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We study the security of communication between a single transmitter and many receivers in the presence of an eavesdropper for
several special classes of broadcast channels. As the first model, we consider the degraded multireceiver wiretap channel where the
legitimate receivers exhibit a degradedness order while the eavesdropper is more noisy with respect to all legitimate receivers. We
establish the secrecy capacity region of this channel model. Secondly, we consider the parallel multireceiver wiretap channel with
a less noisiness order in each subchannel, where this order is not necessarily the same for all subchannels, and hence the overall
channel does not exhibit a less noisiness order. We establish the common message secrecy capacity and sum secrecy capacity of this
channel. Thirdly, we study a class of parallel multireceiver wiretap channels with two subchannels, two users and an eavesdropper.
For channels in this class, in the first (resp., second) subchannel, the second (resp., first) receiver is degraded with respect to the
first (resp., second) receiver, while the eavesdropper is degraded with respect to both legitimate receivers in both subchannels. We
determine the secrecy capacity region of this channel, and discuss its extensions to arbitrary numbers of users and subchannels.
Finally, we focus on a variant of this previous channel model where the transmitter can use only one of the subchannels at any
time. We characterize the secrecy capacity region of this channel as well.
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1. Introduction

Information theoretic secrecy was initiated by Wyner in his
seminal work [1], where he introduced the wiretap channel
and established the capacity-equivocation region of the
degraded wiretap channel. Later, his result was generalized
to arbitrary, not necessarily degraded, wiretap channels by
Csiszar and Korner [2]. Recently, many multiuser channel
models have been considered from a secrecy point of view
[3-22]. One basic extension of the wiretap channel to the
multiuser environment is secure broadcasting to many users
in the presence of an eavesdropper. In the most general
form of this problem (see Figure 1), one transmitter wants to
have confidential communication with an arbitrary number
of users in a broadcast channel, while this communication
is being eavesdropped by an external entity. Our goal is
to understand the theoretical limits of secure broadcast-
ing, that is, largest simultaneously achievable secure rates.
Characterizing the secrecy capacity region of this channel

model in its most general form is difficult, because the
version of this problem without any secrecy constraints, is
the broadcast channel with an arbitrary number of receivers,
whose capacity region is open. Consequently, to have
progress in understanding the limits of secure broadcasting,
we resort to studying several special classes of channels,
with increasing generality. The approach of studying special
channel structures was also followed in the existing literature
on secure broadcasting [8, 9].

The work in [9] first considers an arbitrary wiretap
channel with two legitimate receivers and one eavesdropper,
and provides an inner bound for achievable rates when each
user wishes to receive an independent message. Secondly, [9]
focuses on the degraded wiretap channel with two receivers
and one eavesdropper, where there is a degradedness order
among the receivers, and the eavesdropper is degraded with
respect to both users (see Figure2 for a more general
version of the problem that we study). For this setting, the
work in [9] finds the secrecy capacity region. This result is
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FIGURE 1: Secure broadcasting to many users in the presence of an
eavesdropper.

concurrently and independently obtained in this work as a
special case, see Corollary 2, which is also published in a
conference version in [23].

Another relevant work on secure broadcasting is [8]
which considers secure broadcasting to K users using M
subchannels (see Figure 3) for two different scenarios. In
the first scenario, the transmitter wants to convey only
a common confidential message to all users, and in the
second scenario, the transmitter wants to send independent
messages to all users. For both scenarios, the work in [8] con-
siders a subclass of parallel multireceiver wiretap channels,
where in any given subchannel, there is a degradation order
such that each receiver’s observation (except the best one)
is a degraded version of some other receiver’s observation,
and this degradation order is not necessarily the same for
all subchannels. For the first scenario, the work in [8] finds
the common message secrecy capacity for this subclass. For
the second scenario, where each user wishes to receive an
independent message, [8] finds the sum secrecy capacity for
this subclass of channels.

In this paper, our approach will be two-fold: first, we will
identify more general channel models than considered in [8,
9] and generalize the results in [8, 9] to those channel models,
and secondly, we will consider somewhat more specialized
channel models than in [8] and provide more comprehensive
results. More precisely, our contributions in this paper are as
follows.

(1) We consider the degraded multireceiver wiretap
channel with an arbitrary number of users and one eaves-
dropper, where users are arranged according to a degrad-
edness order, and each user has a less noisy channel with
respect to the eavesdropper, see Figure 2. We find the secrecy
capacity region when each user receives both an indepen-
dent message and a common confidential message. Since
degradedness implies less noisiness [2], this channel model
contains the subclass of channel models where in addition
to the degradedness order users exhibit, the eavesdropper is
degraded with respect to all users. Consequently, our result
can be specialized to the degraded multireceiver wiretap
channel with an arbitrary number of users and a degraded
eavesdropper, see Corollary 2 and also [23]. The two-user
version of the degraded multireceiver wiretap channel was
studied and the capacity region was found independently and
concurrently in [9].

(2) We then focus on a class of parallel multireceiver
wiretap channels with an arbitrary number of legitimate
receivers and an eavesdropper, see Figure 3, where in each
subchannel, for any given user, either the user’s channel is
less noisy with respect to the eavesdropper’s channel, or vice
versa. We establish the common message secrecy capacity of
this channel, which is a generalization of the corresponding
capacity result in [8] to a broader class of channels. Secondly,
we study the scenario where each legitimate receiver wishes
to receive an independent message for another subclass
of parallel multireceiver wiretap channels. For channels
belonging to this subclass, in each subchannel, there is
a less noisiness order which is not necessarily the same
for all subchannels. Consequently, this ordered class of
channels is a subset of the class for which we establish the
common message secrecy capacity. We find the sum secrecy
capacity for this class, which is again a generalization of the
corresponding result in [8] to a broader class of channels.

(3) We also investigate a class of parallel multireceiver
wiretap channels with two subchannels, two users, and one
eavesdropper, see Figure 4. For the channels in this class,
there is a specific degradation order in each subchannel such
that in the first (resp., second) subchannel the second (resp.,
first) user is degraded with respect to the first (resp., second)
user, while the eavesdropper is degraded with respect to both
users in both subchannels. This is the model of [8] for K = 2
users and M = 2 subchannels. This model is more restrictive
compared to the one mentioned in the previous item. Our
motivation to study this more special class is to provide a
stronger and more comprehensive result. In particular, for
this class, we determine the entire secrecy capacity region
when each user receives both an independent message and
a common message. In contrast, the work in [8] gives the
common message secrecy capacity (when only a common
message is transmitted) and sum secrecy capacity (when
only independent messages are transmitted) of this class. We
discuss the generalization of this result to arbitrary numbers
of users and subchannels.

(4) We finally consider a variant of the previous channel
model. In this model, we again have a parallel multireceiver
wiretap channel with two subchannels, two users, and one
eavesdropper, and the degradation order in each subchannel
is exactly the same as in the previous item. However, in
this case, the input and output alphabets of one subchannel
are nonintersecting with the input and output alphabets of
the other subchannel. Moreover, we can use only one of
these subchannels at any time. We determine the secrecy
capacity region of this channel when the transmitter sends
both an independent message to each receiver and a common
message to both receivers.

It is clear that all of the channel models we consider
exhibit some kind of an ordered structure, where this
ordered structure is in the form of degradedness in some
channel models, and it is in the form of less noisiness
in others. This common ordered structure in all channel
models we considered implies that our achievability schemes
and converse proofs use some common techniques. In
particular, for achievability, we use stochastic encoding [2]
in conjunction with superposition coding [24]; and for the
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FIGURE 2: The degraded multireceiver wiretap channel with a more noisy eavesdropper.
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FiGURE 3: The parallel multireceiver wiretap channel.

converse proofs, we use outer bounding techniques in [1, 2],
more specifically, the Csiszar-Korner identity, [2, Lemma 7].

2. Degraded Multireceiver Wiretap Channels

We first consider the generalization of Wyner’s degraded
wiretap channel to the case with many legitimate receivers.
In particular, the channel consists of a transmitter with an
input alphabet x € X, K legitimate receivers with output
alphabets yr € Y, k = 1,..., K, and an eavesdropper with
output alphabet z € Z. The transmitter sends a confidential
message to each user, say wx € Wi to the kth user, in
addition to a common message, wy € Wy, which is to be
delivered to all users. All messages are to be kept secret from
the eavesdropper. The channel is assumed to be memoryless
with a transition probability p(y1, y2,..., ¥k, 2 | x).

In this section, we consider a special class of these chan-
nels, see Figure 2, where users exhibit a certain degradation
order, that is, their channel outputs satisfy the following
Markov chain:

X— Yk — - — Y (1)

and each user has a less noisy channel with respect to the
eavesdropper, that is, we have

I(U; Yx) > I(U; Z) (2)

for every U such that U — X — (Y, Z). In fact, since a
degradation order exists among the users, it is sufficient to
say that user 1 has a less noisy channel with respect to the
eavesdropper to guarantee that all users do. Hereafter, we call
this channel the degraded multireceiver wiretap channel with
a more noisy eavesdropper. We note that this channel model
contains the degraded multireceiver wiretap channel which
is defined through the Markov chain:

X—Yx—-—Y —Z (3)

because the Markov chain in (3) implies the less noisiness
condition in (2).

A (2R pnRi - 9onRx 1) code for this channel consists
of K + 1 message sets, Wy = {1,...,2"%} k = 0,1,...,K,
an encoder f : Wy X -+ X Wx — X", K decoders,
one at each legitimate receiver, gr : Y; — Wy X
Wi, k = 1,...,K. The probability of error is defined
as P! = maxg—y, x Prlge(Y]) # (Wo, Wi)]. A rate tuple
(Ro,Ry,. .., Ry) is said to be achievable if there exists a code
with lim, . P} = 0 and

m SHGSW) 2= S R VW), (4)
noen keS(W)

where $(W) denotes any subset of {Wy, Wy,..., Wk}.
Hence, we consider only perfect secrecy rates. The secrecy
capacity region is defined as the closure of all achievable rate
tuples.

The secrecy capacity region of the degraded multireceiver
wiretap channel with a more noisy eavesdropper is given
by the following theorem whose proof is provided in
Appendix A.

Theorem 1. The secrecy capacity region of the degraded
multireceiver wiretap channel with a more noisy eavesdropper
is given by the umion of the rate tuples (Ro,Ry,...,Rg)

satisfying
4 4
Ro+ D Re < D I(Uk Y | Upt) = (U3 2), € =1,...,K,
k=1 k=1
(5)

where Uy = ¢, Ux = X, and the union is over all probability
distributions of the form

plu) p(uz| wy) - - - plug—i| ug_2)p(x | uxg-1).  (6)
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FIGURE 4: The parallel degraded multireceiver wiretap channel.

Remark 1. Theorem 1 implies that a modified version of
superposition coding can achieve the boundary of the
capacity region. The difference between the superposition
coding scheme used to achieve (5) and the standard one
in [24], which is used to achieve the capacity region of
the degraded broadcast channel, is that the former uses
stochastic encoding in each layer of the code to associate each
message with many codewords. This controlled amount of
redundancy prevents the eavesdropper from being able to
decode the message.

As stated earlier, the degraded multireceiver wiretap
channel with a more noisy eavesdropper contains the
degraded multireceiver wiretap channel which requires the
eavesdropper to be degraded with respect to all users as stated
in (3). Thus, we can specialize our result in Theorem 1 to
the degraded multireceiver wiretap channel as given in the
following corollary.

Corollary 2. The secrecy capacity region of the degraded
multireceiver wiretap channel is given by the union of the rate
tuples (Ro, Ry, ..., Rx) satisfying

14 14
Ro+ D> R < D I(Ugs Yi | Upe1,2),  €=1,...,K, (7)
k=1 k=1

where Uy = ¢, Ux = X, and the union is over all probability
distributions of the form

plu)puy | uy) -+ - plug—1 | ug—2)plx | ux—1).  (8)

The proof of this corollary can be carried out from
Theorem 1 by noting the following identity:

4
I(Us2) = D I(UsZ | Uky), )
k=1

and the following Markov chains:
Uiy — Uy — Yy — Z, k=1,...,K (10)

We acknowledge an independent and concurrent work
regarding the degraded multireceiver wiretap channel. The
work in [9] considers the two-user case and establishes the
secrecy capacity region as well.

So far we have determined the entire secrecy capacity
region of the degraded multireceiver wiretap channel with
a more noisy eavesdropper. This class of channels requires
a certain degradation order among the legitimate receivers
which may be viewed as being too restrictive from a practical
point of view. Our goal is to consider progressively more

general channel models. Toward that goal, in the following
section, we consider channel models where the users are
not ordered in a degradedness or noisiness order. However,
the concepts of degradedness and noisiness are essential
in proving capacity results. In the following section, we
will consider multireceiver broadcast channels which are
composed of independent subchannels. We will assume
some noisiness properties in these subchannels in order
to derive certain capacity results. However, even though
the subchannels will have certain noisiness properties, the
overall broadcast channel will not have any degradedness or
noisiness properties.

3. Parallel Multireceiver Wiretap Channels

Here, we investigate the parallel multireceiver wiretap chan-
nel where the transmitter communicates with K legitimate
receivers using M independent subchannels in the presence
of an eavesdropper, see Figure 3. The channel transition
probability of a parallel multireceiver wiretap channel is

P({)’lm,- .. )me)Zm}jr\:Zl | {xm}jy\::l)
(11)

=

p(ylma---)meyZm | xm)’

1

3
i

where x,, € X, is the input in the mth subchannel where
Xm is the corresponding channel input alphabet, yi, € Yim
(resp., zm € Z,,) is the output in the kth user’s (resp.,
eavesdropper’s) mth subchannel where Y, (resp., Z,,) is
the kth user’s (resp., eavesdropper’s) mth subchannel output
alphabet.

