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Abstract

Background: Multicellular organisms have evolved systems/mechanisms to detect various forms of danger,
including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via
cell-surface receptors activates an ancient and evolutionarily conserved innate immune system.

Result: Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that
have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are
referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made
only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide
range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs),
plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and
nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of
molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger
signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called
Damage-Associated Molecular Patterns (DAMPs).

Conclusions: This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3,
which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context
of plant MAMPs and NAMPs, as well as animal DAMPs.
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Background
All living organisms have evolved ways to protect them-
selves against abiotic and biotic assaults. For example,
microbes utilize DNA restriction/modification systems
to protect against foreign DNA; they also contain sys-
tems to detoxify and/or extrude xenobiotics or excessive
reactive oxygen species (ROS). Multicellular organisms
use other systems, and participation of one or more
levels of immunity is often involved. The best studied
and most appreciated in jawed vertebrates is the ac-
quired/adaptive immune system with its well-known B
and T cells and antigen-specific antibodies. This level of
immunity is super-imposed on the much more funda-
mental, evolutionarily-ancient innate immune system,
which is present not just in mammals but also in other
animals and in plants. Only in the last several decades

has the importance of innate immunity for the survival
of multicellular organisms begun to be appreciated. It
protects humans, other animals, and plants from the
thousands of potentially-harmful microbes encountered
daily. The development of innate immunity in multicellular
organisms required the evolution of cell surface receptors
that could recognize/bind molecules whose chemical struc-
ture/pattern is generally conserved within various classes
of foreign organisms but is absent in “self” molecules.
These conserved foreign (non-self) molecules are termed
Microbe-Associated Molecular Patterns (MAMPs), also re-
ferred to as Pathogen-Associated Molecular Patterns
(PAMPs), and their presence is detected by members of a
large family of pattern recognition receptors (PRRs). PRRs
activate one or more signaling pathways, often with the aid
of co-receptors, to induce downstream defense responses.
Examples of MAMPs include bacterial lipopolysaccharide,
flagellin, EF-Tu, DNA, lipoproteins, peptidoglycans, and* Correspondence: dfk8@cornell.edu
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fungal chitin. Several excellent reviews of MAMPs are
available [1–4].
In addition to biotic assault, organisms must cope with

a variety of abiotic assaults such as mechanical or cellu-
lar damage, as well as environmental stresses like
drought and salinity. Some endogenous molecules acti-
vate the innate immune system when they are released
into the extracellular space (including plant apoplast)
from their normal location due to damage (trauma);
these molecules are referred to as Damage-Associated
Molecular Patterns (DAMPs [3, 5]). DAMPs are pas-
sively released from dying cells due to damage, trauma,
ischemia, or infection-induced necrosis. In addition, they
can be actively secreted by certain immune cells or se-
verely stressed cells (e.g. certain cancer cells [3]). While
MAMPs are derived from microorganisms and activate
the innate immune system, DAMPs are host cell derived
and both initiate and perpetuate innate immune re-
sponses. It is generally accepted that these defenses help
protect the damaged tissue, which is vulnerable to infec-
tion due to the disruption of physical barriers that would
otherwise prevent microbial ingress. In mammals, in-
flammation is another component of the innate immune
response; it not only helps to prevent/suppress infection,
but also aids in healing.
This review will focus on DAMPs, particularly those of

plants. DAMPs will be compared to MAMPs and to a
newly-identified class of innate immunity activators
termed Nematode-Associated Molecular Patterns
(NAMPs [6]) since all three classes induce many of the
same defense responses and share some signal transduc-
tion components.

Animal DAMPs
We begin our discussion with animal DAMPs since they
were first recognized and most extensively studied. The
term DAMPs was coined by Seong and Matzinger in
2004 [7]. Table 1 lists 26 DAMPs, including purines,
pyrimidines, DNA (unmethylated CpG), oxidized low-
density lipoproteins, N-formyl peptides, and a variety of
proteins. Cognate receptors for most have been identi-
fied (Table 1). In addition, some DAMPs form com-
plexes with partner molecules/interactors to enhance or
facilitate signaling. Among these is High Mobility Group
Box 1 (HMGB1), which is one of the first identified and
best characterized DAMP. HMGB1 is a highly abundant,
chromatin-associated protein that is present in all ani-
mal cells [8]. It consists of two basic DNA-binding do-
mains, designated HMG boxes A and B, and a highly
acidic C-terminal tail that participates in specific intra-
molecular interactions [9]. In the nucleus, HMGB1 binds
the minor groove of DNA to facilitate DNA condensation,
nucleosome formation, and transcription factor binding
[10]. When it is released into the extracellular milieu from

