et al., 2009).

A number of processes will affect the pH of slurry; the
emission of CO2 and NH3 is particularly important because
emission of CO2 will increase pH, and emission of NH3 will
reduce pH. Oxic degradation of organic material reduces the
content of acids in solution and thereby increases pH. In con-
trast, anoxic processes will contribute to the formation of or-
ganic acids (e.g. VFA = C1–C5) and thereby reduce pH. In
an anoxic environment, the content of organic acids may be
reduced by methanogenic microorganisms by transformation
into CH4 and CO2 which, in contrast, will increase pH.

Diet and feeding practices may affect the concentration of
ionic species in the slurry and the pH, because the electric
charge of the solution has to be neutral. At present, soya beans
in the diet supply most of the crude proteins needed by pigs. As
soya contains high concentrations of K+, this will, when ex-
creted, increase the pH of urine and slurry. Reducing the soya
concentration in the diet and supplementing with amino acids
will reduce the K+ concentration and, because of the charge
balance, the concentration of H+ will increase (Sommer and
Husted, 1995b). Thus, for pig urine and slurry, and for cat-
tle urine, it has been shown that pH declines when cationic
species in the feed are reduced; for pig slurry, a reduction of
more than 1 pH unit has been observed within the range of
traditional diets with and without the addition of amino acids
and the reduction of soya (Canh et al., 1998; Portejoie et al.,
2004).

The addition of multivalent ions (e.g. FeCl3 or Al2(SO4)3)
or cations precipitating carbonate ions (Ca(OH)2) will also
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affect slurry pH, as indicated in Section 4.3 (Husted et al.,
1991; Henze et al., 1997; Estevez Rodríguez et al., 2005).

4.5. Electrochemical properties

Particle charge and ionic strength, which affect the electri-
cal potential around the particles, are of vital importance for
the efficient use of flocculants.

Organic particles often have a negative surface charge and
the particles will therefore repel each other (Gregory, 1989).
It has been shown that, in pig slurry, the particle charge den-
sity is –0.18 meq g−1 organic solids (Christensen et al., 2009).
Furthermore, due to their negative charge, organic particles
contribute to the alkalinity of the slurry. The concentration of
ions expressed as ionic strength has been shown to be high
in most animal slurry studies, i.e. conductivity >10 mS cm−1

(Sommer and Husted, 1995b; Christensen et al., 2009). An in-
creasing ionic strength of the liquid will affect processes such
as flocculation due to a reduced electrostatic repulsion. Fur-
thermore, at high ionic strength, a linear polymer will change
to a more sphere-shaped form, which will lower the efficiency
of the polymer (Gregory, 1973, 1989).

The negative charge of organic particles in animal slurry
affects the distribution of the ions in solution by adsorbing
cations close to the particles (Stern layer), with the remain-
ing counter-ions being distributed in the diffusive layer, which
also contains anions. These two layers of ions are referred to
as the ‘double layer’. It is assumed that the interaction between
charged particles is visualized as the overlap of diffusive lay-
ers of particles. Therefore, the electrical potential of interest,
when considering interactions between two particles, is the po-
tential at the boundary between the Stern and the diffusive lay-
ers, which is assumed to be equal to the electrokinetic or zeta
potential (ζ, mV; Lyklema, 1977). The effect of the particle
charge density will be affected by the extent of the diffusive
layer, which decreases with increasing ionic strength. The in-
fluence of the particle charge density is therefore expected to
be low in slurry with a high ionic strength.

4.6. Physical properties

The density and viscosity of slurry has been correlated to
the dry matter (DM) content. Landry et al. (2004) give a thor-
ough review in connection with their own work on concen-
trated slurry. Their conclusion is that, for a DM between 0 and
50%, the density can be described by the following equations:

Dairy cattle:

ρ = 1000 + 14.6 · DM − 2.38 · DM2 + 0.0367 · DM3

(4)

Pig: ρ = 1000 − 11.2 · DM + 1.19 · DM2 − 0.0235 · DM2

(5)

where ρ is the density (kg m−3) and DM is dry matter in %
(w/w). As seen from the equations, dairy cattle slurry has a

lower density and pig slurry a higher density at the same DM
content. The flow properties for slurry have, in general, been
found to be non-Newtonian at values of DM above 5%, while
at lower DM values the slurry behaves as a Newtonian liquid
(Landry et al., 2004). In general, animal slurry with a higher
DM content shows pseudoplastic behavior, but for simple flow
considerations an apparent viscosity will often suffice. Landry
et al. (2004) correlated their viscosity data, measured for a DM
between 9% and 14% at 20 ◦C, as follows:

Dairy cattle: μslurry = 4.10−5 · DM4.4671 (6)

Pig: μslurry = 4.10−6 · DM4.6432 (7)

where μslurry is the apparent slurry viscosity (Pa s). Although
these data should be used with caution, as Landry et al.’s
(2004) comparison with other literature data shows, the con-
clusion is that pig slurry is less viscous than cattle slurry at a
comparable DM content.

5. SOLID–LIQUID SEPARATION

Different techniques for separating slurry in a DM-rich and
a liquid fraction have been developed and are used on farms.
Solid–liquid separation may be carried out in settling tanks,
where the solids are removed from the bottom of the tank,
or the settling may be forced using centrifuges. Solids may
also be removed mechanically by forced filtration using screw
presses or drainage through fabric belts or screens. In-house
separation can be viewed as an alternative to these solid–liquid
separation techniques; however, this technology is not fully
developed and is not used in practice. It will therefore not be
described further in this review (see Sect. 2). Numerous de-
signs of solid–liquid separators exist for slurry mixed in the
animal house, and the majority may be categorized as one of
the four standard types of separators mentioned above.

When comparing results from different studies, it is an ad-
vantage to use one separation parameter expressing the effi-
ciency of separation. The removal efficiency (R) expresses the
efficiency of removal of a specific compound (x) from a slurry
to the solid fraction. It is defined as follows:

R(x) = 1 − c(x)liquid

c(x)slurry
(8)

where c(x)slurry and c(x)liquid are the concentrations (g L−1) of
the species in consideration (dry matter, P, N) in, respectively,
the slurry being treated in the separator and the liquid fraction
that is produced. The greater the removal efficiency, the lower
the amount of compound x remaining in the liquid fraction.
The equation characterizes the efficiency of the separator with
respect to the liquid fraction; however, it does not give any
indication of the production of the solid fraction.

A separation index (Et), on the other hand, expresses the
distribution of the specific compound between the solid and
liquid fractions:

Et(x) =
mx,solid

mx,slurry
(9)
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Figure 2. A typical thickener used for sedimentation.

where mx,slurry and mx,solid are the mass (g) of the compound
in consideration in, respectively, the slurry being treated by
the separator and of the solid fraction being produced. Hence,
the values of both the liquid and the solid fraction are indi-
cated. The larger the separation index, the greater the amount
of compound x in the solid fraction.

The separation index, however, does not include informa-
tion on the total amount of solid fraction relative to the total
amount of liquid fraction. Thus, the simple separation index
will theoretically be 50% if a machine separates the slurry into
two equally sized fractions with similar contents of compound
x. An improved expression for the separation may be obtained
using the reduced separation index (E′

t ):

E′
t (x) =

Et(x) − msolid
mslurry

1 − msoild
mslurry

(10)

where mslurry and msolid are the total mass (g) of slurry being
treated and the total mass of solids being produced.

As only approximately 25% of the studies presented in the
literature on solid–liquid separators contain sufficient data to
assess Et and of these only two-thirds contain sufficient data to
assess Et′ , the separation index (Et) has been used to compare
efficiencies of separations in this review.

5.1. Sedimentation

5.1.1. Technical description

Sedimentation in a thickener is an attractive option for sepa-
ration, due to the low cost and simple technology. Most thick-
eners consist of a container that is cylindrical at the top and
conical at the bottom. In batch operation, slurry is added to
the top of the thickener (Fig. 2) and the solids settle at the
bottom of the conical part from whence the solids can be re-
moved (Suzuki et al., 2002; Loughrin et al., 2006). To encour-
age settling and increase the transfer of solids settled on the
upper part of the conical section, small thickeners can be vi-
brated while, for larger thickeners, this can be achieved by

using a rake. Thickeners can also be operated in continuous
mode, where slurry is added continuously while solid and liq-
uid phases are removed at the same rate as slurry is added.
In this case, the slurry has to be added in the separating zone
(Fig. 2). Alternatively, lagoons may be used as settling basins.