We note that the parallel multireceiver wiretap channel
can be regarded as an extension of the parallel wiretap
channel [21, 22] to the case of multiple legitimate users.
Though the work in [21, 22] establishes the secrecy capacity
of the parallel wiretap channel for the most general case,
for the parallel multireceiver wiretap channel, obtaining the
secrecy capacity region for the most general case seems to
be intractable for now. Thus, in this section, we investigate
special classes of parallel multireceiver wiretap channels.
These channel models contain the class of channel models
studied in [8] as a special case. Similar to [8], our emphasis
will be on the common message secrecy capacity and the sum
secrecy capacity.

3.1. The Common Message Secrecy Capacity. We first consider
the simplest possible scenario where the transmitter sends
a common confidential message to all users. Despite its
simplicity, the secrecy capacity of a common confidential
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message (hereafter will be called the common message
secrecy capacity) in a general broadcast channel is unknown.

The common message secrecy capacity for a special class
of parallel multireceiver wiretap channels was studied in [8].
In this class of parallel multireceiver wiretap channels [8],
each subchannel exhibits a certain degradation order which
is not necessarily the same for all subchannels, that is, the
following Markov chain is satisfied:

X1 — Yna) — Yue) — -+ — Yok (12)

in the /th subchannel, where (Y1), Yr2)s---> Ymk+1)) 1s @
permutation of (Yyy,..., Yk, Z;). Hereafter, we call this chan-
nel the parallel degraded multireceiver wiretap channel.( In
(8], these channels are called reversely degraded parallel
channels. Here, we call them parallel degraded multireceiver
wiretap channels to be consistent with the terminology
used in the rest of the paper.) Although [8] established the
common message secrecy capacity for this class of channels,
in fact, their result is valid for the broader class in which we
have either

X — Yu— 2 (13)
or
X — Z1 — Yu (14)

valid for every X; and for any (k,I) pair where k €
{1,...,K}, I € {1,...,M}. Thus, it is sufficient to have a
degradedness order between each user and the eavesdropper
in any subchannel instead of the long Markov chain between
all users and the eavesdropper as in (12).

Here, we focus on a broader class of channels where in
each subchannel, for any given user, either the user’s channel
is less noisy than the eavesdropper’s channel or vice versa.
More formally, we have either

I(U; Yi) > I(U; Z)) (15)
or
I(U; Yi) < I(U; Z)) (16)

foral U - X; — (Yi,Z) and any (k,I) pair where k €
{1,...,K}, 1 € {1,...,M}. Hereafter, we call this channel
the parallel multireceiver wiretap channel with a more noisy
eavesdropper. Since the Markov chain in (12) implies either
(15) or (16), the parallel multireceiver wiretap channel with
a more noisy eavesdropper contains the parallel degraded
multireceiver wiretap channel studied in [8].

A (2"R, n) code for this channel consists of a message set,
Wo = {1,...,2"”}, an encoder, f : Wy — X} x -+ x X},
K decoders, one at each legitimate receiver g : Y, X - -+ X
Yiv — Wo,k =1,...,K. The probability of error is defined
as P! = maxx-1, Pr[Wko + Wy], where Wio is the kth
user’s decoder output. The secrecy of the common message is
measured through the equivocation rate which is defined as
(I/n)H(Wy | Z7,...,Z};). A common message secrecy rate,

R, is said to be achievable if there exists a code such that
lim, . o P? = 0, and

lim %H(w0 | Z0. . Z0) = R (17)
n— oo

The common message secrecy capacity is the supremum of
all achievable secrecy rates.

The common message secrecy capacity of the parallel
multireceiver wiretap channel with a more noisy eavesdrop-
per is stated in the following theorem whose proof is given in
Appendix B.

Theorem 3. The common message secrecy capacity, Co, of
the parallel multireceiver wiretap channel with a more noisy
eavesdropper is given by

M
Cy = manPllinKZ[I(Xl3 Yi) - I(X32Z)]%,  (18)

=L..K, 7

where the maximization is over all distributions of the form

P(-xla~~~a-xM) = n?;llp(-xl)

Remark 2. Theorem 3 implies that we should not use the
subchannels in which there is no user that has a less noisy
channel than the eavesdropper. Moreover, Theorem 3 shows
that the use of independent inputs in each subchannel is
sufficient to achieve the capacity, that is, inducing correlation
between channel inputs of subchannels cannot provide any
improvement. This is similar to the results of [25, 26] in the
sense that the work in [25, 26] established the optimality of
the use of independent inputs in each subchannel for the
product of two degraded broadcast channels.

As stated earlier, the parallel multireceiver wiretap
channel with a more noisy eavesdropper encompasses the
parallel degraded multireceiver wiretap channel studied in
[8]. Hence, we can specialize Theorem 3 to recover the
common message secrecy capacity of the parallel degraded
multireceiver wiretap channel established in [8]. This is
stated in the following corollary whose proof can be carried
out from Theorem 3 by noting the Markov chain X; -
Yu — Zj, forall (k,1).

Corollary 4. The common message secrecy capacity of the
parallel degraded multireceiver wiretap channel is given by

M
Co = maxkfrllinKzI(Xz; Y | Z1), (19)

»R=1

where the maximization is over all distributions of the form

p(x1)~~-)xM) = H?LP(XZ)-

3.2. The Sum Secrecy Capacity. We now consider the scenario
where the transmitter sends an independent confidential
message to each legitimate receiver, and focus on the sum
secrecy capacity. We consider a class of parallel multireceiver
wiretap channels where the legitimate receivers and the
eavesdropper exhibit a certain less noisiness order in each
subchannel. These less noisiness orders are not necessarily



6 EURASIP Journal on Wireless Communications and Networking

the same for all subchannels. Therefore, the overall channel
does not have a less noisiness order. In the I/th subchannel,
foralU — X; — (Y1,..., Yk1, Z;), we have

I(U; Yn) > 1(U3 Ya) > - - - > I(U3 Yoern), - (20)
where (Yr), Yr2)---> Ymk+1)) is @ permutation of (Yyy,
..» Y1, Z1). We call this channel the parallel multireceiver
wiretap channel with a less noisiness order in each subchannel.
We note that this class of channels is a subset of the parallel
multireceiver wiretap channel with a more noisy eavesdrop-
per studied in Section 3.1, because of the additional ordering
imposed between users’ subchannels. We also note that the
class of parallel degraded multireceiver wiretap channels with
a degradedness order in each subchannel studied in [8] is not
only a subset of parallel multireceiver wiretap channels with
a more noisy eavesdropper studied in Section 3.1 but also a
subset of parallel multireceiver wiretap channels with a less
noisiness order in each subchannel studied in this section.

A (2" 2"Rx ) code for this channel consists of K
message sets, Wy = {1,...,2"%}, k = 1,...,K, an encoder,
f@W XX W - X7 X+ x X}y, K decoders,
one at each legitimate receiver g : Y7, X -+ X Yi, —

Wi,k = 1,...,K. The probability of error is defined as P? =
output.wi“he secrecy is measured through the equivocation
rate which is defined as (1/n)H(W,..., Wx | Z7,..., Z};). A
sum secrecy rate, Rs, is said to be achievable if there exists a
code such that lim,, —. . P? = 0, and

lim SH(Wh,..., Wi | Zy..., Z0) > R..

n—oopn

(21)

The sum secrecy capacity is defined to be the supremum of
all achievable sum secrecy rates.

The sum secrecy capacity for the class of parallel
multireceiver wiretap channels with a less noisiness order
in each subchannel studied in this section is stated in the
following theorem whose proof is given in Appendix C.

Theorem 5. The sum secrecy capacity of the parallel multi-

receiver wiretap channel with a less noisiness order in each

subchannel is given by

+
>

M
maxz [I (Xz; Yp(l)l) — I(Xl;Zl)] (22)
-1

where the maximization is over all input distributions of the
form p(x1,...,xm) = Hf\ilp(xl) and p(1) denotes the index of
the strongest user in the Ith subchannel in the sense that

(U3 Ya) < I(Us Y1) (23)

forallU — X; — (Yi,..., Yk, Z1) and any k € {1,...,K}.

Remark 3. Theorem 5 implies that the sum secrecy capacity
is achieved by sending information only to the strongest
user in each subchannel. As in Theorem 3, here also, the
use of independent inputs for each subchannel is capacity-
achieving, which is again reminiscent of the result in [25, 26]

about the optimality of the use of independent inputs in
each subchannel for the product of two degraded broadcast
channels.

As mentioned earlier, since the class of parallel mul-
tireceiver wiretap channels with a less noisiness order in
each subchannel contains the class of parallel degraded
multireceiver wiretap channels studied in [8], Theorem 5 can
be specialized to give the sum secrecy capacity of the latter
class of channels as well. This result was originally obtained
in [8]. This is stated in the following corollary. Since the
proof of this corollary is similar to the proof of Corollary 4,
we omit its proof.

Corollary 6. The sum secrecy capacity of the parallel degraded
multireceiver wiretap channel is given by

M

max » (Xz; Yoy | Zl))
=1

(24)

where the maximization is over all input distributions of the
form p(x1,...,xm) = l_[?ﬁlp(xl) and p(l) denotes the index of
the strongest user in the Ith subchannel in the sense that

X; — Y01 — Y (25)

for all input distributions on X; and any k € {1,...,K}.

So far, we have considered special classes of parallel
multireceiver wiretap channels for specific scenarios and
obtained results similar to [8], only for broader classes of
channels. In particular, in Section 3.1, we focused on the
transmission of a common message, whereas in Section 3.2,
we focused on the sum secrecy capacity when only indepen-
dent messages are transmitted to all users. In the subsequent
sections, we will specialize our channel model, but we
will develop stronger and more comprehensive results. In
particular, we will let the transmitter send both common and
independent messages, and we will characterize the entire
secrecy capacity region.

4. Parallel Degraded Multireceiver
Wiretap Channels

We consider a special class of parallel degraded multireceiver
wiretap channels with two subchannels, two users, and one
eavesdropper. We consider the most general scenario where
each user receives both an independent message and a
common message. All messages are to be kept secret from
the eavesdropper.

For the special class of parallel degraded multireceiver
wiretap channels in consideration, there is a specific degra-
dation order in each subchannel. In particular, we have the
following Markov chain:

Xy — Yy — Yy — 27 (26)
in the first subchannel, and the following Markov chain:
X — Y —Yn— 2, (27)
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in the second subchannel. Consequently, although in each
subchannel, one user is degraded with respect to the other
one, this does not hold for the overall channel, and the overall
channel is not degraded for any user. The corresponding
channel transition probability is

p(yu lx)p(ya | yin)
(28)
< p(z1 1 y,) (a2 | Xz)P(J’lz | yn)p(z2 | y12).

If we ignore the eavesdropper by setting Z, = Z, = ¢, this
channel model reduces to the broadcast channel that was
studied in [25, 26].

A (21Ro 2nRy 9nR2 41) code for this channel consists of
three message sets, Wy = {1,...,2"R0}, W, = {1,...,2"R1,
j = 1,2, one encoder f : Wy x W) x W, — X7 x X3,
two decoders one at each legitimate receiver g; : Y7, X
Y5 — Wox W), j = 1,2. The probability of error is defined
as P} = maxj-i Pr[gj(Yj"l, Y}’Z) # (Wo, W;)]. A rate tuple
(Ro, Ry, Ry) is said to be achievable if there exists a code such
that lim, . . P? = 0 and

lim SH(S(W) [ Z0,22) > S Ry VE(W), (29)
noen kes(W)

where 4(W) denotes any subset of {Wj, Wi, W,}. The
secrecy capacity region is the closure of all achievable secrecy
rate tuples.

The secrecy capacity region of this parallel degraded mul-
tireceiver wiretap channel is characterized by the following
theorem whose proof is given in Appendix D.1.

Theorem 7. The secrecy capacity region of the parallel deg-
raded multireceiver wiretap channel defined by (28) is the
union of the rate tuples (Ry, Ry, R,) satisfying

Ry <I(UpYu | Z1)+ Uy Y12 | Z2),

Ry < I(Ui; Yo | Z1) +1(Up Yoo | Z2),

Ry+Ry < I(Xp; Y1y | Z1) +1(Ups Yo | Z2),

Roy+Ry < I(Xp5Yn | Z2) +I(Ups Y1 | Zy),

Roy+Ri+ Ry < I(Xy3 Y1 | Z1) + (U Y12 | Z2) 0
+IXp Y | Uy, 2y),

Roy+Ri+ Ry < I(Xp5 Y2 | Zo) + I(Uy; You | Z1)

+I1X; Y | U, Z),

where the union is over all distributions of the form p(u;,
Uz, X1, X2) = plur,x1) p(uh2, x2).

Remark 4. If we let the encoder use an arbitrary joint
distribution p(uy,x1, U2, x;) instead of the ones that satisfy
plur,x1,u2,x2) = p(uy,x1) p(uz, x2), this would not enlarge
the region given in Theorem 7, because all rate expressions
in Theorem 7 depend on either p(u,x;) or p(us,x;) but not
on the joint distribution p(u, Uz, x1,x2).

Remark 5. The capacity-achieving scheme uses either super-
position coding in both subchannels or superposition coding
in one of the subchannels, and a dedicated transmission in
the other one. We again note that this superposition coding
is different from the standard one [24] in the sense that
it associates each message with many codewords by using
stochastic encoding at each layer of the code due to secrecy
concerns.

Remark 6. If we set Z; = Z, = ¢, we recover the capacity
region of the underlying broadcast channel [26].

Remark 7. 1f we disable one of the subchannels, say the first
one, by setting Y1; = Y5 = Z; = ¢, the parallel degraded
multireceiver wiretap channel of this section reduces to the
degraded multireceiver wiretap channel of Section 2. The
corresponding secrecy capacity region is then given by the
union of the rate tuples (R, Ry, R;) satisfying

Ro+Ri <I(Uy Y12 | Z2)

(31)
Ro+Ri+Ry, = I(Xy; Y0y | Uz, Z5) + I(Un; Yz | Z3),

where the union is over all p(us,x;). This region can
be obtained through either Corollary 2 or Theorem 7 (by
setting Yy, = Y2 = Z; = ¢ and eliminating redundant
bounds) implying the consistency of the results.