necrotic, damaged, or severely stressed cells, it functions
as a DAMP with chemo-attractant and cytokine-inducing
activities [11].
Extracellular HMGB1 mediates a range of biological

responses in association with multiple receptors, such as
the Receptor for Advanced Glycation End products
(RAGE), Toll-like receptor 2 (TLR2), TLR4, TLR9, C-X-
C chemokine receptor type 4 (CXCR4), Siglec-10, and
T-Cell Immunoglobulin Mucin Receptor 3 (TIM3) [11,
12]. Notably, specific heterocomplex formation between
HMGB1 and a variety of interactors, such as adaptor
MD-2 or pro-inflammatory ligands lipopolysaccharides,
and CpG oligodeoxynucleutides, enhances or facilitates
signaling and in some cases is critical for HMGB1’s rec-
ognition by distinct receptors (Table 1). The specific het-
erocomplex formation appears to be at least partially
regulated by the different redox states of HMGB1, which
in part depend on a reversible intra-molecular disulfide
bond formed between cysteine residues 23 and 45
[12, 13]. Recent studies showed that reduced HMGB1
forms a heterocomplex with CXCL12, which promotes
the recruitment of inflammatory cells to damaged tissue
through recognition by the CXCR4 receptor [14]. Disul-
fide bond-containing HMGB1 specifically binds MD-2,
which facilitates recognition by TLR4, leading to induc-
tion of the NF-κB-mediated transcriptional activation of
pro-inflammatory cytokines [13, 15]. HMGB1 also inter-
acts with several other receptors, including RAGE and
TLR2; it is presently unclear whether specific redox
states are required for its recognition by these receptors
[11]. HMGB1’s diverse activities, partner molecules, and
receptors likely account for its multiple roles in many
prevalent, devastating human diseases.
We recently discovered that HMGB1 binds salicylic

acid (SA); this suppresses both reduced HMGB1’s
chemo-attractant activity and disulfide bond-containing
HMGB1’s ability to induce the expression of pro-
inflammatory cytokine genes and COX-2 [16]. The SA-
binding sites on HMGB1 were identified in the HMG-box
domains by NMR studies and confirmed by mutational
analysis. A HMGB1 protein mutated in one of the SA-
binding sites retained chemo-attractant activity, but lost
binding of and inhibition by SA, thereby firmly establish-
ing that SA binding to HMGB1 directly suppresses its
pro-inflammatory activities. Natural and synthetic SA de-
rivatives with much greater potency for inhibition of
HMGB1 also were identified, thereby providing proof-of-
concept that new SA-based molecules with high efficacy
are achievable.

Plant DAMPs
In contrast to animals, many fewer DAMPs have been
identified in plants to date (Table 2). The largest and ar-
guably the best-characterized class are polypeptides/
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Table 1 Human DAMPs
DAMP Receptor Interactor Reference

High Mobility Group Box 1 (HMGB1) CXCR4 a CXCL12 b [14]

TLR4 c CD14 d/MD-2 e [15, 63]

TLR4 LPS f [64, 65]

TLR3/7/9 Nucleic acids [66, 67]

IL-1R1 g IL-1α/β h [68]

TLR2 Nucleosome [69]

CD163 i Haptoglobin [70]

RAGE j [66, 71]

Siglec-10 k CD24 [72]

TIM3 l [73]

Heat Shock Protein (HSP) TLR2/4 CD14 [74–77]

β-defensin TLR4 [74, 78]

Peroxiredoxin-2 (PRDX2) [79]

Calreticulin CD91 [80, 81]

14-3-3η [82–85]

Purines Adenosine P1 [86, 87]

ADP P2Y [86–89]

ATP P2X/P2Y [86, 87, 90–93]

Pyrimidines UDP P2Y [86, 87, 94]

UDP-glucose P2Y [86, 87, 95]

Amyloid β TLR4/6 CD36 [74, 96]

RAGE [97–99]

FPRL1 m [100]

NLRP3 n [101]

S100/calgranulin RAGE [102]

TLR4 [103]

Uric acid TLR2/4 CD14 [104, 105]

NLRP3 [106]

