
Fine-Grained Access Control Within NoSQL Document-Oriented
Datastores

Pietro Colombo1 • Elena Ferrari1

Received: 28 July 2016 / Accepted: 1 August 2016 / Published online: 30 August 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The recent years have seen the birth of several

NoSQL datastores, which are getting more and more

popularity for their ability to handle high volumes of

heterogeneous and unstructured data in a very efficient

way. In several cases, NoSQL databases proved to outclass

in terms of performance, scalability, and ease of use rela-

tional database management systems, meeting the

requirements of a variety of today ICT applications.

However, recent surveys reveal that, despite their

undoubted popularity, NoSQL datastores suffer from some

weaknesses, among which the lack of effective support for

data protection appears among the most serious ones.

Proper data protection mechanisms are therefore required

to fill this void. In this work, we start to address this issue

by focusing on access control and discussing the definition

of a fine-grained access control framework for document-

oriented NoSQL datastores. More precisely, we first focus

on issues and challenges related to the definition of such a

framework, considering theoretical, implementation, and

integration aspects. Then, we discuss the reasons for which

state-of-the-art fine-grained access control solutions pro-

posed for relational database management systems cannot

be used within the NoSQL scenario. We then introduce

possible strategies to address the identified issues, which

are at the basis of the framework development. Finally, we

shortly report the outcome of an experience where the

proposed framework has been used to enhance the data

protection features of a popular NoSQL database.

Keywords Fine-grained access control � Document stores �
NoSQL � MongoDB

1 Introduction

NoSQL datastores are getting popularity in a variety of

scenarios, and their diffusion is growing especially within

the data management back-end of modern web applica-

tions, and the data storage and analysis layer of Internet of

Things platforms. The reasons of NoSQL datastores dif-

fusion range from outstanding performance and scalability,

to the provided support for handling high volumes of data,

as well as to the ease of interaction with external appli-

cations. As a matter of fact, NoSQL datastores outperform

relational database management systems (RDBMSs) with

respect to the efficiency of data analysis, the flexibility, and

the scalability of data management. Current surveys1 show

that MongoDB,2 which is the current most popular NoSQL

datastore, immediately follows, in terms of diffusion,

widely used RDBMSs, such as Oracle Database3 or

MySQL.4 This shows that NoSQL datastores are affirmed

solutions which compete in terms of diffusion with

RDBMSs.

Different from RDBMSs, characterized by a standard

reference data model and query language, a variety of

proprietary query languages have been proposed for

NoSQL datastores, as well as different data models have

been introduced for them. Recent surveys have classified

NoSQL databases into three main categories on the basis of

& Pietro Colombo

pietro.colombo@uninsubria.it

1 DiSTA, University of Insubria, Via Mazzini, 5, Varese, Italy

1 http://db-engines.com/en/ranking.
2 https://www.mongodb.com.
3 https://www.oracle.com.
4 https://www.mysql.com.

123

Data Sci. Eng. (2016) 1(3):127–138

DOI 10.1007/s41019-016-0015-z

http://orcid.org/0000-0003-4617-5247
http://db-engines.com/en/ranking
https://www.mongodb.com
https://www.oracle.com
https://www.mysql.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-016-0015-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-016-0015-z&domain=pdf

the adopted data model, namely key value, wide column,

and document-oriented datastores [7]. Each of these classes

is characterized by features that make the related datastores

suited to specific application scenarios. Key-value datas-

tores (e.g., Redis)5 handle data modeled as pairs of keys

and values. Data can be of primitive type or complex

objects and are uniquely identified by a key. Such systems

allow executing basic queries which retrieve values cor-

responding to given keys. They are very efficient in terms

of used computational resources. Wide column stores (e.g.,

Cassandra)6 are an evolution of key-value datastores, with

more advanced data organization and analysis features.

Data are collected into flexible tables, and they are mod-

eled as heterogeneous records of variable size. Tables are

flexible in that each row can be composed of a different set

of columns, and columns, in turn, can be organized into

column families. Finally, document-oriented datastores

(e.g., MongoDB) model data as heterogeneous, hierarchical

records, denoted as documents, which in turn are composed

of sets of key-value pairs, each specifying a document

field. Documents are grouped into collections, which in

turn compose a database. Document-oriented datastores

provide complex data management and analysis features

and query languages and appear as the most flexible and

complex currently available NoSQL datastores.

Even though the advanced data analysis and manage-

ment features of NoSQL datastores are making them very

popular, these platforms show several shortcomings, and,

as highlighted in [18], one of the most serious is related to

the poor data protection mechanisms they currently offer.

For instance, Okman et al. [18] analyze the basic authen-

tication and authorization features of MongoDB and Cas-

sandra and propose possible strategies to enhance them.