5.1.2. Operation and separation efficiency

The time it takes for the solid to separate from the liquid
phase can be estimated for dilute slurries from the terminal
velocity of a single solid particle. The smallest particles will
have the slowest terminal velocity and will therefore determine
the final settling time. For small particles, the flow is laminar
and the equation for the terminal velocity (vtg) simplifies to
(Foust et al., 1980):

vtg(dp) =

(
ρsolid − ρliquid

)
· g · d2

p

18 · μslurry
(11)

where μslurry is the viscosity of the slurry, ρ is the density of
solid and liquid (see Sect. 4.5), g is the acceleration of gravity,
and dp is the diameter of the solid particle (all in SI units).

As seen, the settling velocity increases with the solid den-
sity compared with liquid density and particle size, but de-
creases with increasing slurry viscosity. As with solid den-
sity, because the viscosity and particle size vary from slurry
to slurry, the terminal velocity can seldom be calculated in
advance. At the same time, at least in the thickening zone
of the thickener, the slurry cannot be assumed to be dilute
and hindered settling will take place. Therefore, the termi-
nal velocity as calculated in equation (11) alone cannot be
used to determine the thickener size. Instead, the calculations
or assessments have to be carried out based on laboratory
settling experiments using the Coe–Clevenger method or the
Talmadge–Fitch method, as described by Foust et al. (1980).
However, the following general findings on slurry can be used
as a yardstick.

Increasing the settling time increases the separation ef-
ficiency (Ndegwa et al., 2001; Converse and Karthikeyan,
2004). In a laboratory study, the settling of solids in pig slurry
was studied for 4 hours. For slurry with an initial DM con-
tent of between 2% and 4%, the settling was observed to be
completed within 1 hour. For pig slurry with a DM of 6% the
settling time was over 4 hours, as was also observed for diluted
slurries with 0.5% and 1% DM (Ndegwa et al., 2001). Inter-
estingly, it was observed that the removal of DM was highest
for 1% and 2% DM slurries (60% removal), while the DM re-
moval was roughly 30% for the 0.5% and 4% slurries, and only
5% for the 6% DM slurry. The indications are that hindered
settling and changes in slurry liquid properties slow down the
settling velocity for pig slurries above 2% DM, while for very
dilute slurries (i.e. 0.5% DM) the settling also slows down,
presumably because at this low concentration fewer of the fine
particles are co-precipitated with the larger faster-settling par-
ticles. Plant nutrients are not evenly distributed between parti-
cles of different density and size (see Sect. 4); in consequence,
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Table II. Separation indexes at sedimentation.

Technical specifications Slurry Separation index (%)2

Sedimentation time (h) Origin1 Dry matter Volume Dry matter N-total NH4-N P-total Reference
(%)

Mean 22 56 33 28 52
(standard deviation) (4) (10) (2) (2) (21)
0.2 P – – 51 – – 17 Powers and Flatow, 2002
NA P 2.0 18 63 – – 65 Reimann, 1989
0.3 C 1.0 16 72 30 – 69 Sherman et al., 2000
4 C 1.3 25 52 35 27 42 Converse and Karthikeyan, 2004
24 C 2.5 25 42 33 28 46 Converse and Karthikeyan, 2004
1200 C 3.2 25 55 35 30 70 Converse and Karthikeyan, 2004

1 P = pig, C = cattle.
2 Separation index is the mass of a compound in the solid fraction compared to the mass of a compound in the original raw slurry.

the settling of plant nutrients may not be linearly related to the
settling of dry matter.

The mechanisms behind the slower settling velocities at
higher DM seen in some studies are, for actual livestock slur-
ries, due to a combination of hindered settling and increased
density and viscosity of the slurry, as a large content of small
particles will cause an increasing viscosity of the slurry liq-
uid and thereby reduce the settling velocity (Henriksen et al.,
1998a, b). It must be noted, though, that the effect of DM
concentration on settling has not been observed in all studies
(Gao et al., 1993). Also, the increased weight of the top sed-
iment particles will squeeze water out of the thickening zone,
causing turbulence that stirs up the particles; a mechanism that
may be more pronounced in batch settling systems compared
with technologies where the sediment is removed continuously
(Foust et al., 1980). Fermentation and increased buoyancy of
the particles due to the trapping of gas bubbles may reduce set-
tling if the process is taking place over a long period of time,
e.g. in lagoons; therefore it is recommended that slurry tem-
perature should be kept below 16 ◦C (Meyer et al., 2007).

Cattle slurry has a higher viscosity than pig slurry at sim-
ilar DM concentrations (see Sect. 4.5; Landry et al., 2004),
most probably due to a larger amount of particles, which may
contribute to a slower and less efficient settling of DM in cat-
tle slurry. As for pig slurry, the DM settling of cattle slurry
increases when DM concentration in the slurry increases; for
example, from 0.1% to 1% (Moore et al., 1975). The settling
rate of DM in cattle slurry decreases exponentially with time,
and DM settling is almost at maximum after 1.5 hours (Moore
et al., 1975). In contrast, because of the large P content in the
small, slowly settling particles (Sect. 4.1), P settling may in-
crease significantly over time and increase from about 50%
settling after 4 hours to 75% settling after 48 days (Converse
and Karthikeyan, 2004). On the other hand, the settling of total
N may not increase with increased settling time (Converse and
Karthikeyan, 2004). Most K and NH+4 is dissolved in the liq-
uid phase (see Sect. 4.3; Massé et al., 2007a); therefore most K
and NH+4 is recovered in the liquid phase after sedimentation
of solids (Tab. II; Massé et al., 2005).

Figure 3. A typical decanter centrifuge.

5.2. Centrifugation

5.2.1. Technical description

Increasing the gravitational force can reduce the settling
time needed to achieve a given separation efficiency. In prac-
tice, this is accomplished in decanter centrifuges, where a cen-
trifugal force is generated to cause the separation.

There are vertical and horizontal types of decanter cen-
trifuges. The horizontal decanter centrifuge (Fig. 3) uses a
closed cylinder with a continuous turning motion. The cen-
trifugal force separates solids and liquids at the wall into an
inner layer with a high DM concentration and an outer layer
consisting of a liquid containing a suspension of colloids, or-
ganic components and salts. The solid and liquid phases are
transported to either end of the centrifuge by rotating the en-
tire centrifuge at high speed and by simultaneously rotating
the conveyor at a speed that differs slightly from the speed
of the bowl (outer conical shell). The solid particles are con-
veyed towards the conical end and let out through the solid-
discharge openings, whereas the supernatant flows towards the
larger end of the cylinder formed by the bowl and the flights of
the conveyor. During the transport of the slurry, the particles
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Table III. Separation indexes at centrifugation.

Technical specifications Slurry Separation index (%)2

Centrifugation Centrifugation Origin1 Dry Volume Dry N-total NH4-N P-total Reference
velocity (g) time (s) matter (%) matter
Mean 14 61 28 16 71
(standard deviation) (7) (16) (10) (8) (14)
1500 600 P 6.3 – 95 – – 90 Vadas, 2006
2050 30 P 8.9 22 69 34 22 87 Møller et al., 2007a
2050 8 P 7.0 15 57 – – – Sneath et al., 1988
2050 8 P 4.2 8 52 – – – Sneath et al., 1988
2050 8 P 2.0 3 47 – – – Sneath et al., 1988
2200 30 P 5.1 9 51 17 10 71 Møller et al., 2007a
2200 30 P 4.0 7 52 17 7 70 Møller et al., 2007a
2200 30 P 6.8 26 70 36 26 82 Møller et al., 2007a
4100 600 P 5.3 13 60 29 – 62 Møller et al., 2002
4100 600 P 2.6 5 33 13 – 66 Møller et al., 2002
– – P 7.0 16 70 32 – 52 Reimann, 1989
1500 600 C 8.0 86 – – 83 Vadas, 2006
2200 30 C 7.0 23 63 29 16 55 Møller et al., 2007a
4100 600 C 6.4 21 65 49 – 82 Møller et al., 2002
4100 600 C 4.5 12 55 27 – 79 Møller et al., 2002
– – C 6.0 13 44 23 – 48 Reimann, 1989

1 P = pig, C = cattle.
2 Separation index is the mass of a compound in the solid fraction compared to the mass of a compound in the original raw slurry.

are separated from the liquid and the liquid phase is discharged
through liquid-discharge openings at the wide end of the de-
canter centrifuge.