Degradation product of ECM o Biglycan TLR2/4 [107, 108]

Hyaluronan TLR2/4 CD44/MD-2 [30, 109–111]

Versican TLR2/6 CD14/MD-2 [112]

Extra-domain A of fibronectin TLR4 [113]

Surfactant protein A TLR2 [114, 115]

Oxidized LDL p TLR4/6 CD36 [74, 116, 117]

TLR4 [118]

SR q [119]

Oxidized phospholipids PPARα r [120, 121]

TLR2/4 CD14/MD-2 [121–124]

mitochondrial DAMPs DNA (unmethylated CpG) TLR9 [125]

ATP P2X/P2Y [86, 87, 90–93]

TFAM s [126]

N-formyl peptides FPRs t [127]

Succinate [128]

Cardiolipin NLRP3 [129]
a CXCR4: chemokine (C-X-C motif) receptor 4; b CXCL12: chemokine (C-X-C motif) ligand 12; c TLR: toll-like receptor; d CD: cell differentiation antigen; e MD-2:
myeloid differentiation protein-2; f LPS: lipopolysaccharides; g IL-1R1: interleukin 1 receptor, type I; h IL: interleukin; i CD163: cluster of differentiation 163; j RAGE:
receptor for advanced glycation end products; k Siglec-10: sialic acid binding Ig-like lectin -10; l TIM3: T-cell immunoglobulin mucin receptor 3; m FPRL1: formyl
peptide receptor-like 1; n NLRP: NOD-like receptor protein; o ECM: extracellular matrix components; p LDL: low density lipoprotein; q SR: Scavenger Receptor; r PPARα:
peroxisome proliferator-activated receptor alpha; s TFAM: mitochondrial transcription factor A; t FPRs: formyl peptide receptors
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peptides produced from larger precursor proteins. These
include three families discovered by Ryan and his col-
leagues during their studies to identify systemin – a term
“used to describe polypeptide defense signals that are
produced by the plant in response to physical damage
and that induce defense genes, either locally or systemic-
ally” [17]. An 18 amino acid (aa) polypeptide was isolated
from 60 lb of tomato seedling and shown to induce the
synthesis of wound-inducible proteinase inhibitor proteins
[18]. This tomato systemin is generated by wound-
induced processing of a 200 aa prohormone prosystemin,
which is located in the cytoplasm of vascular phloem
parenchyma cells. Systemin induces the neighboring
companion cells and sieve elements of the vascular
bundle to synthesize jasmonic acid (JA), which in turn
systemically activates the expression of proteinase in-
hibitor genes [19–21].
While systemin is present in many other Solanaceous

species, including potato, pepper and nightshade [22], it
is not found in tobacco. This finding prompted Ryan’s
group to search for another type of systemin. Ultimately,
two hydroxyproline-rich 18 aa polypeptides, that are
processed from a 165 aa preproprotein but share no
sequence homology with the tomato systemin, were
identified [17].
A third family of peptide-based DAMPs was discov-

ered in Arabidopsis [23]. These 23 aa plant elicitor pep-
tides (Peps) are derived from a 92 aa precursor. Two
receptors have been identified for AtPepl, PEPR1, and
PEPR2 [24, 25]. AtPeps induce a variety of innate im-
mune responses and enhanced resistance, and a form of
precursor ProPep3 was recently shown to be released
into the extracellular space upon infection of Arabidop-
sis with hemi-biotrophic Pseudomonas syringae [26]. A
maize (Zea mays) ortholog, ZmPep1, was subsequently
identified and shown to enhance resistance to microbial
pathogens, just like AtPepl [27]. For a more in-depth dis-
cussion of endogenous peptide elicitors, see Yamaguchi
and Huffaker [28].
Another class of DAMPs found in plants, as well as

animals, is derived from the extracellular matrix. In

vertebrates fragments of hyaluronan, a simple linear
polysaccharide consisting of repeating D-glucuronic acid
and D-N-acetylglucosamine, induce innate immunity
when released by mechanical damage or hydrolytic en-
zymes [29]. These fragments are perceived by the
leucine-rich repeat-containing TLR2 and TLR4 receptors
[29, 30]. Similarly, plants contain the pectic polysacchar-
ide homogalacturonan, a linear polymer of 1, 4-linked α-D
galacturonic acid, which helps maintain cell wall integrity.
Fragments of this polymer, called oligogalacturonides
(OGs), can be released mechanically or more commonly
by pathogen-encoded hydrolytic enzymes. OGs induce in-
nate immune responses, including MAPK activation, cal-
lose deposition, ROS production, elevated cytosolic Ca2+,
and defense gene activation [31, 32]. The wall-associated
kinase 1 (WAK1) has been identified as a likely receptor
for OGs [33, 34].
Extracellular ATP (eATP) comprises yet another class