Next, we consider the scenario where the transmitter
does not send a common message, and find the secrecy
capacity region.

Corollary 8. The secrecy capacity region of the parallel
degraded multireceiver wiretap channel defined by (28) with no
common message is given by the union of the rate pairs (R, Ry)

satisfying
Ry <IXyYul Z)+I(Uy Yo | Zy),
Ry <I(Xp; Yo | Zo)+1(U; Yo | Zy),

Ri+R <IXy;Yu | Z1) + I(Uyp Yia | Z) )
32
+1(Xo; Y0 | Us, Zy),

Ri+Ry <I(Xp; Y0 | Zp) +I(Uy; Yo | Z1)
+IXYn | U, Zy),

where the union is over all distributions of the form

plun)puz) p(xr [ ur)p(xa | uz).

Proof. Since the common message rate can be exchanged
with any user’s independent message rate, we set Ry = o +
B,Ry = Ry + a,R5 = Ry + f3, where o, > 0. Plugging
these expressions into the rates in Theorem 7 and using
Fourier-Moztkin elimination, we get the region given in the
corollary. O

Remark 8. 1f we disable the eavesdropper by setting Z;; =
Zy = ¢, we recover the capacity region of the underlying
broadcast channel without a common message, which was
found originally in [25].
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At this point, one may ask whether the results of this
section can be extended to arbitrary numbers of users
and parallel subchannels. Once we have Theorem 7, the
extension of the results to an arbitrary number of parallel
subchannels is rather straightforward. Let us consider the
parallel degraded multireceiver wiretap channel with M
subchannels, and in each subchannel, we have either the
following Markov chain:

X — Yy — Yy — 27, (33)
or this Markov chain:
Xi— Yy — Yy — 2 (34)

for any [ € {1,...,M}. We define the set of indices 4,
(resp., 4,) as those where for every I € &, (resp., [ € 4,),
the Markov chain in (33) (resp., in (34)) is satisfied. Then,
using Theorem 7, we obtain the secrecy capacity region of
the channel with two users and M subchannels as given in
the following theorem which is proved in Appendix D.2.

Theorem 9. The secrecy capacity region of the parallel
degraded multireceiver wiretap channel with M subchannels,
where each subchannel satisfies either (33) or (34), is given by
the union of the rate tuples (Ro, Ry, Ry) satisfying

M
Ry < > I(Us Yy | Z)),
I=1

M
Ry < D I(Us Yy | Z)),

Ro+Ry = D IXs Yyl Z)+ > I(Us Yu | Z)),
led, le4,

Ro+Ry < D IX Yo | Z)+ D> I(Us Y | Z),
les, 1e$, (35)

Roy+Ri+Ry < D IX5 Yy | Z)+ > I(Us Yy | Z))
le s, le 4,

+ > I(X; Yo | Us2y),
les,

Roy+Ri+Ry < D I(X Yo | Z)+ > I(Us Y | Z))
le4, le

+ ZI(XZ) Yll | Ul)Zl))
le;

where the union is over all distributions of the form

T, p (s, x).

We are now left with the question whether these results
can be generalized to an arbitrary number of users. If we
consider the parallel degraded multireceiver wiretap channel
with more than two subchannels and an arbitrary number
of users, the secrecy capacity region for the scenario where
each user receives a common message in addition to an
independent message does not seem to be characterizable.

Our intuition comes from the fact that, as of now, the
capacity region of the corresponding broadcast channel
without secrecy constraints is unknown [27]. However, if
we consider the scenario where each user receives only an
independent message, that is, there is no common message,
then the secrecy capacity region may be found, because
the capacity region of the corresponding broadcast channel
without secrecy constraints can be established [27], although
there is no explicit expression for it in literature. We expect
this particular generalization to be rather straightforward,
and do not pursue it here.

5. Sum of Degraded Multireceiver
Wiretap Channels

We now consider a different multireceiver wiretap channel
which can be viewed as a sum of two degraded multireceiver
wiretap channels with two users and one eavesdropper. In
this channel model, the transmitter has two nonintersecting
input alphabets, that is, X, X, with X, N X, = &, and each
receiver has two nonintersecting alphabets, that is, Y1, Y2
with Y;1 N Y;, = @ for the jth user, j = 1,2, and Z,, 2,
with Z; N Z, = O for the eavesdropper. The channel is again
memoryless with transition probability

p(yiy2z 1 %)
(p(yi L x1) p(yar | yi)plzi | yn)
if (x, y1,¥2,2) € X1 X Y11 X Yo1 X Z1,
=1p022 I x2)p(y2 | y2)p(z2 | y12)
if (x, ¥1,¥2,2) € X2 X Y12 X Yoo X Z,

L0 otherwise,
(36)

where x € X = xl UxZ, Vi S y] = yjl ijz,j =
1,2 and z € Z = Z, U Z,. Thus, if the transmitter
chooses to use its first alphabet, that is, X, the second
user (resp. eavesdropper) receives a degraded version of user
I’s (resp., user 2’s) observation. However, if the transmitter
uses its second alphabet, that is, X, the first user (resp.
eavesdropper) receives a degraded version of user 2’s (resp.
user 1’s) observation. Consequently, the overall channel is
not degraded from any user’s perspective, however, it is
degraded from eavesdropper’s perspective.

A (2R 2R 2nRs py code for this channel consists of
three message sets, Wy = {1,...,2"%}, W, = {1,...,2"R},
j = 1,2, one encoder f : Wy x W, x W, — X" and
two decoders, one at each legitimate receiver, gi: y; -
Wo X Wj, j = 1,2. The probability of error is defined as P} =
maszl,zPr[gj(Yf) # (Wo, W;)]. A rate tuple (Ro, Ry, R;) is
said to be achievable if there exists a code with lim,, . P = 0
and

im SHSW) [z = S R, VY&W), (7)
n—oomn .
jeS(W)
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where $(W) denotes any subset of {Wj, Wi, W,}. The
secrecy capacity region is the closure of all achievable secrecy
rate tuples.

The secrecy capacity region of this channel is given in the
following theorem which is proved in Appendix E.

Theorem 10. The secrecy capacity region of the sum of two
degraded multireceiver wiretap channels is given by the union
of the rate tuples (Ro, Ry, Ry) satisfying

Ry < al(Uy; Yui | Z1) +al(Uys Yo | Z5),
Ry <al(Up; Yo | Z1) +al(Uy Yoo | Z2),
Ro+ Ry < al(Xy3 Y1 | Z1) +al(Up; Yz | Z3),
Ro+Ry <al(Uy; Yo | Z1) +al(Xp; Y2 | Z2),

(38)
Ro+Ry+Ry < al(Xy; Y1y | Zy) +al(Us; Yoo | Z2)

A

+al(Xp; Yoo | Uz, 2y),

Ry+Ri+R, <al(Up; Yo | Zy) +al(Xy; Y11 | U, Zy)

A

+al(Xy; Yo | Z2),

where the union is over all a € [0, 1] and distributions of the
form p(uy, uz, x1,%2) = pur,x1) puz, x2).

Remark 9. This channel model is similar to the parallel
degraded multireceiver wiretap channel of the previous
section in the sense that it can be viewed to consist of two par-
allel subchannels, however, now the transmitter cannot use
both subchannels simultaneously. Instead, it should invoke a
time-sharing approach between these two so-called parallel
subchannels (« reflects this concern). Moreover, superpo-
sition coding scheme again achieves the boundary of the
secrecy capacity region, however, it differs from the standard
one [24] in the sense that it needs to be modified to incor-
porate secrecy constraints, that is, it needs to use stochastic
encoding to associate each message with multiple codewords.

Remark 10. An interesting point about the secrecy capacity
region is that if we drop the secrecy constraints by setting
Z\ = Z, = ¢, we are unable to recover the capacity region
of the corresponding broadcast channel that was found in
[26]. After setting Z; = Z, = ¢, we note that each expression
in Theorem 10 and its counterpart describing the capacity
region [26] differ by exactly h(e). The reason for this is as
follows. Here, a not only denotes the time-sharing variable
but also carries an additional information, that is, the change
of the channel that is in use is part of the information
transmission. However, since the eavesdropper can also
decode these messages, the term h(«), which is the amount
of information that can be transmitted via changes of the
channel in use, disappears in the secrecy capacity region.

6. Conclusions

In this paper, we studied secure broadcasting to many
users in the presence of an eavesdropper. Characterizing
the secrecy capacity region of this channel in its most

general form seems to be intractable for now, since the
version of this problem without any secrecy constraints is
the broadcast channel with an arbitrary number of receivers,
whose capacity region is open. Consequently, we took the
approach of considering special classes of channels. In
particular, we considered degraded multireceiver wiretap
channels, parallel multireceiver wiretap channels with a more
noisy eavesdropper, parallel multireceiver wiretap channels
with less noisiness orderings in each subchannel, and parallel
degraded multireceiver wiretap channels. For each channel
model, we obtained either partial characterization of the
secrecy capacity region or the entire region.

Appendices
A. Proof of Theorem 1

First, we show achievability, then provide the converse.

A.1. Achievability. Fix the probability distribution as

plu)p(uz uy) -« - plug—1 [ ux—2)p(x | ug—y). (A1)

Codebook Generation.

(i) Generate 2"®*Ri+R) Jength-n sequences u; through
p(uy) = T, p(u1,;) and index them as u;(wp, wy,

w1) where wy € {1,...,2M "y € {1,...,2""} and
wr € {1,...,2M},

(ii) For each w; ;, where j = 2,...,K — 1, generate
2R *R)) length-n sequences u; through p(ujlu;_;) =
l_[;'zlp(uj,i | uj 1) and index them as u;(wo, w1,
Wi Wi,...,W;), where w; € {1,...,2"Ri} and
wj € {1,...,2"R}.

(iii) Finally, for each ug_;, generate 2n(Ric+Rx) length-n
sequences x through p(x | ux_;) = [IiLp(x |

uk,;) and index them as x(wq, wi,. .., Wi, Wi, ..., Wk )
where wg € {1,...,2"™8} and Wx € {1,...,2"R¢},
(iv) Furthermore, we set
Ri=IU:Z | Uiy), i=1,.,K, (A2)

where Uy = ¢ and Ux = X.

Encoding. Assume the messages to be transmitted are (wy,
wi,...,wg). Then, the encoder randomly picks a set (W,
.., wi) and sends X(Wg, Wi, ..., WK, Wi,..., WK).

Decoding. 1t is straightforward to see that if the following
conditions are satisfied:

R0+R1+§1 SI(Ul;Yl),
Ri+R; <I(U;Y; 1 Uj), j=2,..,K-1, (A3)

Rk +Rx < I(X; Y | Ug_y),
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then all users can decode both the common message and the
independent message directed to itself with vanishingly small
error probability. Moreover, since the channel is degraded,
each user, say the jth one, can decode all of the independent
messages intended for the users whose channels are degraded
with respect to the jth user’s channel. Thus, these degraded
users’ rates can be exploited to increase the jth user’s rate
which leads to the following achievable region:

14 14 14
Ro + ZRJ+ Zﬁj = ZI(Uj;Yj | Uj71>, ¢t=1,..,K,
j=1 j=1 j=1
(A.4)

where Uy = ¢ and Ux = X. Moreover, after eliminating
{R; }5-(:1, (A.4) can be expressed as

4 14
Ro+ Y R < Y I(U;Y; | Ujnt) — (Ui 2), £=1,...,K,
j=1 j=1

(A.5)

where we used the fact that

eN
DRj =

j=1 j=1

1(UpZ | Ujm) = 1., Us Z) = [(Us 2),

(A.6)

where the second and the third equalities are due to the
following Markov chain:

U —-— Uk — X — Z (A7)

Equivocation Calculation. We now calculate the equivocation
of the code described above. To that end, we first introduce
the following lemma which states that a code satisfying
the sum rate secrecy constraint fulfills all other secrecy
constraints.

Lemma 11. If the sum rate secrecy constraint is satisfied, that
is,

K

1

~H(Wo, Wi,..., Wi | 2") 2 3 Rj = €n,
j=0

(A.8)

then all other secrecy constraints are satisfied as well, that is,

LHsW) 12 = S R e
n jes(W)

(A9)

where 8(W') denotes any subset of { Wy, W1,..., Wk}.

Proof. The proof of this lemma is as follows.

Laesowy 1 zn
n

_ %H(%K(W),JC(W) | 27) = H($A(W) | 5(W), 2")
(A.10)

K
= SR - €y = L H(${W) | 5(W), 2") (A.11)

j=0

= S Ri—et S Rj- SHS(W) | S(W),2")
. n
jESW) jes(W)
(A.12)

= SR e+ SH(S(W)) - SHS(W) | S(W), 2"
jes(w) n n
(A.13)

> > Rj—€n (A.14)

jesw)

where (A.11) is due to the fact that we assumed that sum rate
secrecy constraint (A.8) is satisfied and (A.13) follows from

S R; = SH($(W)),
jesa(w) n

(A.15)

which is a consequence of the fact that message sets are
uniformly and independently distributed. O

Hence, it is sufficient to check whether coding scheme
presented satisfies the sum rate secrecy constraint.