5.2.2. Operation and separation efficiency

For small particles in laminar flow, the terminal velocity
(νtc) can be calculated as (Foust et al., 1980):

vtc(dp) =

(
ρsolid − ρliquid

)
· ω2 · r · d2

p

18 · μslurry
(12)

where r is the distance of the particles from the centrifuge’s
axis of rotation and ω is the angular velocity, all in SI units.

The only difference between the terminal velocity in a sed-
imentation tank and a centrifuge is the applied force; gravity
versus centrifugal force. For simple laboratory centrifuges, the
centrifuge efficiency can thus be related to the improvement in
gravitational force, the G force (unit: g):

G =
ω2 · r
g

(13)

The efficiency of full-scale decanter centrifuges, however, can-
not be described as simply as that. This is partly because the
distance that the particles travel in a radial direction is large;
thus the distance the particles have to travel from the center of
the centrifuge, and therefore the settling velocity, vary during
the sedimentation process; and partly because the geometry of
decanter centrifuges is quite complicated.

The performance of a decanter centrifuge is often described
by its feed handling capacity (Q), which can be calculated as

(Foust et al., 1980):

Q =

(
ρsolid − ρliquid

)
· g · d2

pc

18 · μslurry
· 2 · Σ = vt,g · 2 · Σ (14)

where Q is the volumetric feed rate, dpc is the diameter of the
smallest particle separated from the slurry in the centrifuge,
and Σ is the sigma factor (m2), all in SI units.

The sigma factor, Σ, is a property of the specific centrifuge
geometry and G force and can only be calculated in advance
for simple laboratory centrifuges. For full-scale centrifuges, Σ
has to be obtained from experiments. As vtg is a function of
the slurry alone, and Σ a function of the centrifuge alone, the
sigma factor can be used to compare the efficiency of different
decanter centrifuges.

The dewatering volume of a decanter is considered to be
the total volume (V) of the liquid zone in the cylindrical part
of the drum. This volume may be changed by level regulators
and the retention time (Rt) in seconds can be calculated as:

Rt =
V
Q

(15)

where V is the dewatering volume of the decanter bowl (m3).
From equations (14, 15), it is obvious that the volumetric

feed rate, and therefore the retention time, depends on the cho-
sen value of dpc (the smallest particle to be separated). Re-
ducing the feed rate and thereby increasing the retention time
automatically leads to better separation but less economical
performance of the centrifuge.

Increasing the retention time by reducing the volumetric
feed rate has been observed to increase the efficiency of the
separation of slurry (Tab. III; Sneath et al., 1988; Møller et al.,
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2007a). In consequence, the separation of DM and P was
found to be high in the laboratory study of Vadas (2006) (see
Tab. III) using the relatively long retention time of 600 s.

Increasing the dewatering volume within the centrifuge in-
creases the retention time (Eq. (15)) but reduces the thickening
zone (conical water-free part). Therefore, increasing the dewa-
tering zone will increase the removal of DM from the liquid
fraction. However, it will also reduce the drainage of water
from the solid fraction (Reimann, 1989); hence the DM con-
centration in the DM-rich fraction will decrease.

Increasing the angular velocity of the decanter centrifuge
will increase the DM concentration of the solid fraction
(Eq. (15)). Thus, using a velocity as high as 2560 g, the de-
canter centrifuge produced a solid fraction with a DM of 40%
(Møller et al., 2007a). However, increasing the angular veloc-
ity had no effect on the separation of the P, K and N (Møller
et al., 2007a).

The separation efficiency of DM increases at increasing
DM content of the slurry (Tab. III). The opposite result may
have been expected, as seen in the sedimentation studies, be-
cause a higher viscosity of the slurry may reduce the settling
velocity of the small particles (Reimann, 1989). It was hy-
pothesized by Sneath et al. (1988) that vigorous stirring of the
slurry may enhance the attachment of small particles to larger
particles, and thereby improve settling of the small particles.
This effect declines with dilution of the slurry; it has been ob-
served that in the liquid from separation of a low-DM slurry,
70% of the particles in the liquid were <4 μm, while 50% of
the particles were <4 μm in liquid from separation of a high-
DM slurry. As a consequence of a higher DM content of cattle
slurry compared with pig slurry, the DM separation index is
higher for cattle slurry separation than for pig slurry separa-
tion (Tab. III). For assessment of the retention of slurry, it is
reasonable to assume that decanter centrifuges can retain par-
ticles >20–25 μm in the DM-rich fraction (Sneath et al., 1988;
Reimann, 1989; Møller et al., 2002).

Organic nitrogen and dissolved or adsorbed ammonium is
related to the DM content of the solid fraction (see Sect. 3.1);
therefore, total N separation is related to the DM content of
the slurry being treated (Møller et al., 2002, 2007a; Sørensen
and Møller, 2006). One should bear in mind that the relation
between separation efficiencies and DM of treated slurry dif-
fers between centrifuges (Sneath et al., 1988; Møller et al.,
2007a, b), and therefore an algorithm developed in one study
cannot easily be applied to another. As decanter centrifuges do
not retain the smallest particles, it is not surprising that no re-
lation between separation of P and DM of treated slurry was
observed (Møller et al., 2007a).

5.3. Drainage

5.3.1. Technical description

Many different kinds of slurry separation equipment that fil-
ter out solids from liquids are commercially available (Fig. 4).
These use screens and filter belts to retain the solid fractions.
With simple screens and belt separators, the liquid is drained

Figure 4. A typical belt separator with pressure rolls.

by gravity from solids in the separator. With a belt separator,
the filter cake is continuously removed as the belt rotates, so
that the raw-slurry loading area and solid-fraction unloading
area change over and are cleaned continuously. Most of the
tested filter separators are screens, which may have a variety of
designs but often consist of a rotating perforated cylinder with
a loading area at the top and a scraper to remove the solids.
The liquid flows through the screen and is drained off.

5.3.2. Operation and separation efficiency

The liquid flux through the filter is determined by the hy-
draulic resistance of the filter medium and the hydraulic re-
sistance of the material deposited on the medium (i.e. the fil-
ter cake):

J =
P

μliquid

(
Rm + SRF S ·V

A

) (16)

where J is the flux (kg/m2/s), μliquid is the viscosity of the per-
meate (Pa·s), Rm is the resistance to flow through the mem-
brane (m−1), S is the particle concentration in feed (kg/m3), A
is the filter area (m2) and V is the filtrate volume (m3). SRF
is the specific filter cake resistance (m/kg), p is the effective
pressure (Pa) and is related to the effective mass of the slurry
(i.e. p = ρgh), and h is the height of suspension above the filter
cake (m), which decreases during the process.

Particles can adhere to or clog the filter media and thereby
increase the resistance of the filter (Massé et al., 2005), and
substances such as hair in pig slurry may cause an immediate
build-up of a filter cake with a low SRF (specific filter cake
resistance). Thus, when the filter cake is formed, small parti-
cles often clog the filter pores (Severin and Grethlein, 1996).
A mixture of particles with a particle size distribution between
1 and 100 μm will produce a cake with a high SRF. This will
reduce the liquid draining velocity from the filter cake and the
effect will be a solid fraction with a low DM concentration
(Karr and Keinath, 1978). Due to a higher fraction of larger
particles (see Sect. 4.1), filter technology is more efficient in
separating cattle slurry than pig slurry (Tab. IV).
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Table IV. Separation indexes at drainage.

Technical specifications Slurry Separation index (%)2

Filter pore Filtration Origin1 Dry matter Volume Dry N-total NH4-N P-total Reference
size (mm) time (min) (%) matter
Mean 23 44 27 23 34
(standard deviation) (16) (27) (17) (19) (21)
0.1 (x) P 1.5–5.4 25 50 33 28 34 Holmberg et al., 1983
0.1 (4*x) P 1.5–5.4 45 67 51 47 59 Holmberg et al., 1983
0.11 120 P 6.3 – 87 – – 53 Vadas, 2006
0.5 – P 1.8 – 17 5 – 3 Pieters et al., 1999
0.8 – P 1.5 – 18 – – – Hegg et al., 1981
2.5 (x) P 1.5–5.4 1 11 3 3 2 Holmberg et al., 1983
2.5 (4*x) P 1.5–5.4 13 23 16 15 23 Holmberg et al., 1983
3.0 – P 5.7 30 62 34 – 39 Møller et al., 2000
0.11 120 C 8.0 – 84 – – 62 Vadas, 2006
0.8 – C 1.1 – 13 – – – Hegg et al., 1981
0.85 – C 7.7 4 14 – – – Gilbertson and Nienaber, 1978
3.0 – C 7.1 44 56 49 – 49 Møller et al., 2000
– – C 6 19 54 22 – 20 Pain et al., 1978
– – C 12 30 58 29 – 29 Pain et al., 1978

1 P = pig, C = cattle.
2 Separation index is the mass of a compound in the solid fraction compared to the mass of a compound in the original raw slurry.
x: unspecified constant.