of plant DAMPs found in both plants and animals. Des-
pite decades of mounting evidence that eATP acts as a
signaling molecule, this function was largely discounted/
discredited, probably because of ATP’s ubiquitous nature
and central role as the universal energy currency in all
living organisms from bacteria to humans [35, 36]. Only
with the identification of its plasma membrane-localized
receptors, first in animals (see [35]) and then in plants
[37], was its signaling function accepted in both king-
doms. In animals eATP acts as a neurotransmitter and
signaling molecule that participates in muscle contrac-
tion, cell death, and inflammation [35]. Two types of re-
ceptors are involved: a G protein-coupled P2Y receptor
and a ligand-gated ion channel P2X receptor. In plants
eATP’s signaling role was more recently confirmed with
the identification of its receptor, Does not Respond to
Nucleotides 1 (DORN1 [37]). eATP’s designation as a
plant DAMP is based on the combined observations that
i) the dorn1 mutant displays suppressed transcriptional
response not only to ATP but also to wounding, ii) most
of the genes induced by application of eATP are also
wound-inducible [36], and iii) eATP treatment induces
typical innate immune responses, including cytosolic

Table 2 Plant DAMPs

DAMP Receptor Co-receptor Reference

Systemin SR160 a n.d. [18, 22]

Hydroxyproline-rich systemin n.d. n.d. [130–134]

Plant elicitor peptides (Peps) PEPR1/2 b BAK1 c and BKK1 d [17, 18, 23, 25, 27, 28, 135, 136]

Oligogalacturonides (OGs) WAK1 e n.d. [31, 33, 34, 137, 138]

Extracellular ATP (eATP) DORN1 f n.d. [37, 38]

AtHMGB3 g n.d. BAK1 and BKK1 [40]

n.d. not determined
a SR160: 160-kDa systemin cell-surface receptor; b PEPR: PEP receptor; c BAK1: BRI1-Associated receptor Kinase 1; d BKK1: BAK1-LIKE Kinase 1; e WAK1: Wall-Associated
Kinase 1; f DORN1: Does Not Respond to Nucleotides 1; g AtHMGB3: Arabidopsis thaliana High Mobility Group Box 3 protein
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Ca2+ influx, MAPK activation, and induction of dense-
associated genes, including some involved in the biosyn-
thesis of JA and ethylene [36, 38, 39]. However, it is not
yet known whether it contributes to resistance to
pathogens.
We recently identified a fourth class of plant DAMPs,

the Arabidopsis HMGB protein AtHMGB3 [40]. All
eukaryotic cells, including plants, have HMGB1-related
proteins. In Arabidopsis, 15 genes encode HMG-box
domain-containing proteins. They have been subdivided
into four groups: (i) HMGB-type proteins, (ii) A/T-rich
interaction domain (ARID)-HMG proteins, (iii) 3xHMG
proteins that contain three HMG boxes, and (iv) the
structure-specific recognition protein 1 (SSRP1) [41].
Based on their nuclear location and domain structure,
the eight HMGB-type proteins (HMGB1/2/3/4/5/6/12/
14) are thought to function as architectural chromo-
somal proteins, similar to mammalian HMGB1. Notably,
AtHMGB2/3/4 are present in the cytoplasm and as well
as the nucleus [41–43]. The cytoplasmic function of
these proteins is not known. However, the cytoplasmic
subpopulations should have greater access to the extra-
cellular space (apoplast) after cellular damage as com-
pared to the AtHMGBs located exclusively in the
nucleus [41–43], since they are not bound to DNA and
need only cross the plasma membrane to enter the apo-
plast. Given the well-established role of mammalian
HMGB1 as the prototypic DAMP, the presence of a
cytoplasmic subpopulation of AtHMGB3 raised the
possibility that this protein serves a similar function.
Indeed, when recombinant AtHMGB3 was infiltrated
into Arabidopsis leaves, it exhibited DAMP-like activ-
ities similar to those of AtPep1. Treatment with either
protein induced MAPK activation, callose deposition,
defense-related gene expression, and enhanced resist-
ance to necrotrophic Botrytis cinerea [40].
In contrast to mammalian HMGB1, which can be ac-