H(WO> Wl:---awK | Zn)
(A.16)
= H(W01 Wl)“-)WK)Zn) _H(Zn)
— H(U,..., UL, X" Wo, Wi, ..., Wi, Z") — H(Z")

—H(U,..., UL, X" | Wo, Wi,..., Wk, Z")
(A.17)

= H(UY,..., U, X")
+ H(Wo, Wi,..., Wi, Z" | Ul UE_,X") — H(Z")

~H(U,...,Ut_,X" | Wo, Wi,..., Wk, Z")
(A.18)

> H(UM,..., Ul |, X") —I(UP,..., UL, X" Z")
_ H(Uln’ R UI?—DXn | W(), Wl,... 5 WK,Z”),
(A.19)

where each term will be treated separately. Since given U} =
uf, Up,, can take 2"Re1*Re1) values uniformly, the first
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term is
H(U...,UE_,X"™)
K-1
=H(UN + Y H(UL I UL ) + HX" | UEy)
o (A.20)

K K

=nRy + nZRk + nZINZk,
k=1 k=1

(A.21)

where the first equality follows from the following Markov
chain:

up — v} — - — Ug_, — X" (A.22)
The second term in (A.19) is
1(ur,..., Ut |, X" 2Z")
(A.23)
= I(X"Z") + (UM, UL,..., UL 32" | X
=I(X"2Z") (A.24)
<nl(X52Z) + yn, (A.25)

where (A.24) follows from the Markov chain in (A.22) and
(A.25) can be shown by following the approach devised in
[1]. We now bound the third term in (A.19). To that end,
assume that the eavesdropper tries to decode (U7,...,
Ug_,,X™) using the side information (Wy, Wy,..., Wx)
which is equivalent to decoding (Wl,. . WK). Since ﬁjs are
selected to ensure that the eavesdropper can decode them
successively, see (A.2), then using Fano’s lemma, we have

H(U,..., U, X" | Wo, Wh,..., Wk, Z™) < €, (A.26)

Thus, using (A.21), (A.25), and (A.26) in (A.19), we get

H(WO) Wl)---)WK | Zn)
K K (A.27)
>nY Rj+n> Rj—nl(X;Z) — €,
j=0 j=1
K
= nZRj — €1 — V> (A.28)
j=0

where (A.28) follows from the following, see (A.2) and (A.6),

R =1(X;2).

IR

(A.29)

j=1

A.2. Converse. First let us define the following auxiliary
random variables:

Ui = WoWy - - - Wi Yi 1z, k=1,...,K—1, (A.30)
which satisfy the following Markov chain:
Ui — Upi — - -+ — Uk,
(A31)

_ Xi — (Zb YK,i;- ey Yl,i)-

To provide a converse, we will show

4
We | Z") < D I(Us Yi | Uk—1) — I(Ug; 2),

1
7H(W0) Wl)--- >
" k=1

¢=1,.. K,
(A.32)

where Uy = ¢, Ux = X. We show this in three steps. First, let
us write down

H(Wo, Wi,..., W | Z") = H(Wo, W, | Z7)
3 (A.33)
+ ZH(Wk | WO) W],...,Wk,],Zn).
k=2

The first term on the right-hand side of (A.33) is bounded as
follows:

H(Wo, Wy | Z7")
(A.34)
< I(WQ,WI; Yln) —I(Wo,Wl;Zn) + €,

M:

I(WO, Wl,le | Yl z+1)
-1 (A.35)

—I(W(), W1;Zi | Y{_I’Zﬁd) T €n

M:

r(Wo Wisvis | Y1, 22)

1

I(Wo, Wiszi | Vi Z8,) (A.36)
(vi

+ 1Y zis ) — (YL 205 Z) + e

Il
M=

I<W0> Wy, YL ZE Yl,i)
1 (A.37)

—1(Wo, Wi, Y\, 25 Z1) + €

M:

(W0> Wy, YL Z0 Yl,i)
1

—I(Wo, Wy, Y{! Zz+1’Z) (A.38)

(
+1(YE S Y | Wo, Wi, Y, ZE)
—1(Y5 52| Wo, Wi, Yi 74, Z,) + ey

n

ZI<W0’ WLY L ZEL Y, Yl:)
= (A.39)

—1(Wo, Wy, Y{, 20, Yi 5 Z) + €
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n
ZI(WO: Wi, Z5 L Y55 Y 1)
i1 (A.40)

WO) Wl)Zl+1) Yzl 1)Zl)

+I(Y{ Y1, | Wo, Wl»ZﬁpYzi_l)

(A41)
—1(Y{52i | Wo, Wi, Z0y, Y1) + ey
= ZI(W(), W],Z;?H) Yzi_l;Yl,i>
i1 (A42)
—I(Wo, Wi, Z01, Y35 Z1) + €4
= 21U Y1) — 1(UisZ:) + €, (A43)

i=1

where (A.34) follows from Fano’s lemma, (A.35) is obtained
using Csiszar-Korner identity (see [2, Lemma 7]), and (A.36)
is due to the fact that

H(Y{hZhs ) —1(Y L 2052) >0, (A44)

which follows from the fact that each user’s channel is less
noisy with respect to the eavesdropper. Similarly, (A.38)
follows from the fact that

I(Yzifl; Yi,i | Wo, Wi, Yffl,Z[ﬁd)
4 , (A.45)
1(Yi sz | Wo, Wi, Yi,20,) >0,

which is a consequence of the fact that each user’s channel is
less noisy with respect to the eavesdropper’s channel. Finally,
(A.42) is due to the following Markov chain:

Yitl — Yitl — (Wo, W, 28, Y11, Z), (A.46)

which is a consequence of the fact that the legitimate receivers
exhibit a degradation order.

We now bound the terms of the summation in (A.33) for
2 < k < K — 1. Let us use the shorthand notation, Wi_; =
(Wo, Wl, ceey Wk—l)) then

H(Wi | Wi, 27)
_ N (A.47)
< I(Wis Y} | Wier) = I(Wis 2" | W) + €,
il(wk,Yka LYELZE)
i=1 (A.48)

—I(Wk;Zi | Wk—l:Yﬁ%Zﬁrl) t €y

n
< ZI(Wk; Yii | Wk—l: Y}i_l»ZﬁA)
i=1

~1(WisZi | Waer, Yi, 28,

( (A.49)
(

(Y Yir | Wien, i 20, Wi

+

— (Y52 | Wi, Yi7' 20, Wi + €

= SI(Wio Yk Vs | Weo, Y1, 22,
1 (A.50)

_I<Wk) k+lrz | Wk 1> _I)Zir-li-1>+€n

M:

i

M:

(UknYkz | Uk 11)
1 (A.51)

— (Ui Zi | Uk-1,i) + €n

where (A.47) follows from Fano’s lemma, (A.48) is obtained
through Csiszar-Korner identity, and (A.49) is a consequence
of the fact that

LY Yia | Wae, Y, 200, W)
(A.52)
— (Y5520 | Wien, YL 200, W) > 0,
which follows from the fact that each user’s channel is less
noisy with respect to the eavesdropper’s channel. Finally, we
bound the following term where we again use the shorthand
notation WK—I = (Wo, Wi,..., Wk_1),

H(Wk | WK_l,Z")

< (Wi Y | Wicer) = 1(Wis 2" | W) + €,

(A.53)
n —~ .
ZI(WK§YK,1' | WK—]:Y;{l)Zﬁrl)
i=1 (A.54)
I(WK;Zi | kal,Y;}_],Zﬁd) +€n
n ~ .
ZI(WK§YK,i | WK—bY]'{l’ZﬁA)
i=1
I(WK;Zi | WKA,YI?I,Z%) (A.55)
+ (X Y | Wi, Y, Z0y, Wi
—I<Xi;Zi | W, YL Z0, WK) tEn
n
= > T(Wk, X;; Yk | W1, Y, 1+1>
i=1 (A56)

(
I<WKaXi§Zi | W1, Yli{l»zirh) + €y
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M=

I(Xi; Yici | Wi-1, Y;"{l,Zﬁd)
1

+ (Wi Yiea | Wi, Y ', 250, X0) (A.57)

—I<Xi;Zi | WbeYz?l»ZﬁA)
- I(WK;Zi | WK—bYIi{laZiil»Xi) T E€n
(

n
= DI Xi; Y | WbeY}{l,Z{h)
i=1 (A.58)

—I(Xi;Zi | WK—1,YK_1>Zﬁr1) +€n

I(XDYKI | UK 11)
1 (A.59)

— (X Zi | Uk-1,i) + €y

™M=

where (A.53) follows from Fano’s lemma, (A.54) is obtained
by using Csiszar-Korner identity, and (A.55) follows from the
fact that

I(Xs5 Yiei | Wi, YEL, 200, W)
. (A.60)
—1(X5Zi | W1, Y, 2041, Wi) >0,

which is due to the fact that each user’s channel is less noisy
with respect to the eavesdropper and (A.58) is due to the
Markov chain:

(YicisZi) — X — (Wo, Wi, Wi, YL, Z2, ), (A61)

which follows from the fact that the channel is memoryless.
Finally, plugging (A.43), (A.51), and (A.59) into (A.33), we
get

4
H(Wo, Wi,...,We | Z") < n> I(Ug; Yi | Ug_y)
k=1
—nl(Up;2),€ =1,...,K,

(A.62)

where Uy = ¢ and Ux = X, and this concludes the converse.

B. Proof of Theorem 3

Achievability of these rates follows from [8, Proposition 2].
We provide the converse. First let us define the following
random variables:

Z" = (Z1,...,Z),

Yi = (Y. Yiy),
Zi = (Z?,iﬂ"")ZX/I,iH)’
(B.1)
vt = (Yt v,
Yie(i) = (Yia (@),..., Yim(4)),
Z(i) = (Z:(i),..., Zm(i)),

where Y,il’l = (Yu(1),..., Yu(i — 1)), er,lm
Z1(n)). Start with the definition

=(Zi(i+1),...,

H(Wy | Z") = H(Wy) — I(Wy; Z") (B.2)

< I(Wo3 Y}') = I(Wo3 2") + €4 (B.3)

™M=

I( Wy Y,
1( 0; Yeli) | Yi7) -

—I(Wo; Z2(i) | ZI\)) + €n

M:

1(Wo, Zpys Yeli) | Y[
1

I(Z,H,Yk(m L Wo) (B5)
—1(Wo, Y526 1 Z2,,)
+ (Y523 | 2, Wo) + €y
= SH(Wo, 2 i) | 1))
i=1 (B.6)
—1(Wo, Y{532() | Z31) + €
iz(wo,n(m Lz
+1(Z0 Yili) | YY) (B.7)

— (W Z(i) | 22y, YY)

(
— (Y5 20) | Z8y) + €
(

M:

1(Wo; Yi() | Y71, 20
! (B.8)

—I(W(),Z(l) |Z,+1, k )+€n>

where (B.6) and (B.8) are due the following identities:

n

iz(z,ﬁl;Yk(i) YL Wo) = D I(YESZG) | 2L, Wo),
i=1 i=1

n

il(zgil;n(i) YY) = Da(Yih26) 128,),
i=1 i=1

(B.9)

respectively, which are due to [2, Lemma 7]. Now, we will
bound each summand in (B.8) separately. First, define the
following variables:

Ui = (200, YY),
YEG) = (Y (D), Yo (i), (B.10)

2 G) = (Zia (i) ..., Zaa (3)).



14 EURASIP Journal on Wireless Communications and Networking

Hence, the summand in (B.8) can be written as follows:

I(Wos Yi(i) | Y420 ) = 1(Wos 2Gi) | 225, YY) (B.11)

= I(Wo; Yi(i) | Uki) — I(Wo3 Z(i) | Ug,i) (B.12)
= I(Wo; Y (0)s..., Yam (i) | Ug,i)
(B.13)
—I(Wos Z1(i)s ..., Zoa (i) | Ug,i)
M ~
= D1(Wos Yi(i) | Uk, Y17(9)
I=1 (B.14)
— 1(Wo; Z10) | Ui» 2, (1))
M
= >1(Wo, ZM,(1); Yua(i) | Ursr T (1))
I=1
— I(ZM, (3 Yaa(i) | Ugis 171 (0), Wo) (B.15)
= 1(Wo, V7105 Z4(0) | Uiio 24,(0))
+ 1(YE (1) 21(i) | Uk 224, (), Wo)
M ~ ~
= >'1(Wo, ZM,(1); Yua(i) | Ursr T (0))
I=1 (B.16)
— 1(Wo, Y1 (1)s 1) | Uiir 204, )
M
= D 1(ZM,(0); Yuli) | Ui, Y71 (3)
I=1
+ 1(Wos Yua(i) | Uk, Y7'(0), 22, (1)) (B.17)

— (Y ) 210) | Uk Z2,()

(¥
— I(Wos Z1(3) | Uk Z8, (), T ()
(

Mz

1(Wos Ya(i) | Ui, Y7100, 22, ()
1 (B.18)

—1(Wos Zi(i) | Ursn 22,0, Y11 (0)),

where (B.16) and (B.18) follow from the following identities:

M
SI(ZM, () Yu(i) | Ui Y1), Wo)

Mz

1T 210) | Ui 2,6, Wo

I
—

u (B.19)
SI(ZM ()3 Yia(i) | Ui V2 (0)
I=1

M

Z (YN 2iG0) | Ukis 22,(3)),

respectively, which are again due to [2, Lemma7]. Now,
define the set of subchannels, say $§(k), in which the kth

user is less noisy with respect to the eavesdropper. Thus,
the summands in (B.18) for [ ¢ 4(k) are negative and by
dropping them, we can bound (B.18) as follows:

(Wi Yali) | Yih 28, ) — 1(Wos 2G) | 20, YY)

> 1(Wos Yu(i) | Uk, Y1 0), 22, (1))

1e8(k) (B-20)
—I(Wos Zi(0) | Uk 28, (0), Y1 (i) ).
Moreover, for I € §(k), we have
I<Uk,i) Y71 0), ZM, (i); Ykz(i))
. . (B.21)
—I(Uks Y1 (0), 2, (i) 21(1)) = 0
1(Xi(0); V(i) | Ugs TG00, 204, (), Wo)
(B.22)

— 1(Xi(); Z1(i) | Ugr 22, (i), Y1), Wo) = 0,

where both are due to the fact that for [ € 4(k), in this
subchannel the kth user is less noisy with respect to the
eavesdropper. Therefore, adding (B.21) and (B.22) to each
summand in (B.20), we get the following bound:

I(Wos () | Vi, Z0) -

> 1(xi(i)

leS(k)

I(Wos Z(i) | Z2y, YY)

> WO) Uk,i) ?]iil(l))zﬁ/.ll(l)’ Ykl(l))

— 1(Xi(0), Wo, Uk, Y1 (1), 22, (i); Z1(3) )

(B.23)

> IXG(0); Yi(d) — I(X(i); Zi()), (B.24)

1e8(k)

where an equality follows from the following Markov chain:

@), 2, () — Xai) — (Yu(i), Zi(i)),
(B.25)

(WOr Uk,ir ?

which is a consequence of the facts that channel is memory-
less and subchannels are independent. Finally, using (B.24)
in (B.8), we get

n

HWo | Z") <> > I(Xii); Yiu(i) — I(Xi(1); Zi(0)) + €,
i=11e8(k)

<n > IXpYu) - I(X2Z) + €,
1€3(k)

M
=nD [I(X; Yu) = I(X520)]" + €ns
=
1 (B.26)

which completes the proof.
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C. Proof of Theorem 5

Achievability of Theorem 5 is a consequence of the achiev-
ability result for wiretap channels in [2]. We provide the
converse proof here. We first define the function p(/) which
denotes the index of the strongest user in the /th subchannel
in the sense that

I(U; Ya) < 1(U; Ypup) (C.1)

foralU — X; — (Y1p,..., Yk, Z1) and any k € {1,...,K}.
Moreover, we define the following shorthand notations:

Y=Yl 1=1...,M,
vr= (Y7, 70),
Ye = (YY), k=1...K,

Z"=(Z1,....Z%),

(C2)

YEG) = (Y (), Y1 (1),

ZN6) = (Z(i),. .., Zia (i),

I=1,....,M,
I=1,...,M,
VM) = (Y@, Yu(@), 1=1,..,M.
We first introduce the following lemma.