As small particles are caught within the filter cake or ad-
here to the media, screens and filter will retain not only parti-
cles larger than the size of the mesh or the screen openings but
also smaller particles. Therefore, one cannot assess filtering
efficiency simply from particle size distribution and plant nu-
trients in different particle fractions and the size of the screen
openings.

Increasing the retention time of the filter cake on the screen
or the filter fabric will increase the drainage, and hence the
DM concentration of the solid fraction produced. Retention
time is often longer in laboratory studies than in pilot and full-
scale tests; therefore, laboratory studies often give the most
efficient separation of DM and P (Tab. IV) (Vadas, 2006). The
best strategy is to determine the SRF in the laboratory and use
it for the design of pilot or full-scale equipment.

Most P is contained in the small particles or is dissolved in
the liquid (Fig. 1), while little N is found on particles larger
than 0.125 mm (see Sect. 4.2). Therefore, relatively little P
and N is retained on screens or filter fabrics, which only retain
large particles (Meyer et al., 2007). Nevertheless, some N, P
and K are retained in the filter cake because the cake has a
high water content (50–80%-volume is not uncommon) with
dissolved N, P and K (Pain et al., 1978; Holmberg et al., 1983;
Møller et al., 2000).

5.4. Pressurized filtration

5.4.1. Technical description

The typical equipment used for filtration with applied pres-
sure is a screw press or a press auger. In a press auger separa-
tor or a screw press separator, the effluent is transported into
a cylindrical screen with a screw (Fig. 5). The liquid will pass

Figure 5. A typical screw press.

through the screen and be collected in a container surrounding
the screen. At the end of the axle the DM-rich fraction will
be pressed against the plate and more liquid pressed out of
the solid fraction. The solid phase will drop from the opening
between the plate and the opening of the cylindrical mesh.

5.4.2. Operation and separation efficiency

The liquid flux through the filter medium can be determined
from equation (18) by setting p equal to the applied pressure.
According to filtration theory, SRF (specific filter cake resis-
tance) is constant during constant pressure filtration; however,
for a complex organic suspension such as slurry, SRF often
increases during the process. The increasing SRF has been
ascribed to sedimentation (Christensen and Dick, 1985), small
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Table V. Separation indexes at pressurized filtration.

Technical specifications Slurry Separation index (%)2

Filter pore Filtration Origin1 Dry matter Volume Dry N-total NH4-N P-total Reference
size (mm) time (min) (%) matter
Mean 11 37 15 – 17
(standard deviation) (15) (18) (17) (–) (14)
0.7 – P 5.7 7 28 7 – 15 Møller et al., 2000
0.75 2 P 6.3 64 – – 46 Vadas, 2006
0.9 – P 5.7 5 28 6 – 12 Møller et al., 2000
1.0 – P 5.3 4 27 7 – 7 Møller et al., 2002
– – P 1.8 51 31 – 42 Pieters et al., 1999
– – P 1.8 26 11 – 7 Pieters et al., 1999
– – P 6.3 7 21 4 – 13 Pos et al., 1984
0.75 2 C 8.0 64 – – 28 Vadas, 2006
0.9 – C 7.1 3 14 4 – 7 Møller et al., 2000
1.0 – C 4.5 2 13 4 – 8 Møller et al., 2002
1 – C 5.2 10 46 5 – 3 Wu, 2007
1.0 – C 6.4 5 30 8 – 15 Møller et al., 2002
1.6 – C 3.8 6 20 – – – Pos et al., 1984
3.0 – C 7.1 13 40 13 – 21 Møller et al., 2000
3.2 – C 5.0 13 37 – – – Pos et al., 1984
– – C 5.2 13 35 36 – – Pos et al., 1984
– – C 17.7 60 77 60 – – Menear and Smith, 1973

1 P = pig, C = cattle.
2 Separation index is the mass of a compound in the solid fraction compared to the mass of a compound in the original raw slurry.

particles blocking the pores in the cake (Sørensen et al., 1995),
and a time-dependent compression of the cake (Christensen
and Keiding, 2007). The slurry filter cake is compressed dur-
ing pressure filtration; hence the SRF is several orders of mag-
nitude higher for pressure filtration than for gravity drainage
(Hjorth et al., 2008).

The cake compression ensures that the screw press can pro-
duce a solid fraction with a high DM content; often being
twice as high as for gravity drainage (Møller et al., 2000). In-
creasing the applied pressure will increase the DM content of
the solid fraction. Although aggregation of particles on the fil-
ter may, to some degree, contribute to the retention of small
particles in the screw press, this has no significant effect, as the
applied pressure forces small particles through the filter pores.
A large proportion of small particles is therefore found in the
liquid fraction after separation (Møller et al., 2002). Thus, the
filter cake contains little N, P or K, because these are primarily
found in the liquid phase and in the small particles which are
drained off the filter cake with the permeate. In consequence,
the plant nutrient separation efficiency of the screw press is
low (Tab. V).

5.5. Concluding remarks about slurry separators

In general, centrifugation is the most efficient technique for
the separation of DM and P (see Tabs. II–V) and filtration is
less efficient for separating DM, N and P. To some extent, the
separation of NH+4 follows the same pattern. The poorest N
and P separation is achieved using pressurized filtration. The
advantage of pressurized filtration, though, is the production

of a solid fraction with a high DM concentration of the solid
fraction. Therefore, drainage is sometimes followed by pres-
surized filtration to obtain both high separation efficiency and
high DM concentration.

The choice of separators will depend on the objective of
the separation. The goal may be to reduce DM content in the
slurry to ease the transport of slurry in pipes or channels, re-
ducing the risk of sedimentation or blockage of the pipes and
channels, in which case simple screens or filters may be useful.
This simple separation will also produce a liquid fraction that
will contribute to a homogeneous spreading of plant nutrients
on the field and reduced ammonia and odor emissions (Rubæk
et al., 1996; Hansen et al., 2006). If the cost of separation has
to be low and retention time is no problem, then sedimentation
is a cheap technique that will reduce the plant nutrient compo-
sition of the slurry efficiently.

A screw press seems to be a good choice if the objective is
to produce biomass with a high DM concentration suitable for
incineration (Tab. V). The filtration technologies may retain
up to about one-quarter of the N and P in the slurry. In some
cases this may be sufficient to achieve a harmonious balance
between the amount of plant nutrient applied to the field and
the plant demand on the livestock farm.

Of the above-mentioned solid–liquid separation techniques,
the decanter centrifuge is the most efficient in retaining P and
at the same time producing a DM-rich fraction low in water.
In addition, this technique may produce a liquid fraction with
a N:P:K ratio similar to the N:P:K requirements of the crop.

The produced solid and liquid fractions may be treated
further to obtain valuable slurry products (see Sect. 7). The
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Figure 6. Diagrammatic representations of (a) coagulation, (b) patch flocculation and (c) polymer bridging (adapted from Hjorth et al., 2008).

solid–liquid separation may be improved further by an initial
addition of chemicals (see Sect. 6).

The major disadvantages of the above-mentioned solid–
liquid separation technologies are that they require investment
in expensive equipment, have a limited life span, and require
maintenance, process control systems and an external power
supply in order to run. These extra costs need to be balanced
against the reduction in investment in and cost of slurry trans-
portation between animal houses, slurry storage facilities and
fields.

6. PRE-TREATMENT: CHEMICAL ADDITIONS

Solid–liquid separation technologies often have a limited
capacity to retain plant nutrients in the solid fraction and
thereby produce a liquid fraction with a composition that ful-
fils the needs of the livestock and plant producer.

Additives such as brown coal, benthonite, zeolite, crystals,
chitosan and efficient microorganisms are used by livestock
farmers and have been examined in numerous studies (Kayser,
1997; Henriksen et al., 1998a; Sommer et al., 2005; Garcia
et al., 2009); however, in this review, these additives will not
be considered as a pre-treatment for solid–liquid separation, as
reliable information about their efficiency is lacking.

The focus here is on examples of the most commonly used
methods that have been developed and used as pre-treatments
to sedimentation, centrifugation or filtration. This section con-
centrates on the theory and use of polymers and multivalent
ions, as well as on struvite formation.