tively secreted following post-translational modification,
there is no evidence for secretion of AtHMGB3. It prob-
ably enters the extracellular space passively when cells
are damaged mechanically, such as by insects, or during
infection by necrotrophic pathogens. Indeed B. cinerea
infection caused release of AtHMGB3 into the apoplast
within 24 h after inoculation. Such rapid release during
the early phase of cellular necrosis induced by necro-
trophs could enhance resistance by activating immune
responses [40].
Additional analyses revealed that AtHMGB3, like

HMGB1, binds SA, and that this interaction, which is
mediated by conserved Arg and Lys residues in
AtHMGB3’s single HMG box, inhibits its DAMP activity
[40]. This finding appears to conflict with SA’s well-
known role as a positive regulator of immune responses
[44–47]. However, while SA-induced defense responses

are critical for resistance to biotrophic and hemi-
biotrophic pathogens, the main hormone responsible for
activating defenses against necrotrophic pathogens and
insects is JA [44, 45]. The JA and SA defense signaling
pathways are generally mutually antagonistic [48]. SA-
mediated inhibition of AtHMGB3’s DAMP activity may
therefore provide one mechanism through which these
pathways crosstalk. In this scenario, cellular damage
caused by infection with necrotrophic pathogens would
lead to the release of AtHMGB3 into the extracellular
spaces; this would activate JA/ethylene-associated de-
fenses to help neutralize this threat. In contrast, infec-
tion by biotrophic pathogens induces SA biosynthesis
[44, 45]. Increased SA levels could then antagonize the
activation of JA-associated defenses by suppressing
AtHMGB3’s DAMP activity, as well as promote the acti-
vation of SA-associated defenses that are more effective
against this type of pathogen [40].
The discovery that extracellular AtHMGB3 is a plant

DAMP whose immune response-inducing activity is
inhibited by SA binding provides cross-kingdom evi-
dence that HMGB proteins function extracellularly as
DAMPs in both plants and animals. Moreover, it high-
lights the existence of common targets and shared
mechanisms of action for SA in plants and humans.
Interestingly, the majority of plant DAMPs identified to
date have counterparts in animals. Our studies have fur-
ther indicated that plants and animals share common
targets of SA beyond the HMGBs [46]. For example, the
glycolytic enzyme glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) in both plants and humans binds SA
and as a result has altered activity. SA suppresses
GAPDH’s roles in replication of Tomato Bushy Stunt
Virus in plants and may have similar effects on hepatitis
C virus replication in humans [49]. It also suppresses
GAPDH-mediated neuronal cell death in animals [50].
Preliminary analyses of high-throughput screens suggest
the existence of many more SA targets in both plants
and humans. Perhaps the presence of multiple SA tar-
gets in animals evolved in response to either ingestion of
low levels of SA that are naturally present in plant ma-
terial, or endogenous synthesis of SA from benzoates
[46]. Future studies will be required to assess whether
these novel plant and animal SA-interacting proteins
function as DAMPs.

NAMPs
Nematodes, one of the most abundant animals in nature,
parasitize both plants and animals. Several studies indi-
cated that plants could perceive infection by nematodes
[51–53], but the identity of the perceived nematode-
derived signal was unknown. We recently identified a
group of defense signaling molecules from several gen-
era of plant-parasitic nematodes, including both root-
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knot and cyst nematodes [6]. They are an evolutionarily
conserved family of nematode pheromones called
ascarosides. Ascr#18, the most abundant ascaroside in
plant-parasitic nematodes, induces hallmark innate im-
mune responses including activation of i) MAPKs, ii)
defense genes, and iii) the SA and JA defense-signaling
pathways, as well as, enhanced resistance to viral, bacterial,
fungal, and oomycete pathogens and root-knot nematodes
in several dicot and monocot plant species.