Lemma 12. For the parallel multireceiver wiretap channel

with less noisiness order, one has
I(Wisvg) <1(Wis ¥7), k=1,...,K (C.3)

Proof. Consecutive uses of Csiszar-Korner identity [2], as in
Appendix B, yield

(Wi Yy) = 1(Wis 1)

[
M=
Mz

[ 1(Wis Yaali) | Y, V28, Y1), T ()

1l
—
Il
—

—I(Wis 1) | Y{, V2, Y 0, V4 ())
(C4)

where each of the summand is negative, that is, we have

1(Wis Yu(i) | Y7, V2, Y 0), T, ()
| (C.5)
— (Wi i) | Y, ¥, v ), Y G)) <0

because 17'1(1') is the observation of the strongest user in the
Ith subchannel, that is, its channel is less noisy with respect
to all other users in the [th subchannel. This concludes the
proof of the lemma. O

This lemma implies that

H(Wil ") <H(Wi 1Y]) <€ (C.6)
where the second inequality is due to Fano’s lemma. Using
(C.6), we get

H(Wi,...,Wk | ") < iH(wk | V") <Ke,, (C7)
k=1

where the first inequality follows from the fact that condi-
tioning cannot increase entropy.
We now start the converse proof:

H(Wl)~~->WK | Zn)
N (C.8)
< I(Wl,...,WK;Y”) —I(Wy,..., Wi Z") + Ke,

[
M=
Mz

[1(Wh,.. Wi Vi) | 270, 90, 271, T, () )

l
—
l
—

- I(Wl,..., Wi Zi() | 21, Y0,

ZI71(), T, () | + Ken,
(C9)

where (C.8) is a consequence of (C.7) and (C.9) is obtained
via consecutive uses of the Csiszar-Korner identity [2] as we
did in Appendix B. We define the set of indices 4 such that
for all I € 4, the strongest user in the /th subchannel has a
less noisy channel with respect to the eavesdropper, that is,
we have

1(Us (i) = 1(U; 1) (C.10)

forall U — X;(i) — (Yi(i),Z(i)) and any | € 8. Thus, we
can further bound (C.9) as follows:

H(Wl>~~~>WK | Zn)

<SS [1(Wa..

i=1led

Wi Vi) | 27, ¥, 251 ), T4 )

—I(Wiy..o, Wi Zi0) | Z70, Y20, 251, T2 () |

+ Ke,
(C.11)

> WK)Zi_l) ?ir«lﬂ’zl_l(i)) ?l{\i[] (l)) ?l(l)>

<SS [1(Wa..

i=1led
—I(Wiyo, Wi Z78, V00, 2051, T (1) 21(0) ) |

+ Ke,
(C.12)
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n

< > > [1(Xi0), Wi, Wi, 2, ¥, 2171,

i=1les
P05 ) — 100G, W Wiy (1)
Z7L V8, 2700, Y (0 21() | + Ky
= > > [1(x0); V(i) - 103 Z1(0)) | + Keny  (C.14)

i=lle4

where (C.11) is obtained by dropping the negative terms,
(C.12)-(C.13) are due to the following inequalities:

12,2, 270, T 0 Fi00)
> I(Z’;ly v,z ), ?ﬁfl(i);Zz(iw,
(X0 V1) | Wi, Wi, 2L, ¥, Z25°1), T, ()

= 1(Xi(); i) | Wi, Wi, 27, V8, 2171 0), T, (1)
(C.15)

which come from the fact that for any I € 4, the strongest
user in the /th subchannel has a less noisy channel with
respect to the eavesdropper. Finally, we get (C.14) using the
following Markov chain:

(WI)- e WK) Ziil) ?ir«lplrzlil(i)) ?IIJrM](l))
N (C.16)
— Xi(i) — (¥ 2(0)),

which is a consequence of the facts that channel is memory-
less, and the subchannels are independent.

D. Proofs of Theorems 7 and 9

D.1. Proof of Theorem 7. We prove Theorem 7 in two parts,
first achievability and then converse. Throughout the proof,
we use the shorthand notations Y] = (Y]},Y}y), YJ =
(Y31, Y2h), 21 = (21, Z3).

D.1.1. Achievability. To show the achievability of the region
given by (30), first we need to note that the boundary of
this region can be decomposed into three surfaces as follows
[26].

(i) First surface:

Ro < I(Uy; Y12 | Z3)
Ry < I(Xy; Yoo | Uy, Zy)

Ro+Ry < IXy; Y | Z1) +I(Ups Y12 | Z2), Uy = ¢.

(D.1)

(ii) Second surface:
Ry < I(Up; Y21 | Zy)
R < I(Xy; Y1 | U, Zy)

Ro+Ry < I(Xp; Y2 | Zo) +I(Us Yo | Z1), Us = ¢.
(D.2)
(iii) Third surface:
Ry <I(Uy Y | Z1) +1I(Uys Yo | Z3)
Ro < I(Uys Yo1 | Z1) +1(Uys Yoo | Z)
(D.3)

R <IXy;Yn | U, Zy)
Ry < I(Xp; Yo | Uy, Zy).

We now show the achievability of these regions separately.
Start with the first region.

Proposition 13. The region defined by (D.1) is achievable.
Proof. Fix the probability distribution

px)pua)p(x2 | u2)p(y1, 2,2 | x). (D.4)

Codebook Generation.

(i) Split the private message rate of user 1 as Ry = Ry; +
Rys.

(ii) Generate 27(Ri+Ru) length-n sequences x; through
p(x1) =TT, p(x1,;) and index them as Xl(WnN, wit)
where wy; € {1,...,2"n} and wy, € {1,...,2"Ru},

(iii) Generate 27(RotRi+R1)

length-n  sequences u,
through p(u;) = TI.,p(u2;) and index them
as w(wo, iz, wi2) where wy € {1,...,2"R0},

wp € {1,... ,2”R12} and 1/7/12 e {1,... ,2"§12}.

(iv) For each u,, generate n(Ro+Ry) length-n sequences x,
through p(xy) = [17,p(x2; | u2;) and index them
as %, (wo, Woz, wa, W2) where wy € {1,..., 2mRY e
{1,...,2M},

(v) Furthermore, set the confusion message rates as
follows:

Riy = I(X152)),
Riy = I(Uy 2,), (D.5)

Ry =I(Xp52, | Uy).

Encoding. 1f (wo, wi1, Wiz, w2) is the message to be transmit-
ted, then the receiver randomly picks (W11, W12, W) and sends
the corresponding codewords through each channel.

Decoding. 1t is straightforward to see that if the following
conditions are satisfied, then both users can decode the
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messages directed to themselves with vanishingly small error
probability.

Ro+ Riz + Riy < I(Uy; Y1),
Ry + ﬁu < I(Xy;; YY), (D.6)

Ro+ Ry < I(Xp3 Y | U).

After eliminating R;; and R;; and plugging the values of
ﬁll, ﬁlz, ﬁz, we can reach the following conditions:

Ro < I(Uy Y12 | Z,),
Ry < I(Xp; Yoy | Uy, Z5), (D.7)

Ro+Ri < IXy;Yn | Z0) +1(Uy Yoo | Z,),

where we used the degradedness of the channel. Thus, we
only need to show that this coding scheme satisfies the
secrecy constraints.

Equivocation  Computation. As shown previously in
Lemma 11 of Appendix A, checking the sum rate secrecy
condition is sufficient:

H(WO) Wl) W2 |Zn)
= H(WO) Wi, WZan) _H(Zn)

(D.8)
= H(WO) Wl) WZ) Ug)in)X?)Zn)
—H(U;)X;:X{l | WO) Wla W27Zn) _H(Z”)
= H(U7, X3, X7)
+H(W0) Wl) WZ)Zn | Ug’in’Xln) _H(Zn) (D9)
- H(U3, X3, X} | Wo, Wi, W), Z")
> H(UJ, X2, X7) + H(Z" | U, X3,X7)
(D.10)

7H(Zn) 7H(U2n)X£,)X]n | WO) Wl) WZ)Zn)-

We treat each term in (D.10) separately. The first term in
(D.10) is

H(U3, X3, X7)
= H(U3,X3) + H(XT) (D.11)

= H(Ro +Ri1+ R, + Ry, +ﬁ11 +ﬁ12 +§2),

where the first equality is due to the independence of
(U7,X}) and X7, and the second equality is due the fact

that both messages and confusion codewords are uniformly
distributed. The second and the third terms in (D.10) are

H(Zn) - H(Zn | U;axgl)Xln)
(D.12)
= H(Z{I)Z;l) - H(Zn | US’XZn)Xln)
<H(Z")+H(Z}) -H(Z!,Z} | UZ”,X?,XI”) (D.13)
=H(Z"+H(zZY) -H(ZzzZ) | X)X (D.14)
=H(Z!)+H(Z}) - H(Z! | X{) - H(Z} | X3) (D.15)
= 1(X{527) + (X35 23) (D.16)
< nl(Xy;Z1) + nl(Xo5 Z5) + Yin + Yons (D.17)

where the equalities in (D.14) and (D.15) are due to the
following Markov chains:

Uy — X3 — (X{,21,23),
(D.18)
Z0— XP— X — 70,

respectively, and the last inequality in (D.17) can be shown
using the technique devised in [1]. To bound the last term
in (D.10), assume that the eavesdropper tries to decode
(U3, X3, X7') using the side information Wy, W;, W, and its
observation. Since the rates of the confusion codewords are
selected such that the eavesdropper can decode them given
Wo = wo, Wi = w, W, = w, (see (D.5)), using Fano’s
lemma, we get

H(ULXE, X | Wo, Wi, Wa, Z") < €, (D.19)
for the third term in (D.10). Plugging (D.11), (D.17), and
(D.19) into (D.10), we get

H(Wo, W, W, | Z") 2 n(Ry+R1 +R2) — €, — V1,0 — Von
(D.20)

which completes the proof. O

Achievability of the region defined by (D.2) follows due
to symmetry. We now show the achievability of the region
defined by (D.3).

Proposition 14. The region described by (D.3) is achievable.
Proof. Fix the probability distribution as follows:

pu)p(xi | u)p(u)p(xz | u2)p(y1, 2,21 x).  (D.21)

Codebook Generation.

(i) Generate 2"RotRo) length-n sequences u; through
p(uy) = T, p(u1,) and index them as u;(wo, Wo;)
where wy € {1,...,2"%}, Wy, € {1,...,2"0},

(ii) For each u;, generate on(Ri+Ry) length-n sequences x;
through p(x;) = [17,p(x1,; | u1,;) and index them
as x1 (wo, t%l, w1, W) where w; € {1,...,2"} W, €
{1,...,2"R},
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(iii) Generate 2"Ro*Ri) Jength-n sequences u, through
p(wy) = [T, p(uz,) and index them as u,(wo, W)
Where wo € {1’ .. )ZnRO}a 1,'1\//02 € {1) .o ;ZnROZ}.

(iv) For each u,, generate 2n(Ro+R2) length-n sequences x,

through p(xz) = [17p(x2; | u2,;) and index them
as X2 (Wo, Wo2, W2, Wr) where wy € {1,...,2"R} W, €
{1,...,27%1,

(v) Moreover, set the rates of confusion messages as
follows:

ﬁm =I(U;Z1),

Roy = I(Uy Z,),
N (D.22)
Ry =1(Xy;Z1 | Uy),

Ry =1(Xy;2, | Uy).

Encoding. Assume that the messages to be transmitted
are (wo,wr,w2). Then, after randomly picking the tuple
(Wo1, Woa, W1, W2 ), corresponding codewords are sent.

Decoding. Users decode wy using their both observations. If
wy is the only message that satisfies

E} = {3wor : (u(wo, Wor),yin) € Al}
W ~ ~ (D.23)
Ey = {3woy : (wa(wo, Wo2), yi2) € AL}

simultaneously for user i, w is declared to be transmitted.
Assume wy = 1 is transmitted. The error probability for user
i can be bounded as
2nRU ) )
Pr(E) < Pr((E},EL)°) + > Pr(EL, E),
j=2

(D.24)

using the union bound. Let us consider the following:
Pr(E)}) = Pr(Ior : (w (j, Wor),yi) € A?)