6.1. Precipitation, coagulation and flocculation

Flocculation, coagulation and precipitation are chemical
pre-treatments that improve the mechanical solid–liquid sep-
aration of many suspensions (Gregory, 1973; Smith-Palmer
et al., 1994; Ashmore and Hearn, 2000; Nowostawska et al.,
2005). In most suspensions, colloidal particles will not ag-
gregate because the particles are negatively charged and re-
pel each other (Gregory, 1989). However, aggregation will be

facilitated by adding (1) multivalent cations that cause coagu-
lation and/or (2) polymers, whereby flocculation occurs. The
addition of multivalent cations will also enhance the precipita-
tion of P.

6.1.1. Theory

Large amounts of phosphate will precipitate following
the addition of multivalent cations to the slurry (Hjorth
et al., 2008) due to formation of, for instance, FePO4,
Fe5(PO4)2(OH)9 and Ca3(PO4)2.

At the same time, the multivalent cations cause coagulation
of the particles in the slurry (Barrow et al., 1997; Sherman
et al., 2000; Hjorth et al., 2008). At coagulation, the multiva-
lent cations neutralize (or partially neutralize) a particle’s neg-
ative surface charge by adsorbing the oppositely charged ions
to the particle surface, creating a double layer (see Sect. 4.5)
and thereby removing the electrostatic barrier that prevents ag-
gregation; a process termed ‘charge neutralization’ (Fig. 6a).
An optimum dose exists, and overdosing occurs when the ad-
sorbed ions reverse the surface charge, thus counteracting ag-
gregation (Gregory, 1989).

The addition of polyelectrolyte polymers to slurry induces
flocculation. Polymer bridging is the main reaction mecha-
nism, whereas patch flocculation is of limited significance, and
charge neutralization is not important (Vanotti and Hunt, 1999;
Hjorth et al., 2008). The addition of polymers will cause floc-
culation of particles and of existing but smaller aggregates that
have been produced due to coagulation; for example, induced
by the addition of Fe3+ to the slurry.

Patch flocculation is the adsorption to particles of oppo-
sitely charged polyelectrolytes with a charge density much
higher than the charge density of the particles. Thus, local
positively and negatively charged areas are formed on the sur-
face of the particles (Fig. 6b; Gregory, 1973). This results in
a strong electrical attraction between the particles, especially
when the electrical attraction extends far into the solution, i.e.
at low conductivity (Gregory, 1973). A greater tendency to
patch flocculation is expected for branched polymers com-
pared with linear polymers, and for high-molecular-weight
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polymers compared with lower-molecular-weight polymers
(Bouyer et al., 2001; Bratskaya et al., 2005). However, since
the conductivity of slurry is relatively high (see Sect. 4.5)
patch flocculation is of minor relevance.

Polymer bridging occurs when long-chain polymers adsorb
to the surface of more than one particle, causing the formation
of strong aggregates of large flocs (Fig. 6c; Gregory, 1989). At
high conductivity of the slurry or at high doses of added poly-
mer (see Sect. 4.5), the polymer coils up and forms loops and
tails. Due to steric hindrance between the particles, the loop
and tail formation leads to deflocculation (Gregory, 1973).
The maximum adsorbed mass of polymers increases with in-
creasing ionic strength (Eriksson et al., 1993). Polymer char-
acteristics of importance to polymer bridging are molecular
weight and the molecular structure, as large molecules with
long tails are capable of catching by-passing particles rela-
tively easily. Charge density is also important, as this affects
the number of loops and tails that are formed and the inter-
action between polymer and particles (Larsson et al., 1999;
Ashmore and Hearn, 2000; Bouyer et al., 2001).

6.1.2. Technical description

Multivalent ions and polymers need to be added carefully to
the slurry in order to achieve satisfactory particle aggregation.
If both additives are used, then the multivalent ion is added
first to the slurry, which is then stirred to ensure homogeneous
distribution of ions and dry matter (Fig. 7). Several minutes of
slow stirring are necessary for the charge neutralization and
coagulation to occur. Next, the polymer is slowly added in
small doses during vigorous stirring, followed by slow stir-
ring, which is necessary for polymer bridging and patch floc-
culation to occur. The shear applied (for example, by the im-
peller, i.e. time and stirring velocity), has a large impact on
the formation of the aggregates; too low a shear causes the
aggregates to be non-uniform and unstable with low particle
catchment, while too large a shear causes the aggregates to
be destroyed (Mikkelsen, 1999). After the addition and aggre-
gation, the slurry may be transferred to ordinary solid–liquid
separators (see Sect. 5; Fig. 7).

6.1.3. Operation and separation efficiency

A broad range of multivalent cations intended to precipitate
P and coagulate the slurry have been tested. These tests pro-
vide an opportunity to compare the efficiency of additives and
to assess which multivalent ions provide the best slurry sepa-
ration (Tab. VI). If the multivalent cation added to the slurry is
calcium, the efficiency is ranked as CaO > Ca(OH)2; if the
multivalent ion is iron, the efficiency is ranked as FeCl3 >
Fe2(SO4)3 > FeSO4; while if the multivalent ion is aluminium,
the efficiency is ranked as Al2(SO4)3 > AlCl3.

The use of the separation products should also be consid-
ered when selecting the multivalent ion. For example, a de-
crease in pH is observed upon addition of FeCl3 and Al2(SO4)3
(Hjorth et al., 2009), which could be an advantage with respect

Figure 7. Example of the use of additives and separating the solids
from the liquids using a filter bed separator with containers and stir-
rers for treatment with (1) slurry pumped into the separator, (2) co-
agulants added to the slurry pumped into the first container, and (3)
polymers added to slurry transferred from the first to the second con-
tainer. The additives may be added into the tubes transferring the
slurry to the separator and between containers, or the additives may
be added to the slurry in the containers that are equipped with a stir-
rer: vigorous stirring may break up the flocs.

to NH3 emissions; while CaO causes pH to increase, which
may be preferable when a nitrification/denitrification step is to
follow the separation (Szögi et al., 2006). The environmental
consequences of applying multivalent cations should also be
considered (Nahm, 2005).

The literature reports on a wide range of polyacrylamide
(PAM) polymers that have been examined, with characteristics
that may vary with respect to charge, charge density, molecular
size and structure (Tab. VII). These studies therefore provide
an opportunity to compare polymers and to give an indication
of the polymer characteristics likely to provide the best slurry
separation.

Most studies indicate that a cationic polymer is superior to
anionic and neutral polymers (Tab. VII), which correlates well
with the fact that the particles in animal slurry are mainly neg-
atively charged (see Sect. 4.5). Polymers of medium charge
density (20–40 mol%) have been shown to be most efficient in
most studies, confirming the hypothesis that polymer bridging
is the main mechanism behind flocculation in slurry (Vanotti
and Hunt, 1999; Hjorth et al., 2008). The reason is that a
polymer of medium charge density has a large number of
charged sites and hence would have the ability to catch par-
ticles efficiently; however, a polymer of medium charge den-
sity also has many non-charged sites and will therefore not
neutralize the particles completely, thereby leaving charges
available on the particle surface for another polymer. This
is supported by the finding that optimal separation has been
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Table VI. Comparison of precipitants/coagulants with respect to separation-relevant criteria.