MAMPs, DAMPs, and NAMPs
Although the sources of the inducing signals are very
different, with MAMPs derived from microbes, NAMPs
derived from nematodes, and DAMPs being aberrantly-
located endogenous molecules, studies of Arabidopsis
suggest that most members of these three classes of
immune-inducing molecules activate innate immune sig-
naling via pathways that share the same leucine-rich re-
peat receptor-like kinases BRI1-Associated Kinase1
(BAK1) and BAK1-Like Kinase1 (BKK1) ([1, 54–56], for
NAMP unpublished result M. Manohar, F.C. Schroeder,
and D.F. Klessig). In addition, these molecules induce
many of the same innate immune defense responses, in-
cluding an influx of Ca+2 into the cytosol, callose depos-
ition, activation of the defense-associated MAPKs MPK3
and MPK6, production of ROS, and enhanced expres-
sion of many defense-related genes (Table 3). Plant re-
ceptors have been identified for several MAMPs, such as
FLS2 for flagellin/flg22 [57] and EFR for EF-Tu/elf18
[58]. Receptors for most of the plant DAMPs have also
been discovered, including Arabidopsis PEPR1/2 for
Peps [24, 25], Arabidopsis WAK1 for OGs [33, 59], and
Arabidopsis DORN1 for eATP [37]. While tomato
SR160 was initially reported as the receptor for systemin

[60], two recent studies argue that it is not [61, 62]. The
plant receptors for AtHMGB3 and the ascaroside NAMP
ascr#18 remain unknown (Table 2). Nor is it known
whether AtHMGB3’s DAMP signaling is enhanced or fa-
cilitated by interacting molecules as has been shown for
mammalian HMGB1.

Conclusions
Only during the past two decades has the importance of
DAMPs for the survival of multicellular organisms
emerged; this finding has fostered an active area of in-
vestigation. Compared to the more than two dozen
DAMPs discovered in animals to date, relatively few
have been identified in plants. Most of these plant
DAMPs have counterparts in animals, including eATP,
HMGBs, extracellular matrix fragments (e.g. OGs), and
peptides processed from larger precursor proteins (e.g.
systemin and Peps). Future investigations are likely to
reveal many more shared DAMPs. Interestingly, DAMPs
induce similar innate immune responses in plants as do
microbe-derived MAMP and nematode-derived NAMPs.
Furthermore, most DAMPs, MAMPs, and NAMPs ap-
pear to activate innate immune signaling via BAK1 and
BKK1. This observation suggests that efforts to elucidate
the pathway(s) through which innate immunity is acti-
vated will likely identify additional signaling components
that are shared by these three classes of inducers.

Abbreviations
Ascr: Ascaroside; BAK1: BRI1-Associated Kinase1; BKK1: BAK1-Like Kinase1;
DAMP: Damage-associated molecular pattern; DORN1: Does not Respond to
Nucleotides1; eATP: Extracellular adenosine triphosphate; EFR: Elongation
factor Tu receptor; FLS2: Flagellin sensitive2; HMGB: High mobility group box
protein; JA: Jasmonic acid; MAMP: Microbe-associated molecular pattern;
MAPK: Mitogen-activated protein kinase; NAMP: Nematode-associated
molecular pattern; NMR: Nuclear magnetic resonance; OG: Oligogalacturonides;

Table 3 Comparison of the innate immune responses and signaling components in Arabidopsis that are induced or utilized by
MAMPs, NAMPs, and DAMPs

Inducers Innate immune responses Signaling
components

Ca2+ influx Callose deposition MPK3/MPK6 activation ROS production Defense gene expression BAK1/BKK1

MAMPsa √ √ √ √ √ √

NAMPs n.d. n.d. √ √ b √ √ c

DAMPs

Systemin n.d. n.d. n.d. n.d. √ n.d.

Hydroxyproline-rich systemin n.d. n.d. n.d. n.d. √ n.d.

Plant elicitor peptides (Peps) √ √ √ √ √ √

Oligogalacturonides (OGs) √ √ √ √ √ √

Extracellular ATP (eATP) √ n.d. √ √ √ n.d.

AtHMGB3 d n.d. √ √ n.d. √ √

√ = yes; n.d. = not determined
a Note most/many, but not all, MAMPs have been shown to utilize the BAK1/BKK1 signaling pathway and induce these innate immune responses
b Unpublished data – S. Hind, G.B. Martin, P. Manosalva, F.C. Schroeder, D.F. Klessig
c Unpublished data – M. Manohar, F.C. Schroeder, D.F. Klessig
d Arabidopsis thaliana High Mobility Group Box 3 protein
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Pep: Plant elicitor peptide; PEPR: Pep receptor; PRR: Pattern recognition
receptor; ROS: Reactive oxygen species; SA: Salicylic acid; WAK1: Wall-associated
kinase1
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