< Z Pr((u; (j, woi1),yn) € A?)
Vi (D.25)

< pnRor g =nI(UrYi)—€n)
— pn(Ro~I(UisYi)tes)
Similarly, we have
Pr(Efz) < on(Rop—1(Us;Yi)+en). (D.26)

Thus, the probability of declaring that the jth message was
transmitted can be bounded as

Pr (Eljl > EIJZ)
= Pr(E}) x Pr(E}) (D.27)

< R =I(UYi)+en) s Hn(Rop=I1(UnsYia) +en)

— Zﬂ(ﬁnl*I(Ul;Yil)+§02*1(U2;Yi2)+2€n),

where the first equality is due to the independence of sub-
channels and codebooks used for each channel. Therefore,
error probability can be bounded as

Pr(E;)
1Ry
<€, + Zznu?m ~I(UnYa)+Rop~1(Un;Yi)+2€,) (D.28)
j=2
=€, + ZH(RO+§01_I(UlQYfl)+§02_I(U2;YiZ)+2€n)
which vanishes if the following are satisfied:
Ro+Ro + Ry < I(Uy; Yi) + I(Uy; Yin), i=1,2. (D.29)

After decoding the common message, both users decode their
private messages if the rates satisfy
R+ Ry < IXi5 Y | Uh), (D:30)

R, + ﬁz =< I(Xz; Y | Uz) (D31)

After plugging the values of §01,§02,§1,§2 given by (D.22)
into (D.29)—(D.31), one can recover the region described by
(D.3) using the degradedness of the channel.

Equivocation Calculation. Tt is sufficient to check the sum
rate constraint:

H(Wy, Wy, Wy | Z") = H(Wy, Wy, W, Z") — H(Z")

(D.32)
= H(U{l’ UZH’Xf’Xg) WO) Wla WZ)Zn)
(D.33)
— H(U!, U, XL XY | Wo, Wy, Wy, Z") — H(Z™)
= H(UY, U3, X1, X3)
+H(Wo, Wy, W, Z" | UT, U3, X1, X3) (D.34)

_H(Zn) _H(U?a U51>X1an£l | WO) Wl) WZ:Zn)
> H(UL UL XL XE)+H(Z" | U, UsL XL XY) — H(ZY)

- H(U, UL, X, X5 | Wo, Wi, Wi, Z7),
(D.35)

where each term will be treated separately. The first term is

H(U}, U3, XT,X3)
=H(UT,U7) + H(X}! | UL, UY) + H(XZ | UT, Uy)
(D.36)
= l’l(R0+R1+R2+§01+§02+§1+§2), (D37)

where we first use the fact that X{' and X3’ are independent
given (U7, U7), and secondly, we use the fact that messages
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are uniformly distributed. The second and third terms of
(D.35) are

H(z")-H(z" | U}, U3, X1, X3)
(D.38)
=H(Z1,Z3) - H(Z} | X{') - H(Z} | X3)

<H(Z}) +H(Zy) ~H(Z} | X)) — H(Z3 | X}) (D.39)

=1(X]5Z7) + (X35 7)) (D.40)

< nI(Xl;Zl) +1’ZI(X2;Zz) +)/l,n +)J2’n, (D41)
where the first equality is due to the independence of the sub-
channels. We now consider the last term of (D.35) for which
assume that eavesdropper tries to decode (U, Uy, X{, X})
using the side information (Wy, Wy, W) and its observation.
Since the rates of the confusion messages are selected to
ensure that the eavesdropper can decode (U, Uy, X|, X})
given (Wy = wo, Wi = wi, W, = w;) (see (D.22)), using
Fano’s lemma we have

H(UL UL X!XE | Wo, Wi, Wo, Z") <€, (D.42)

Plugging (D.37), (D.41), and (D.42) into (D.35), we have

H(Wy, Wi, Wy | Z") 2 n(Ry + Ri + R2) — €4 — Y1,n — Vo>
(D.43)

which concludes the proof. O

D.1.2. Converse. First let us define the following auxiliary
random variables:

— i—1r7n
Ui = WoWo YL, Y1 Z1 s

‘ (D.44)
Ui = WoWi Y31 Y55 2301,
which satisfy the following Markov chains:
Ui — X1 — (Y You, Z14),
(D.45)

Usi — X0 — (Yioi Y2, Z0i).

We remark that although U, ; and U, are correlated, at the
end of the proof, it will turn out that selection of them as
independent will yield the same region. We start with the
common message rate:

H(Wy | Z") = H(W,) — I(Wp; Z") (D.46)
<I(Wo; Y?) = I(W; Z") + €, (D.47)
=I(Wo; Y | Z") + €, (D.48)

I(Wos Y1, | Z") +T(Wos YT | Y1, Z") + €,
(D.49)

< I(W(), Wl; Ylnz | Zn)
(D.50)
+I(Wo, Wy YR | Y1), Z") + €y

where (D.47) is due to Fano’s lemma, the equality in (D.48)
is due to the fact that the eavesdropper’s channel is degraded

with respect to the first user’s channel. We bound each term
in (D.50) separately. First term is

I(W(), Wl; Ylnz | Z”)
(D.51)

M=

1(Wo, Wis Yias | Yi51, 27,23
1

Il
M=

H(Yi | Y5420, 23)
1 (D.52)

- H(le,i | YL, 20,78, W, Wl)

M=

<

H(Y12, | Z2y)
1 (D.53)

- H<Y12,i | Y{EI,Z?>Z§; WO) Wl: anly Yzlgl)

n
= ZH(le,i | Z2,i)
=1 (D.54)
- H(YIZ,i | WO: Wl) anlr Yziglyzg)i-'-l:ZZ,i)
n
= >1(Usi Yioi | Z,), (D.55)

1

where (D.53) follows from the fact that conditioning cannot
increase entropy and the equality in (D.54) is due to the
following Markov chains:

Z— Y5 — (Wo, Wy, Y, Z5, Y1),
o ' (D.56)
Yz — it — (Wo, Wi, Y3, Yo 22, 20,

both of which are due to the fact that subchannels are
independent, memoryless, and degraded. We now consider
the second term in (D.50),

I(WO> W Y1 | Y1n2>Zn)
(D.57)

M=

1(Wo, Was Yuui | Y1, 27, 28, YiT)
1

Il
M=

Il
—

1(Wo, Was Yirs | Y, YiT L 20500, Z14) - (D.58)

IA
M=

1(Wo, Wa, Y1, Vi, 2005 Vi | Z14) - (D59)
1

I
M=

I(Ui; Y | Z1)s (D.60)

1

where (D.58) follows from the following Markov chains:

78— Y, — (Wo, Wa, YiT L, 20, Vi),
A . (D.61)
Zit— vyt — (Wo, Wa, Y15, Z7 1415 Z1,is Y11,i),



20 EURASIP Journal on Wireless Communications and Networking

both of which are due to the fact that subchannels are
independent, memoryless, and degraded. Plugging (D.55)
and (D.60) into (D.50), we get the following outer bound on
the common rate.

H(W, | Z")

n

(Ui Yioi | Zog) + D 1(Uris Vv | Z1i) + €n.

1 i=1

IR

=<

1

(D.62)

Using the same analysis on the second user, we can obtain the
following outer bound on the common rate as well.

H(Wy | Z")

n

I(Usis Yoo | Zoy) + D 1(Upis Yori | Z1) + €n.
1 izl

<

VR

1

(D.63)

We now bound the sum of independent and common
message rates for each user,

H(Wo, Wy | Z") < I(Wo, Wi Y]') — I(Wo, Wi3Z2") + €,

(D.64)
= I(Wo, I/Vl;Y{1 | Zn) + €, (D65)
=I(Wo, Wis Y11, Y, | Z") + €, (D.66)

I(Wo, Wi Y7, | Z7)

+I1(Wo, W3 Y, | Y1, Z") + €,
(D.67)

where (D.64) is due to Fano’s lemma, (D.65) is due to the fact
that the eavesdropper’s channel is degraded with respect to
the first user’s channel. Using (D.55), the first term in (D.67)
can be bounded as

n
I(Wo, Wis Yy 12") < D T(Upss Yizi | Za).

i=1

(D.68)

Thus, we only need to bound the second term of (D.67):

I(Wo, Wi Y1) | Y15, Z7)

- H(Ylnl | Y{IZ)Z{I)Zga WO) Wl)
<H(Y{, | Z7)
(D.70)
- H(Y{ | Y5, 21, Z3, Wo, Wi, XT)
=H(Y{y | Z7) - H(Y7) | Z1,XT) (D.71)
=I(X{5Y7 | Z7) (D.72)
< D H(YnilZy) - H<Y11,i | Z}, X1, Yffl) (D.73)

1

1

Il
M=

H(Yi, | Z1;) — H(Y1,i | Z1i X1,0) (D.74)

1

M=

I( Xy Y | Z1g), (D.75)

i=1

where (D.70) is due to the fact that conditioning cannot
increase entropy, (D.71) is due to the following Markov
chain:

(Y1, 21) — Xi' — (Y1, Z3, Wo, Wh), (D.76)
and (D.73) follows from the fact that conditioning cannot
increase entropy. Finally, (D.74) is due to the fact that
each subchannel is memoryless. Hence, plugging (D.68) and

(D.75) into (D.67), we get the following outer bound:

n
H(Wo, Wi | Z") < D 1(Xu Y | Z1)
i1
l (D.77)

n
+ D 1(Usis Yiai | Zaj) + €n.
i=1
Similarly, for the second user, we can get the following outer
bound:

n
H(Wo, W | Z") < D' 1(Xo,55 Yo, | Za,)
i~1
l (D.78)

n
+ D I(Uni Yaui | Z1i) + €

i=1
‘We now bound the sum rates to conclude the converse:

H(Wy, Wy, W, | Z")

(D.79)
= H(WO) Wl) WZ) _I(WO) Wl) WZ)ZH)
< I(Wo, Wl;Yln) +I(W2;Y2n | W(), Wl)
(D.80)
—I(Wo, Wi, Wy Z") + €,
=I(Wo, Wi YI' | Z") + I(Wa3 Y3 | Wo, W1, Z") + €,
(D.81)
= I(Wo, Wl;Ylnz ‘ Zn) +I(W0, Wi Ylnl | Z”,Ylnz)
+I(W2;Y2nl | WO) W1>Zn)
+I(W2;Y2n2 | W(), Wl,Zn,anl) + €,
(D.82)

=I(Wo, Wi, Y315 Y15 [ Z2") = I(Y33; Yy | Wo, Wi, Z")
+I(W0,W1;Y1nl |Zn,Y{12) +I(W2;Y2nl | W, Wl,Zn)

+I(W2§Y2nz | Wo, Wi, Zn)anl) t€n
(D.83)

= 81— S+ S5+ S4+ Ss, (D.84)

where (D.80) follows from Fano’s lemma, (D.81) is due to
the fact that the eavesdropper’s channel is degraded with
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respect to both users’ channels, (D.83) is obtained by adding
and subtracting S, from the first term of (D.82). Now, we
proceed as follows:

Se— So=T(Wy Y3 | Wy, Wy, Z")

(D.85)
— I(anly ertz | WO) Wl)Zn)
< I(Wa, YIhs Y2 | Wo, Wi, Z")
(D.86)
_I(anl;Ylnz | Wo, Wl)Zn)
= I(Wz; anl | WO) Wl)Zn’ Yln2) (D87)
Adding 3 to (D.87), we get
S3+ Sy— S < I(Wo, Wis Y7, | Z%, Y1)
(D.88)
+ (W Y3 | Wo, Wi, Z", Y1)
< I(Wo, Wi; Y7y | 27, Y1)
(D.89)
+I(W2;Y1nl> anl | Wo, Wy, 27, Ylnz)
= I(Wo, Wis Y1y | 27, Y1)
+ (W YT | Wo, W1, Z8, YD) (D.90)

+I(W2;Y2n] | Wo, Wl:Zn>Y1an Ylnl)
=I(Wo, Wi, W Y1, | Z7, Y1)

+I(Wy Y3, | Wo, Wi, Z", Y15, Y1),
(D.91)

where the second term is zero as we show in what follows:
I(Wy Y3 | Wo, Wi, ZM, YTL, YY)
=H(W, | Wo, Wi, Z1, Z5, Y15, Y1)

—H(W2 | Wo, W1, Z1, Z3, Y15, Y11, Y3,) (D.92)
= H(W, | Wo, Wi, Y], Y1)
—H(W, | Wy, W,, Y[, Y]}) =0,
where we used the following Markov chain:
(Wo, Wi, Wo) — (Y1}, Y73) — (Y31,2,23),  (D.93)

which is a consequence of the degradation orders that
subchannels exhibit. Thus, (D.91) can be expressed as

S3+ S4— § < I(Wo, Wi, Way; Yll | Z", le) (D94)
=I(Wo, Wi, Wy YT | ZI, YD) (D.95)
(D.96)

(
I( I’WO’ Wl) WZ; Ylnl |Z;l) Y{‘Z)
I(Xl’Yll |Z1’Y12)

+ I(W0> Wl) WZ; Ylnl | Z?’ Yln2’Xln)’
(D.97)

where (D.95) follows from the following Markov chain:
(Wo, Wi, Wa, Y11, Z1),

Zn— Y — (D.98)

which is due to the degradedness of the channel. Moreover,
the second term in (D.97) is zero as we show in what follows:

I(Wo, Wi, Wy Y | Z, Y], XT)

= H(Wo, Wi, Wy | ZE, Y{’Z,Xf) (D.99)
— H(Wo, Wi, Wy | Z1, Y1, XT, YY)
= H(Wo, Wi, W | Y15, XT)
(D.100)

— H(Wo, Wi, W2 | Y15, X]') =0,

where (D.100) follows from the following Markov chain:

(YT, Z1) — X[ — (Wo, Wi, Wa, Y1), (D.101)
Thus, (D.97) turns out to be
S35+ S4— S, SI(X?,Ylnl | Z?,Yﬁ) (D.102)
which can be further bounded as follows:
S3+ 84— S, SH(Y{’I |Z1n,Y1nz)
(D.103)
H(YT) | 27, Y, XT)
<H(Y{\ | Z7)
(D.104)
- H(Y{ | Z1, Y], XT)
=H(Y\ | Z27) - H(Y]y | Z1,X])  (D.105)
ZI(XU) Yllz | le) (D106)

i=1

where (D.104) is due to the fact that conditioning cannot
increase entropy, (D.105) is due to the following Markov

chain:
(Y, 27) — X — Y. (D.107)

Finally, (D.106) is due to our previous result in (D.75). We
keep bounding terms in (D.84):

Ss = I(Wa3 Y2, | Wo, Wy, Y3, 21, Z2) (D.108)
= I(Wz; anz | W(), Wl, anl,Z;) (D109)
= DI(Was Yoo | Wo, W, Y51,24, Y, ) (D.110)

1

I
M=

(W3 Yoo, | Wo, Wi, Y2, 28110, Vi, Zag) (DA111)
1

I
M=

I(Was5 Yoo | Uayy Z2) (D.112)
i=1
n
< > H(Yn,; | Usir Zay)
i=1 (D.113)
—H(Ya, | Usi, Z2is W2, X5,7)
n
ZI(Xzz, Yo | UsiyZa4), (D.114)

i=1
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where (D.109) and (D.111) are due to the following Markov
chains:

Zy — Y3, — (Wo, Wi, W), Y35, Z3),
| | (D.115)
A (Wo, Wi, Wa, Y31, 25 Y22,i)>

respectively, (D.113) follows from that conditioning cannot
increase entropy and (D.114) is due to the following Markov
chain:

(Yar,i, Z2i) — Xp0 — (Wi, Uny), (D.116)

which is a consequence of the fact that each subchannel is
memoryless. Thus, we only need to bound S, in (D.84) to
reach the outer bound for the sum secrecy rate:

Sy = I(Wo, Wy, Y35 YT | Z7) (D.117)

n .