Slurry 
origin1

ID Precipitant/coa
gulant

airetirC nosirapmoC 2  ecnerefeR 

1 FeCl3

2 Fe2(SO4)3

3 AlCl3
P

4 Al2(SO4)3

 9002 ,.la te htrojH noitcuder Hp 4=3>2>1

1 Fe2(SO4)3P
2 Al2(SO4)3

1>2
2>1

Volume separation 
DM, N, P and NH4 separation 

Møller et al., 2007a 

1 FeCl3P
2 Fe2(SO4)3

1>2
1=2

Liquid turbidity, volume separation 
DM, VS, COD and P separation 

Estevez Rodríguez et al., 2005 

1 Al2(SO4)3

2 FeCl3C
3 CaO 

1>2,3 
1=2>3

pH reduction 
DM, P, N, NH4 and TOC separation 

Karthikeyan et al., 2005 

1 AlCl3

C 2 FeCl3

1>2
2>1
1=2

pH reduction 
P separation 

DM separation 
Krumpelman et al., 2005 

1 Al2(SO4)3

2 FeCl3

3 CaO 
4 FeSO4

P

5 CaCO3

1=2=3>4=5
1=2>3>4=5
1=2>3>4>5

DM separation 
Volume separation 

P separation 
Powers and Flatow, 2002 

1 Al2(SO4)3C
2 FeCl3

1=2
2>1

DM separation 
pH reduction 

Dao and Daniel, 2002 

1 Al2(SO4)3P
2 FeCl3

1=2 DM  8991 ,ieL dna gnahZ noitarapes 

1 FeCl3P
2 Al2(SO4)3

1>2
2>1

DM separation 
P separation 

Ndegwa et al., 2001 

1 FeCl3C
2 Al2(SO4)3

1>2
2>1

Volume, P and N separation 
DM separation 

Sherman et al., 2000 

1 FeCl3

2 Al2(SO4)3C
3 AlCl3

1=2=3 DM  8002 ,.la te ksuBeD noitarapes P ,

1 FeCl3

2 Ca(OH)2P
3 Al2(SO4)3

1>2=3 DM  3991 ,.la te oaG noitarapes 

1 CaO 
2 Ca(OH)2C
3 CaSO4

1>2>3
1=2>3

DM separation 
pH increase 

Barrow et al., 1997 

1 Fe2(SO4)3C
2 FeSO4

1>2 DM  7991 ,.la te worraB noitarapes P dna N ,

1 FeCl3C
2 Fe2(SO4)3

1>2 DM  7991 ,.la te worraB noitarapes P dna N ,

1 P = pig, C = cattle.
2 DM = dry matter, COD = chemical oxygen demand, TOC = total organic carbon, VS: volatile solids.

observed at approximately 30% neutralization of the particle
surface charge (Hjorth et al., 2008). Further indications are
that linear polymers are preferable to branched polymers, and
polymers of large molecular weight are preferable to those
of smaller molecular weight (Tab. VII). The reason seems to
be the very efficient capture of smaller particles by the large,
loose flocs and/or that the shape of large, loose flocs is an ad-
vantage in the solid–liquid separators used to treat the slurry,
especially when using separators where liquid is drained off
the solids.

The separation products are often destined to be deposited
in landfills or applied to cultivated fields; thus the environ-
mental and health consequences of the applied polymer must
be considered. The monomers of PAM used in most slurry
separation studies (Tab. VII) can be toxic; however, a study
on separated slurry products showed the risk to be minimal

(Schechter et al., 1995). In the USA, these additives are con-
sidered to be ‘generally recognized as safe’ (GRAS) when
added to the slurry below a specific application rate related to
the end-use (Vanotti et al., 2002). However, there is a need for
further studies on the efficiency of alternative polymer types
for slurry separation, with the objective of replacing PAM
with potentially less toxic polymers. Furthermore, when con-
sidering new polymers, one must take into consideration the
toxicity of the organic components produced during degrada-
tion of the polymers.

The chemical and physical properties of slurry may vary
(see Sect. 2) because slurry varies between livestock farms.
During a separation run, slurry properties may vary even if the
slurry is stirred when treated. Consequently, the optimal appli-
cation rate of multivalent cations and polymers to slurry varies
between farms and during a separation run. Various analytical
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Table VIII. Slurry characteristics potentially useful for assessing optimal coagulant and polymer dosage to slurry prior to separation.

Observed sample
Slurry characteristics Flocculated sample Liquid fraction Solid fraction
DM content X X
VS content X X
P content X X
N content X X
NH4 content X X
Metal content X X
Dewaterability X
Settling X
Turbidity X
Viscosity X
Surface erosion from flocs X
Capillary suction time (CST) X
Floc size X
Particle dispersion ánalysis (PDA) X
Streaming current X

VS: volatile solids.

methods have proved useful for evaluating the efficiency of
different additives (Tab. VIII). Of these, measurement of the
DM content of the solids, dewatering ability, surface erosion
from flocs, turbidity of the liquid fraction, capillary suction
time, viscosity of the liquid fraction and floc size have proved
to be useful as laboratory tests of slurry separation (Hjorth and
Christensen, 2008).

The separation technique affects the separation efficiency
of slurry treated with multivalent ions and flocculants. As for
the combined solid–liquid separation technique, drainage ap-
pears to be superior when considering P and DM separation
(Tab. IX), as pressure may disintegrate the flocs.

The addition of a coagulant/precipitant (a multivalent
cation) increases the P separation (Tab. IX). There is a
maximum multivalent ion amount above which no additional
P will be retained in the solid fraction. The maximum separa-
tion index shows that 99% of the P in treated slurry is retained
in the solid fraction (Sherman et al., 2000; Estevez Rodríguez
et al., 2005). Due to coagulation, the addition of the multiva-
lent cation may increase the DM and N separation (Barrow
et al., 1997; Sherman et al., 2000). In theory, the multivalent
ion may be overdosed when all dissolved P has been precipi-
tated and all particles have been charge neutralized. Overdos-
ing will cause the separation indexes to decrease, because the
particles then become positively charged and repel each other.

Polymer (flocculant) addition improves DM, N and P sepa-
ration (Tab. IX), because floc formation increases the amount
of DM retained in the solid fraction and also the N- and
P-containing organic and inorganic particles. Depending on
the polymer, the structure of the flocs varies. The addition
of linear polymers of large molecular weight produces large,
loose flocs; while the addition of branched polymers of small
molecular weight produces small, dense flocs (Hjorth et al.,
2008). As sedimentation and centrifugation efficiency depend
on particle density, it may be advantageous to produce small,
dense flocs using branched small-molecular-weight polymers.
Alternatively, when using filtration without applied pressure,
draining of the liquid should be eased by producing large,

loose flocs, resulting in a filter cake with high porosity. Fil-
tration with applied pressure is favored by non-compressible
flocs; and thus small, dense flocs may be the floc structure giv-
ing the best separation.

Ammonium and K are dissolved in the liquid (see
Sect. 4.3); hence the polymer will not improve the NH+4 or
K separation. Due to the positive charges of NH+4 and K, a
multivalent cation will not improve the separation through pre-
cipitation or charge neutralization. Adding polymers may in-
crease NH+4 and K content in the solid fraction (Hjorth et al.,
2009), because liquid with dissolved NH+4 and K is retained
in the flocs, as floc liquid is difficult to remove by mechanical
solid–liquid separation (Vesilind, 1994).

The charge of DM particles have to be neutralized. There-
fore at increasing charge of the DM and increasing concen-
tration of the particles demands increasing addition of multi-
valent cation and polymer to a successful separation (Zhang
and Lei, 1998). In contrast, decreasing amounts of polymer
are needed when coagulation is improved by pre-treatment
with an increased amount of multivalent cations (Krumpelman
et al., 2005; Hjorth et al., 2009).

The separation indexes of untreated slurry (Tabs. II–V) are
much lower than the indexes of slurry treated with flocculants
and coagulants (Tab. IX), with flocculation having a larger im-
pact on filtration than on centrifugation (Hjorth et al., 2008).
Thus, separation is improved by flocculation and further im-
proved when multivalent ions are also added to the slurry.

6.2. Struvite crystallization

Slurry contains struvite or the inorganic components con-
tributing to the formation of struvite crystals. Thus, physical
and chemical changes in slurry may initiate struvite formation.
This is a problem in biogas plants because struvite will build
up on pipe surfaces and reduce the capacity of slurry transport,
but struvite formation may also be used to remove P and NH+4
from the slurry.
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Table X. Separation efficiency of struvite precipitation and sedimentation.

Addition Slurry Separation index (%)2

Origin1 Dry matter (%) N-total P-total Reference
Mean 16 63
(Standard deviation) (1) (37)
Mg, OH− P 85 Nelson et al., 2003
Mg, NH3 P 60 Bowers and Westerman, 2003
Mg, increase pH P 18 18 Suzuki et al., 2007
Mg, increase pH P 18 49 Suzuki et al., 2007
Mg, increase pH P 96 Burns et al., 2003
Mg, increase pH P 98 Burns et al., 2003
Fe, OH P 17 98 Laridi et al., 2005
Fe, OH P 15 99 Laridi et al., 2005
Mg, NH3 C 8 Sheffield et al., 2005
Mg, NH3 C 19 Sheffield et al., 2005

1 P = pig, C = cattle.
2 Separation index is the mass of a compound in the solid fraction compared to the mass of a compound in the original raw slurry.