= > 1(Wo, Wi, Y35 Yoy | 23, 23, Yi5 ) (D.118)
i=1
n

< ZH(le,i | Z5,)
i=1 (D.119)
— H(Yu | 27,25, Yi5", Wo, Wi, Y5, Y5
n

= ZH(le,i | Zz,i)
i=1 (D.120)
— H(Yuos | 25, Yy Wo, Wi, Y5, Y5 )
n

= ZH(le,i | Zz,i)
i=1 (D.121)
—H (Yo | Wo, Wi, Y31, Yh ' 28,01, Z0)
n

= > 1(Usi; Yo | Z5,), (D.122)

1

where (D.119) is due to the fact that conditioning cannot
increase entropy, (D.120) and (D.121) follow from the
following Markov chains:

Zr— Yh — (Wo, Wi, Y5, Y15, ZE),
(Y25 ") — i — (Wo, Wi, Wa, Y30, 22 Yoy )
(D.123)

respectively. Thus, plugging (D.106), (D.114), and (D.122)
into (D.84), we get the following outer bound on the sum
secrecy rate:

H(WO) Wl) W2 | Zn)

=

< D IXs Y | Zi) + 1(Xo Yoo | Uniy Za)i)
i—1

+1(Usis Y12, | Za3) + €.
(D.124)

Following similar steps, we can also get the following one:

H(Wy, Wy, Wy | Z")

VB

=<

I(Xa,i5 Y2 | Zo3) + 1(X1i5 Yini | Uri, Z1)
1

1

+ (Ui Yori | Z1i) +€n.
(D.125)

So far, we derived outer bounds, (D.62), (D.63), (D.77),
(D.78), (D.124), (D.125), on the capacity region which match
the achievable region provided. The only difference can be
on the joint distribution that they need to satisfy. However,
the outer bounds depend on either p(u;,x1) or p(uz,x;) but
not on the joint distribution p(u;, uz, x1,x2). Hence, for the
outer bound, it is sufficient to consider the joint distributions
having the form p(uy, uz,x1,x2) = p(u1,x1)p(uz, x2). Thus,
the outer bounds derived and the achievable region coincide
yielding the capacity region.

D.2. Proof of Theorem 9.

D.2.1. Achievability. To show the achievability of the region
given in Theorem 9, we use Theorem 7. First, we group
subchannels into two sets 8;,j = 1,2, where 4;,j =
1,2, contains the subchannels in which user j has the best
observation. In other words, we have the Markov chain:

X — Yy — Yy — 2, (D.126)
for I € 4;, and we have this Markov chain:
X — Yy — Yy — Z (D.127)

forl € 4,.

We replace U; with {Ui}jes;, X; with {Xi}ies;, Y1 with
{Yiities,, Yjo with {Yji}ies,, and Z; with {Zj}jeg,,j = 1,2,
in Theorem 7. Moreover, if we select the pairs {(Ul,Xl)}f\i1
to be mutually independent, we get the following joint
distribution:

M
p<{ul,xz,yu,y21,zl}?ﬁ1> =[Ipu,x)p(yiyz | x1),
-1
(D.128)

which  implies that random  variable  tuples
L, x15 Y115 Y, zl)}f\il are mutually independent. Using
this fact, one can reach the expressions given in Theorem 9.

D.2.2. Converse. For the converse part, we again use the
proof of Theorem 7. First, without loss of generality, we
assume 8; = {1,...,L;},and 8, = {L;+1,...,M}. We define
the following auxiliary random variables:

i—1
Ui = W0W2Y1n[L1+1:M] Yf[l;Ll}Zﬁ;Ll],ma
- (D.129)
Uzi = WoWi Y300 Yo 2L, +1:m),i01
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which satisfy the Markov chains:

Ui — X1 — (Yui Yun Zii), 1=1,...,L,

Usi — X1i — (Yui Yo, Z13), I=Li+1,...,M

(D.130)

Using the analysis carried out for the proof of Theorem 7, we
get

n
nRy < ZI(Ul,i; Yien i | Zien,0)
i-1
’ (D.131)

n

+ ZI(UZ,i; Yi+mi | Zin+1:m,0) + €ns
i1

where each term will be treated separately. The first term can
be bounded as follows:

I(Uvs Y | Zie,i)

L (D.132)
= > T(Uris Y | Yipu-1i Z(i,1,0)
=1
L
= > 1(Uni Yui | Yigraoi Zien,) (D.133)
I=1
L
< > (Ui, Yipa-1i Zisvzais Yii | Zii), (D.134)
=1

where (D.133) follows from the Markov chain:
Zii-1,i — Yipa- — (Ui Y Zie),i)>  (D.135)

which is due to the degradedness of the subchannels. To this
end, we define the following auxiliary random variables:

Vii = Yip-1,iZis1,),i0i - 1= 1,...,Ly, (D.136)
which satisfy the Markov chains:
Vi — Xii — (Yui Yo Z1), 1=1,...,L. (D.137)

Thus, using these new auxiliary random variables in (D.134),
we get

L

(Ui Yigrn | Zoen) < D1 (Vigs Yug | Z1).
I=1

(D.138)

‘We now bound the second term in (D.131) as follows:
I(Usi; Yo | Zigeem i)

M (D.139)
> 1(Usis Y | Zizgsrmyio Yain,s1a-11)
I=L,+1

M

Z T(Usis Y | Zigaaio Y1[L,+14-11,1)
I=L,+1

(D.140)

M
> H(Yul Zy)

I=L+1

—H(Yu | Zumyi Yain+1a-11,i Uzi)

M
> H(Yul Zy)

I=L+1

— H (Y, | Zimyio Yain, 41011 Uai> Ya[r,+1:-11,0)
(D.142)

IA

(D.141)

IA

M
> H(Yu, | Zy)

I=L1+1

— H(Yi | Ziymyi> Unyis Yarr,+11-11,1)

M

> I Zpimri Unis Yorr,sva-11, Y | Zii)s
I=L,+1

(D.143)

(D.144)

where (D.140) follows from the Markov chain:
Ziri-11i — Yine-1,i — (Usi Ziewi Yizi), (D.145)

which is a consequence of the degradedness of the sub-
channels, (D.141) and (D.142) follow from the fact that
conditioning cannot increase entropy, and (D.143) is due to
the Markov chain:

Yi+1-1i — Yormsr-1i — (Uzi Ziewi Yini)s
(D.146)

which is again a consequence of the degradedness of the
subchannels. To this end, we define the following auxiliary
random variables:

I=Li+1,....M,
(D.147)

Vii = Yo, v1a-1,iZ 1, Usyis

which satisfy the Markov chains:

Vl,i - Xl,i - (Yll,i) Y21,i)Zl,i)> I = Ll + 1) )M:

(D.148)

Thus, using these new auxiliary random variables in (D.144),
we get

M
(U Yippormyi | Zigenr) < . I(Vis Yug | Zig).
I=L;+1
(D.149)
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Finally, using (D.138) and (D.149) in (D.131), we obtain

n M
nRy < > > I(Viis Yii | Zi) + €n.

(D.150)
i=1l=1
Due to symmetry, we also have
n M
nRy < > > T(Vigs Yo | Zii) + €. (D.151)
i=11=1

We now bound the sum of common and independent
message rates. Using the converse proof of Theorem 7, we get

n
n(Ro+R1) < > I1(Xpue,s Yijni | Zin,i)
i-1

n

+ D> 1(Uss Yisrmi | Zizgsmni) + €ms
i=1
(D.152)

where, for the second term we already obtained, an outer
bound given in (D.149). We now bound the first term:

I(Xtueyis Yipeni | Zpeei)

L (D.153)
= > T(X11a,1,5 Yui | Zieni Yis-1,)
=1

Ly

< > H(Yu,i | Z)
P (D.154)

—H(Yui | Zjoyi Yipa-11,i X(0,0,i)

L

= > H (Y, | Ziy) = H(Yui | Z1X1) (D.155)
=1
Ly

= > 1(Xy55 Yu,i | Z1s), (D.156)

=1

where (D.154) follows from the fact that conditioning cannot
increase entropy, and (D.155) is due to the following Markov
chain:

(Y Z1i) — X,

— (X=11,i X1 Y1a-11iZ[10- 1), Z{i+1:011,0)»
(D.157)

which follows from the facts that channel is memoryless and
subchannels are independent. Thus, plugging (D.149) and
(D.156) into (D.152), we obtain

n
n(Ro+Ry) = > > I(Xys5 Yiii | Z1)
i=11e$,

(D.158)
+ 23 I(Vigs Yui | Zig) + €n

i=1 1652

Due to symmetry, we also have

n
n(Ro+Ry) < > > 1(Xi5 Yaui | Z1)
i-11c$,

(D.159)
+ > > I(Viis Yai | Zi4) + €

i=lle4,;

We now bound the sum secrecy rate. We first borrow
the following outer bound from the converse proof of
Theorem 7:

n(Rp+R; + Ry)

(D.160)

< D I(Xps Vs | Ziee,)

IR

=

+ ZI(X[LlJrl:M],i; Yorn ety | Usis Zin, +1:m1,1)
i-1

n

+ > T(Uns Yiiysrmyi | Zizgeimi)s
i=1

(D.161)

where, for the first and third terms, we already obtained outer
bounds given in (D.156) and (D.149), respectively. We now
bound the second term as follows:

H( Xz, +1:m1,5 Yo+l | Usis Ziz,+1:m0)

M

= Z I(Xz, 4105 Yori | Unis Ziz,+1:m1,0 Ya(L,+1:-11,i)
I=L;+1
(D.162)

M

Z T( Xz, 410,55 Yari | Unis Ziiaayio Ya[r,+1:-11,)
I=Ly+1

(D.163)

M

Z I(Xipy+1:m,6 Yori | Vi Z1i)
I=L,+1

(D.164)

M

Z H (Y | Vii» Z1i)
I=Li+1

(D.165)
— H(Yai | Vig, Zij, X1, +1:m1,)

M

> H(Yui | Vig, Z1s)
I=L+1

(D.166)
- H(Ya, | Vig, Zii, X1,i)

M

> I Yo | Vig Zii),
I=L+1

(D.167)

where (D.163) follows from the Markov chain:

Zin -1y, — Yo+i-11i — Uis Z{im,is X(1y+1:M1,i> Y2u,is
(D.168)
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which is a consequence of the degradedness of the subchan-
nels, (D.164) is obtained via using the definition of V5 ; given
in (D.147), and (D.166) follows from the Markov chain:

(Z1j» Y1) — X5 — (Vi Xz 410-16 Xpe1an), - (D.169)

which is due to the facts that channel is memoryless
and subchannels are independent. Thus, plugging (D.149),
(D.156), and (D.167) into (D.161), we get

n(Ro+ Ry +Ry) < > > I(Xy Yui | Z1y)
i=lled;

n
+ 31X Yaui | Vi Z1)

i=1le4,

(D.170)

+ D I(Vigs Yui | Zi) + €

i=1 1652

Due to symmetry, we also have

n(Ro+Ri +Ry) < > > I(Xy Yaii | Zii)

i=lle4,

n
+ O T(Xus Yui | Vi, Zuy)

i=1led;

(D.171)

n
+ O I(Vigs Yo | Z1) + €

i=lles,

Finally, we note that all outer bounds depend on the distri-
butions p(vyi, X1i> Y11is Yais 210) = PVii, X1) P(V1nis Yaris 21 |
x1;) but not on any joint distributions of the tuples
(V1i> X1i> V11> Vai,i-21;) implying that selection of the pairs
(v1i> x1,;) to be mutually independent is optimum.

E. Proof of Theorem 10

We prove Theorem 10 in two parts; first, we show achievabil-
ity, and then we prove the converse.

E.1. Achievability. Similar to what we have done to show the
achievability of Theorem 7, we first note that boundary of the
capacity region can be decomposed into three surfaces [26].

(i) First surface:
Ry =al(Uy Y12 | Z2)
Ry <@l(Xy5 Y | Ua, Zy)

Roy+Ry <=al(X;; Y1 | Z1) +al(Up; Yo | Z2), Uy = ¢
(E.1)
(ii) Second surface:
Ry < al(Uy; Y1 | Z1)
Ry < al(Xy; Y1 | Ui, Z1)
Roy+ Ry <al(Upy; Yo | Z1) +al(Xp; Y2 | Z2), Un =(¢~ :
E.2

(iii) Third surface:
Ri <al(Xy; Y1 | Up, Zy)

Ry < al(X; Y2 | Up, Z2)
(E.3)
Ry <al(Uy; Y | Zi) +al(Uss Yoo | Z2)

Ro < al(Uy; Yo | Z)) +al(Up; Yor | Z3).

To show the achievability of each surface, we first introduce
a codebook structure.

Codebook Structure. Fix the probability distribution as

pur,x1) p(uz, x2) p(y1, 2,2 | x). (E.4)

(i) Generate 2"(Ror+Ru+Ri) length-n; sequences u; thro-
ugh p(u;) = ]_H‘:‘]p(ul,,-) and index them as u; (wp1,
Wll,a/]]) where wor € {I,N...,Zan}, wi € {1,...,
2”R“} and 171//11 e {1,... ,an“}.

(ii) For each u;, generate n(Riz+R12) length-n; sequences

x; through p(x;) = T2, p(x1; | uy;) and index
them as xl(wm,wn,ﬁ/n,wlz:%z) where w;, €
{1,...,2M 0} %, e {1,..., 2R},

(iii) Generate 2"(Re:+Ru+Rat) Jength-(n — ny) sequences u;
through p(uy) = T17," p(ua,;) and index them as
U2(W02,W21,17/21) where wg, € {13' .. ,anOZ}, Wy €
{1,...,2"} and wy; € {1,...,2"R},

(iv) For each u,, generate 21(Ro+Ron) length-(n — n;)
sequences x, through p(x;) = [T p(x2i | u2i)
and index them as x;(wo2, w21, Wa1, Waz, Wa2) where
Wy € {1,...,2”R22},W22 S {1,...,2"R22}.

(v) We remark that this codebook uses first channel n;
times and the other one (n — n;) times. We define

_m
a= . (E.5)

anda=1-a.

(vi) Furthermore, we set

Ry = al(Uy; 2y), (E.6)
Ry =al(X;2, | Uy), (E.7)
Ry = al(Uy; 2,), (E.8)
Ry = al(X2:25 | Uy), (E.9)
Ri = Ry1 + Ry, (E.10)
Ry = Ry; + Ry (E.11)

Encoding. When the transmitted messages are (wo1, woo,
W11, Wi2, Wa1, W22 ), We randomly PiCk (W11, Wi2,Wa1, Wpp) and
send corresponding codewords.
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Decoding. Using this codebook structure, we can show that
all three surfaces which determine the boundary of the
capacity region are achievable. For example, if we set U; = ¢
(that implies Ryy = Ry; = ﬁll = 0) and Ry; = 0, then
we achieve the following rates with vanishingly small error
probability:

Ry <alX;;Y0 | Zy),

Ry <al(Up Y1z | Z2), (E.12)

Ry <al(Xo; Yy | Usy Zs).

Exchanging common message rate with user 1’s independent
message rate, one can obtain the first surface. Second surface
follows from symmetry. For the third surface, we first set
Ri1 = Ry; = 0. Moreover, we send common message in its
entirety, that is, we do not use a rate splitting for the common
message, hence we set Ry; = Roz = Rg, wo1 = wo2 = wp. In
this case, each user, say the jth one, decodes the common
message by looking for a unique wy which satisfies

Ejf = {317/01 : (ul(WOaw01)>Yj1> € AZ},
(E.13)
Ej = {317/02 : (uz(Wo,Woz),sz) € AZ}.

Following the analysis carried out in (D.24)-(D.29), the suf-
ficient conditions for the common message to be decodable
by both users can be found as

RoSOCI(Ul;Y]‘I |Z]>+aI(U2;Yj2 |Zz), j=1,2.
(E.14)

After decoding the common message, each user can decode
its independent message if

Ry <alXy; Y | U, Zy),
(E.15)
Ry <al(Xo; Yo, | Un, Zs).

Thus, the third surface can be achieved with vanishingly
small error probability. As of now, we showed that all rates in
the so-called capacity region are achievable with vanishingly
small error probability, however we did not claim anything
about the secrecy conditions which will be considered next.

Equivocation Calculation. To complete the achievability part
of the proof, we need to show that this codebook structure

also satisfies the secrecy conditions. For that purpose, it is
sufficient to consider the sum rate secrecy condition:

H(Wo, Wi, Wy | 20", 257"
(E.16)
= H(Wo, Wi, Wo, ", 25" ) = H (2}, 2™
= H(Wo, Wi, Wo, U, U, X1 X3, 210, 25 )
~H(z"z )

— H<(Jf‘I > ljzn_n1 )XlnlaX;_nl | WO: Wl) WZaZIh ’Z;l_n])
(E.17)

=H<U1nl U oxm ;*nl)
+ H(Wo, Wi, Wa, 2%, 257" | U, U, X, X))
_H<Zi11, ;l*m)

— H(Ulnl: U;linl,leixginl | WO) Wl) Wz,Z?l, ;’7”1)
(E.18)

> H(U{“, urm X, 2’"’“)
+H(Z{“,Z§*”l | UPL U XL X
—H(Z?l, g*nl)

_H(U?I)Uginl)xfllyxgil/“' WO)WI)W2)Z?1) ginl))
(E.19)

where each term will be treated separately. The first term is

H(U{“, U X ,X;"“)

=H(UP, U3 ")+ HX L UP) +H(X T T up )

(E.20)
= n(Ro + Ry + Ry + Ry + §21)
(E.21)
+ H(Rlz + R12> + H(Rzz + Rzz)
= I’l(Ro +R; + Rz) + nll(Xl;Zl)
(E.22)
+(n—m)I(X;22),
where the first equality is due to the Markov chain
Xt — Ut — U — Xy (E.23)

The equality in (E.21) is due to the fact that (U{",U; ™)
can take 2"(Ro+Ru+Ru+Ra+Ro1) valyes uniformly, and given U™
(resp., Uy~ ™), X{" (resp., X3 ™) can take 2n(Riz+R12) (resp.,
2R +R2)) values with equal probability. To reach (E.22), we
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use the definitions in (E.6)—(E.11). We consider the second
and third terms in (E.19):

H(Zi“, gfm) _ H(ZTI,ngm | Ulnl) Ugfm’le’ 2n7n1)
<H(Z")+H(Z™)

—H(ZP 2z L UPL U XX

(E.24)
=H(Z")+H(Z™)
(E.25)
—H(ZP X +H(Z X
= I(X]sZ0) +1(X5m5 2z (E.26)
<mI(X1;Z1) + (n —n)I(Xa52,)
(E.27)

+ YI,n + y2,n:

where (E.24) is due to the fact that conditioning cannot
increase entropy, (E.25) follows from the Markov chain:

7 — X — U — Uy — X" — Z7™ (E.28)

and (E.27) can be shown using the technique devised in [1].
We bound the fourth term of (E.19). To this end, assume
that the eavesdropper tries to decode (U7, X7, Uy ™, X3 ™)
given side information (Wy = wo, W, = wi, W2 = wy).
Since the confusion message rates are selected as given in
(E.6)-(E.9), the eavesdropper can decode them as long as this
side information is available. Consequently, the use of Fano’s
lemma yields

H(UP, Uy X X5" | Wo, Wi, W, 2,257 ) < €
(E.29)

Finally, plugging (E.22),(E.27), and (E.29) into (E.19), we get

H<Wo, Wi, W2 | Zi“»Z;im)
(E.30)
> n(Ry+Ri +Ry) — €4 — Y10 — Vo>

which completes the achievability part of the proof.

E.2. Converse. First, let us define the following auxiliary
random variables:

Ui = WoWa Y55 "Y' 20, i=1,...,n,
(E.31)
n i— n—n .
Uz,,‘ = W0W1Y21IY2121Z2,1-+1I, 1= 1,...,11—1’11,
where we assume that first channel is used 7, times. We again
define

ny
a=—. E.32

; (E.32)
We note that the auxiliary random variables, U, ;, U, , satisfy

the Markov chains:

Ui — X1, — (Y1 Y1, Z1)s
(E.33)
Usi — X0 — (Yau,i, Y21, Z2i).

Similar to the converse of Theorem 7, here again, U, ; and U, ;
can be arbitrarily correlated. However, at the end of converse,
it will be clear that selection of them as independent would
yield the same region. Start with the common message rate:

H(Wy |z, 25") (E.34)
<I(Wo YTLY5 ™) —1(Wos 21, 25" ) + €, (E35)
= I(Wos YL Y™ 1 20,257 + e (E.36)
=I(Wos Y™ 12, 2™

(E.37)

+I(Wos YL 120,207, Y™ ) + €

<I(Wo, Wi Y™ | 2", 257™)

(E.38)

+ I(WOr WZ; Ylnll | Z;“>Z;7nl) Y1,127n1) + €Ens

where (E.35) is due to Fano’s lemma, (E.36) is due to the
fact that the eavesdropper’s channel is degraded with respect
to the first user’s channel. Once we obtain (E.38), using the
analysis carried out in the proof of Theorem 7, we can obtain
the following bounds:

n—mny
I(Wo, Wis YIS ™ | 21,257 ) < D I(Unis Yoo | Za),
i=1

(E.39)

ni

I(Wo, Wy YT | 20,2, Ylnz_m) < > IHUs Y| Zu),
i-1

(E.40)

where (E.39) (resp., (E.40)) can be derived following the lines
from (D.51) (resp., (D.57)) to (D.55) (resp., (D.60)). Thus,
we have

H(Wo |zl 2™

n—m ny
< D IH(Upis Yigi | Zog) + 21 (Unis Yins | Zig) + €y
i=1 i=1
(E.41)
and similarly, we can get
H(Wo |z, 2™
n—np n
< D I(Upis Yoo | Zo) + D T(Uris Yori | Z1) + €y
i-1 i-1
(E.42)



28 EURASIP Journal on Wireless Communications and Networking

We now consider the sum of common and independent
message rates:

H(Wo, Wy | 21", 237™)

< I(Wo, Wis Y[, Y ™) = I(Wo, Wis 21, 28°™) + €,

(E.43)
= I(Wo, Wis YT, Y5 1 200, 28°") + € (E.44)
= 1(Wo, Wi YIS 1 2 25

(E.45)

+I(Wo, Wis YT 1 215,287, Y15 ™) + €

where (E.43) is due to Fano’s lemma, (E.44) follows from the
fact that the eavesdropper’s channel is degraded with respect
to the first user’s channel. The first term of (E.45) is already
bounded in (E.39). The second term can be bounded as

ni
L(Wo, Wis YT | 2, 257", Y™ ) < S T1(Xas Y | Z1g),
i=1

(E.46)

which can be obtained following the lines from (D.69) to
(D.75). Hence, plugging (E.39) and (E.46) into (E.45), we get

H(Wo, Wi | 21", 257™)

n—mnp m
< D H(Unis Yini | Zag) + D 1(Xuis Yini | Z1s) + €ne
i-1 i-1
(E.47)
Similarly, we can obtain
H(Wo, Wy | 2", 257™)
n—mn ny
< D I(Xois Yooi | Zog) + D21 (Unis Yari | Zui) + €
i=1 i-1
(E.48)

Finally, we derive the outer bounds for the sum secrecy rate:

H(Wo, Wi, Wa | 2, 257"
< I(Wo) Wi Y1, Yflz_nl) + I(Wz; Y1, Yo " I Wo, W1)
—1(Wo, Wi, Wi 20", 257"+,
(E.49)
= I(WO: Wi Yo, Yi; ™ | Z?]>Z;_m)

(E.50)
+I(Was Y31, Y5 ™ | Wo, Wi, 2%, 257 ) + €,

- I(Woy Wi Y " Z?I)ZEHH)

+1(Wo, Wis Y3 1 Z0, 287" Y5 ™)
(E.51)
F1(Was Y3 | Wo, W, 20, 257"

+I(Wo Y55 | Wo, Wi, 21,237, Y31 ) + €
= I(Wo, Wi, a1 Y, ™ | Z?I,Z;_nl>

—I(Y55 Y™ 20,287, Wo, W)

+I(Wo, Wi YJY | 210,257, v ™) (E.52)
F1(Was Y3 | Wo, Wi, 20, 257"
+I(Wo Y55 | Wo, Wi, 21,257, Y31 ) + €

=851 -+ 85 +84+S5+ €y, (E.53)

where in (E.49), we used Fano’s lemma and (E.50) follows
from the fact that the eavesdropper’s channel is degraded
with respect to both users’ channels. We can again use the
analysis carried out in the converse proof of Theorem 7 to
bound (E.53). For example, following lines from (D.85) to
(D.106), we can obtain

ny

Si+83 =S8 = > I(X1s Y1 | Zuy).

i=1

(E.54)

Similarly, if we follow the analysis from (D.108) to (D.114),
we can get

n—ny

Ss < > I(Xoi5 Yori | Uiy Zas),
i-1

(E.55)

and if we follow the lines from (D.117) to (D.122), we can get

n—n;

S < Z I(Usis Yio,i | Zay).

i=1

(E.56)

Thus, plugging (E.54), (E.55), and (E.56) into (E.53), we get

H(Wo, Wi, Wy | 1, 257

ni
< DX Y | Zuy)
i-1
- (E.57)
+ > I(Usis Yioi | Zay)
i-1

n—n;

+ D I(Xo3 Yaoi | UninZai) + €n

i=1
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Similarly, it can be shown that

n

H(Wo, Wi, Wa | Z", 257 ) < S 1(Uvy Yari | Za,i)
i=1

n

+ > T(X1 Y | Ui Z1)
i-1

n—n;
+ D 1(Xo5 Yari | Zaj).
i1
(E.58)

So far, we derived outer bounds on the secrecy capacity
region which match the achievable region. Hence, to claim
that this is indeed the capacity region, we need to show
that computing the outer bounds over all distributions of
the form p(uy,x1)p(u2,x;) yields the same region which
we would obtain by computing over all p(uy,uz,x1,x2).
Since all the expressions involved in the outer bounds
depend on either p(u;,x;) or p(us,x;) but not on the
joint distribution p(u,us,x1,x2), this argument follows,
establishing the secrecy capacity region.
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