6.2.1. Theory

Crystallization of phosphate is used to facilitate the sedi-
mentation of phosphorus as particles. Animal slurry contains
P in the form of struvite (MgNH4PO4 · 6H2O) and apatite
Ca5OH(PO4)3 (hydroxyapatite) crystals (see Sect. 4; Bril and
Salomons, 1990; Greaves et al., 1999; Suzuki et al., 2002).
Struvite has been shown to be the most significant of the
solid forms of P in slurry, and struvite crystallization has been
widely used as a method for separating P from wastewater and
slurry (Ohlinger et al., 2000; Burton and Turner, 2003). Hy-
droxyapatite is not as attractive as a means of removing P from
slurry and wastewater, because much calcium will have crys-
tallized as calcite CaCO3 in slurry.

Mg2+ + NH+4 + PO3−
4 + 6H2O ↔ MgNH4PO4 · 6H2O(s)

(17)
The formation constant (K0) of struvite is 1.41 × 1013 and
the equilibrium ion-activity product (IAPeq) is 7.08 × 10−14.
In slurry, the product of [Mg2+], [NH+4 ] and [PO3−

4 ] is gen-
erally lower than the conditional formation constant, due to
low concentrations of dissolved magnesium (Mg2+) (Sommer
and Husted, 1995a; Nelson et al., 2003), so little or no stru-
vite is formed. The dissolved Mg may be lower than that
determined with traditional extraction and measuring tech-
niques, because a major fraction of the Mg2+ ions may form
complexes with dissolved organic matter (Bril and Salomons,
1990; Christensen et al., 2009). The concentration of PO3−

4 will
also have a major impact on struvite crystallization. HPO2−

4 is a
weak acid and at pH levels below pH 7 the formation of HPO2−

4
and a low concentration of PO3−

4 will reduce struvite crystal-
lization (Nelson et al., 2003). In most slurries with a typical pH
of 7.5–8.3, the NH+4 concentration is higher than the 1:1:1 ratio
([Mg2+]:[NH+4 ]:[PO3−

4 ]) for the formation of struvite and will
not be the limiting factor in the reaction (Nelson et al., 2003).
At high pH, the NH+4 concentration will decrease, and low
NH+4 concentration may limit struvite formation (Buchanan
et al., 1994). Optimal conditions for the sedimentation of stru-

vite therefore occur at about pH 9 (Buchanan et al., 1994;
Nelson et al., 2003).

6.2.2. Technical description

In a slurry container, the slurry may be manipulated with
the purpose of forming struvite that will precipitate. After-
wards the slurry can be transferred to a thickener or another
type of solid–liquid separator (see Sect. 5). In the pilot plant
described by Suzuki et al. (2002), the struvite was formed in
a thickener, which was also used to remove the struvite. Al-
ternatively, the struvite may be produced in a psychrophilic
anaerobic sequencing batch reactor biogas plant, where the P
settles as struvite and is removed with the sludge (Massé et al.,
2007a), or struvite may settle in anaerobic slurry lagoons and
be removed with the sludge (Nelson et al., 2003).

6.2.3. Operation and separation efficiency

P removal can be increased by adding Mg to the slurry be-
ing treated (Tab. X). The addition of Fe and a base to the slurry
will enhance dissolution of Mg and thereby increase P removal
(Suzuki et al., 2002; Laridi et al., 2005). On the other hand, P
removal may be low even after the addition of Mg and NH3 if
pH is low (Tab. X; Sheffield et al., 2005).

Aeration of slurry or anaerobic digestion of slurry will in-
crease pH and also reduce the organic matter content in the
slurry (Suzuki et al., 2002; Massé et al., 2005). Both processes
will greatly enhance crystallization of struvite due to an in-
crease in the concentration of dissolved Mg2+ and PO3−

4 . Thus,
aeration may produce a slurry with a mole ratio optimal for
struvite crystallization, and increase struvite crystallization by
a factor of about 10. In a continuous-flow pilot-scale sedimen-
tation plant, this leads to the removal of 65–99% of P and 15%
of total N (Tab. X; Suzuki et al., 2002).

Crystallization is initiated by nuclei, which may be grains
of sand, or by contributing energy to the nucleation process
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by using rakes (Battistoni et al., 2002). In most slurries, the
amount of sand is generally high and one would not anticipate
any need to enhance the nucleation process.

7. POST-TREATMENT: SEPARATION
TECHNIQUES

Post-treatment separation techniques need to be employed
when eco-efficient technical solutions to the processing of ani-
mal slurry are sought. The objective is to produce clean water,
heat and power, fuel, and high-value N, P and K fertilizers
from animal slurry – products that may not be obtained when
using solid–liquid separation on its own. Some technologies
have been tested on the laboratory scale, while a few have
reached the farm pilot-production scale. The techniques de-
scribed in this section have been chosen based on the criterion
that sufficient knowledge is currently available to discuss their
possible usefulness.

7.1. Evaporation

7.1.1. Technical description, operation and separation
efficiency

Water and volatiles can be removed from the slurry or the
liquid fraction by evaporation. The liquid is heated to boiling
point, which for slurry will be a little over 100 ◦C at atmo-
spheric pressure. At this temperature, both water and volatile
organic compounds, such as free fatty acids and NH3, will
evaporate. This vapor phase has to be condensed in order to
retrieve the energy used to evaporate the water and volatiles.
The energy consumed in the process is high, as the heat needed
for evaporation represents roughly 670 kWh per metric ton of
water evaporated. The energy (q) consumed in a single-step
evaporator can thus be estimated as:

q =
•
mwater · ΔHvap (18)

where ΔHvap is the heat of evaporation (J kg−1),
•
mwater is the

amount of water removed (kg s−1), and q is the energy con-
sumption (W).

To reduce the energy costs, evaporators can be operated
either as single evaporators using recompressed steam, or in
series where the vapor generated in the first evaporator is used
as heating steam for the next evaporator. In order to transfer
energy from the steam to the liquid in each evaporator, the
steam temperature has to be higher than the liquid tempera-
ture. Therefore, each consecutive evaporator is operated at a
lower temperature than the preceding evaporator. Boiling can
thus only be achieved in each evaporator by operating each
at a slightly lower pressure than the preceding evaporator. As
the boiling point for slurry increases with solid content, the
liquid slurry should enter the last evaporator and run counter-
current to the vapor. Even though multi-step evaporation in-
creases investment costs, experience from industrial applica-
tions shows that between three and six evaporators in series is

economically viable (Foust et al., 1980; McCabe et al., 2005).
In this way, a 92%-volume reduction can be achieved at an
energy consumption of 120–130 kWh per ton slurry treated
(Pedersen, 2004). No literature on the effect on N separation
has been found.

7.2. Membranes

For small particles, membrane filtration of the liquid frac-
tion could be an attractive supplement to solid–liquid separa-
tion (see Sect. 5). Furthermore, membrane separation may be
used to separate and concentrate dissolved K, P and N nutri-
ents, producing a nutrient-rich liquid phase and, in principle,
pure water for reuse or safe discharge to the environment. A re-
view on membrane processes for slurry treatment has recently
been published (Massé et al., 2007b), which gives details of
efficiency and usability, and therefore only a short description
is included here.

7.2.1. Microfiltration and ultrafiltration

7.2.1.1. Technical description

Microfiltration removes solid particles in the range of about
0.1–10 μm, while ultrafiltration retains solid particles in the
range from about 5 to 200 nm (Baker, 2004). Thus, they are
well suited to remove nutrients associated with small particles
such as P (Massé et al., 2007b).

The design of membrane units is based on the membrane
flux (Jliquid), which is the amount of liquid removed per area
of membrane. In micro- and ultrafiltration, Jliquid can be de-
scribed by the general equation:

Jliquid =
ΔP

μliquid · (Rm + Rrev + Rirrev)
(19)

where J is the flux (kg m−2 s−1), μliquid is the viscosity of
the permeate, Rm is the resistance to flow from the membrane
(m−1), Rrev is the reversible fouling resistance often ascribed
to filter cake formation and concentration polarization (m−1),
Rirrev is the irreversible fouling resistance normally ascribed
to pore blocking and adsorption of materials to the membrane
(m−1), and ΔP is the transmembrane pressure over the mem-
brane (Pa).

During micro- and ultrafiltration, the slurry is pressed
through a porous membrane. If dead-end filtration is used, a
very dense filter cake build-up will occur. Therefore, micro-
and ultrafiltration have to be carried out as cross-flow filtra-
tion, where only a fraction of the liquid is removed as perme-
ate through the membrane, while solids and part of the liquid
are retained as retentate. The cross flow removes most of the
solids deposited on the surface, but some flow-controlled re-
versible filter cake formation cannot be avoided. Worse still,
irreversible adhesion of minor particles can occur in the mem-
brane pores, partly blocking the path for the liquid. In addi-
tion, bacterial growth can occur on the membrane surface, fur-
ther reducing the flow through the membrane. This kind of
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membrane fouling will be especially severe for the treatment
of slurry. Reversible filter cake formation can be removed by
flushing with water. In contrast, the irreversible fouling can, at
best, only partly be removed by cleaning the membrane in the
system (CIP) with dilute base followed by dilute acid and, if
necessary, enzymatic treatment.

Because of fouling, micro- and ultrafiltration membranes
can only be used to separate pre-treated slurry, such as efflu-
ent streams from biogas reactors or runoff streams from cen-
trifuges.

7.2.1.2. Operation and separation efficiency

For slurry microfiltration, transmembrane pressure will typ-
ically be around 100–180 kPa. At this pressure, filter cake for-
mation and fouling become rate-determining, and increasing
the transmembrane pressure no longer increases the flux over
the membrane to any significant extent. Increasing the feed
flow can increase the flux by reducing the filter cake thick-
ness, but at velocities above around 2 m s−1 this becomes un-
economic (Owen et al., 1995). Therefore, the maximum flux
attainable is limited to around 160 L·m−2·h−1, although long-
term fluxes down to 10–40 L·m−2·h−1 should be expected, due
to fouling. Depending on the size distribution, a retention effi-
ciency of 75% of DM can be expected (Massé et al., 2007b).
Membrane filtration retains small particles; therefore, the large
amount of P contained in particles between 0.45 and 10 μm is
retained with membrane filtration, and a high P removal can
be expected (Massé et al., 2007b). Dissolved N, K and DM
will not be retained.

For ultrafiltration, transmembrane pressures up to 800 kPa
can be used, depending on membrane pore size. The
larger the pore size, the lower the transmembrane pressure
(Baker, 2004). For filtered pig slurry, fluxes between 10 and
40 L·m−2·h−1 at a transmembrane pressure of 100 kPa have
been reported with 100% DM removal and a P removal ef-
ficiency of up to 87%, depending on operational conditions
(Massé et al., 2007b). For partially digested non-filtered pig
slurry, flushing the membrane every 5 minutes with permeate
leads to a fall in flux of 25% over a 70-day period compared
with a flux decline of 75% if only a single cleaning procedure
is carried out (du Preez et al., 2005). In this study, though, the
maximum flux was only 16 L·m−2·h−1.

7.2.2. Nanofiltration and reverse osmosis

7.2.2.1. Technical description

The liquid fraction from an ultrafiltration membrane can
contain large amounts of dissolved K+, NH+4 and NH3. Re-
verse osmosis and, to some extent, nanofiltration membranes
can retain dissolved nutrients, and deliver high concentrate re-
tentate and purified water permeate. Depending on the mem-
brane chosen, nanofiltration will retain uncharged molecules
larger than 200–400 Da and, to a lesser extent, smaller charged
molecules such as Ca2+, Mg2+ and NH+4 . Nanofiltration can

thus be used to remove DM and, to some extent, charged
molecules. If a pure water permeate is needed, reverse osmo-
sis can retain NH+4 and K+ and, to a lesser extent, NH3 (Massé
et al., 2007b).

The fouling problems are even more severe for nanofiltra-
tion and reverse osmosis than for micro- and ultrafiltration.
In connection with slurry, nanofiltration or reverse osmosis
can therefore only be used for separation of dissolved compo-
nents from the permeate produced in an ultrafiltration unit. The
direct filtration of raw slurry will foul the membrane within
minutes.

The water flux through nanofiltration and reverse osmosis
membranes has been described by Baker (2004) as follows:

Jliquid = A · (ΔP − ΔΠ) (20)

where A is the water permeability (kg m−2 s−1Pa−1) and
ΔΠ (Pa) is the osmotic pressure difference between retentate
and permeate. The maximum possible retentate concentration
will be determined by the osmotic pressure difference and the
maximum possible transmembrane pressure.

As concentration polarization influences the osmotic pres-
sure on the membrane surface during nanofiltration and re-
verse osmosis, experimental permeability constants depend
on the liquid cross flow and, because of unavoidable fouling,
on time in use. As for micro- and ultrafiltration membranes,
cleaning will need to be performed regularly in order to avoid
fouling.

7.2.2.2. Operation and separation efficiency

For nanofiltration transmembrane operation, pressure will
be around 350–3000 kPa. Although not well suited for the re-
moval of K or N, nanofiltration membranes have been shown
to be capable of removing up to 52% of the NH+4 and 78% of
the K (Massé et al., 2007b) and, if a suitable membrane is cho-
sen, all the soluble DM with a molecular weight above 200 Da
will be removed.

For more demanding applications, reverse osmosis has to be
used. The transmembrane pressure for reverse osmosis opera-
tions is typically around 3.5–6.5 MPa, although up to 150 MPa
can be achieved for specially designed membranes. The reten-
tion of K is usually high and independent of pH but, as NH+4 is
retained better than NH3, the separation is very pH-dependent
and also depends on the ionic strength of the retentate (Massé
et al., 2008). Therefore, N separation will depend on pH, slurry
origin and the final volume reduction of the retentate. For pig
slurry, the retention of NH+4 thus decreased from 90% to 70%
and for K from 93% to 87% when the reduction in retentate
volume was increased from 50% to 90% (Massé et al., 2007b).

As the flux for nanofiltration and reverse osmosis is very
dependent not only on fouling but also on the osmotic pres-
sure of the retentate, the flux will change dramatically during
a concentration process, with maximum fluxes reaching up to
65 L m−2 h−1 at the initial conditions, but approaching zero
at the final reduction volume, where the osmotic pressure ap-
proaches the transmembrane pressure.
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8. CONCLUSIONS

Separation indexes, which express the distribution of the
specific component between the solid and liquid fractions (see
Eqs. (5, 6)), have proved useful for the comparison of the ef-
ficiency of the different separation techniques. From a litera-
ture review it was found that only about 25% of the papers on
solid–liquid separation included sufficient data to assess the
separation index of the technology tested. This emphasizes the
need for a standard method for characterizing slurry separation
efficiency, including a thorough characterization of the animal
slurry treated and the fractions produced, and flow measure-
ments of the slurry being treated.

Slurry can be treated with separation technologies that pro-
duce a solid fraction in which much of the P and dry matter
(DM) and significant amounts of the N in the slurry are re-
tained. These technologies are simple to use and reliable. More
complex technologies may, although with a relatively high
energy consumption, remove nitrogen, including NH+4 , from
the slurry. By combining solid–liquid separation technologies
with pre- and post-treatments, end-products having an optimal
composition for a specific end-use may be produced.

In order to achieve these objectives, there is a need for
studies on the physical and chemical properties of slurry and
their effects on separation efficiency, which include a func-
tional physical-chemical characterization of slurry and iden-
tification of how the treatment affects the physical-chemical
characteristics of the separation product. Only if this knowl-
edge is available can existing separation technologies be opti-
mized and combined in a systematic way in order to achieve
the desired end-products.

At present, the most efficient solid–liquid mechanical
separators for the removal of DM, P and, to some extent, total
N and NH+4 , can be ranked in the following order: centrifuge
> sedimentation > filtration without pressure > filtration with
pressure. Struvite crystallization prior to the solid–liquid sep-
aration improves the N and P separation. Flocculation be-
fore separation also improves the separation of DM, N and
P significantly. The best flocculant available at present (poly-
acrylamide – PAM) is a cationic, medium-charge-density
(20–40 mol%), linear, large-molecular-weight polymer, and
the best coagulants are Al2(SO4)3 and FeCl3. Filtration with-
out pressure is the best slurry separation technique for slurry
with added flocculants.

After the separation of DM, P and N from the slurry, the liq-
uid fraction produced may be treated with membrane separa-
tion, evaporation of water or NH3 stripping. Regarding mem-
brane separation, attention must be paid to fouling problems.
Stripping and evaporation have a high energy consumption,
and efficient heat recovery or cheap surplus heat is necessary
for these technologies to be of interest at present.

In order to set up an animal slurry separation operation,
a whole-system approach is important either with or without
pre- and post-treatments. Just as in any industrial farm oper-
ation, it is of paramount importance to balance investment,
running and labor costs against product added value, envi-
ronmental impact and process complexity. This seems to be a
promising area for future intensive research and development.
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