In this work, we focus on access control features of

NoSQL datastores, since access control is the core data

protection module of any DBMS. Most of NoSQL systems

adopt basic access control mechanisms operating at coarse-

grained level. For instance, within document-oriented

datastores, access control is enforced at the level of data-

base or at the level of collection of documents. Even

MongoDB, the most popular NoSQL datastore, integrates a

role-based access control model operating at collection

level only. While collection level protection is a good step

forward with respect to several other systems operating at

database level, it is still not sufficient to provide cus-

tomized data protection levels, which could further raise

the usability and diffusion of these systems.

It is well recognized that data management systems that

handle sensitive data could greatly benefit from the inte-

gration of fine-grained access control (FGAC) features.

FGAC has been recognized as a fundamental requirement

in a variety of application scenarios, which range from data

management and analysis systems (e.g., [8, 9, 22]), to

social networks (e.g., [3, 5, 14]), and service oriented and

mobile applications (e.g., [14]). Few NoSQL datastores

provide a native support for FGAC, such as the key-value

datastore Accumulo,7 which enforces access control at cell

level. However, the great majority of the existing systems

do not enforce FGAC, and in this work, we aim at starting

to fill this void.

Recent surveys on database popularity1 rank document-

oriented NoSQL datastores in the top position. This is

probably due to the flexibility of these systems, the pro-

vided advanced analysis features, and the native support for

the management of JSON8 data, which, at present, is

among the most common data exchange format of modern

applications. For these reasons, in this work, we target

document-oriented datastores. Unfortunately, as we will

discuss throughout the paper, the schemaless data model of

document-oriented datastores do not allow to straightfor-

wardly reuse the FGAC enforcement mechanisms defined

for RDBMSs. Moreover, so far no standard NoSQL query

language has emerged yet (neither in general nor for a

specific datastore category), and each datastore adopts a

different language. This reduces the interoperability among

the existing systems, for instance, up to now, it is not

possible to write a query, even of basic type, which can be

executed within several systems. Similarly, data portability

can be problematic. For instance, even though within

MongoDB and Counchbase9 data are serialized as JSON

objects, the importing of a MongoDB dataset into Couch-

base requires preliminary data manipulation activities. The

heterogeneity of NoSQL systems as well as of their query

languages make the definition of a general FGAC

enforcement solution a complex and ambitious task.

In this paper, we survey issues and challenges related to

the development of FGAC enforcement monitors and their

integration into document-oriented NoSQL datastores. The

analysis of the literature lead us to identify possible

strategies to address issues related to the definition of

policy specification criteria, enforcement strategies, the

implementation of the proposed mechanisms by an

enforcement monitor, and aspects related to integration of

the monitor into existing document-oriented datastores.

The analysis described in this paper is partially based on

early research experiences on NoSQL datastores that we

did with MongoDB [10, 12], as well as on ongoing research

activities finalized to the generalization of the approach in

[10, 12].

5 http://redis.io.
6 http://cassandra.apache.org.

7 https://accumulo.apache.org.
8 http://www.json.org.
9 https://www.couchbase.com.

128 P. Colombo, E. Ferrari

123

http://redis.io
http://cassandra.apache.org
https://accumulo.apache.org
http://www.json.org
https://www.couchbase.com

The remainder of the paper is organized as follows.

Section 2 surveys related work. Section 3 describes the

main issues related to the definition of a FGAC framework

for document-oriented datastores. Section 4 discusses

FGAC enforcement strategies, describing possible ways to

address the previously identified issues. Section 5 shortly

presents an application that shows how the proposed

strategies can be actually applied for the enhancement of

the access control features of MongoDB with FGAC.

Finally, in Sect. 6, we conclude the paper shortly

describing the state of our current research on access

control within NoSQL systems, as well as introducing

future research goals.

2 Related Work

FGAC has been integrated into several relational access

control models, such as, for instance, the purpose-based

model proposed in [6], and the action aware access control

model in [9]. It has been also successfully deployed into

some commercial RDBMSs (e.g., Oracle Virtual Private

Database),10 as well as in modern non-relational systems

(e.g., Accumulo7).

Oracle Virtual Private Database (VPD) [4] is among the

most known fine-grained access control framework for

relational database management systems. Oracle VPD

regulates the access to table rows by means of access

control policies, which specify content- and context-based

predicates that refer to properties of the protected data and

the execution environment. Policy enforcement is achieved

by means of query rewriting, appending the specified pol-

icy predicates to the where clause of the submitted SQL

query. In [20], the enforcement approach used by Oracle

VPD has been classified as a Truman model, where each

data analyst has a partial view of the database. Rizvi et al.

[20] claim that the user view may be inconsistent with

respect to the information included in the database and

propose an enforcement mechanism which only authorizes

the execution of queries whose rewritten version do not

bring to inconsistent views. Other approaches for RDBMSs

enforce access control at a finer granularity level. For

instance, LeFevre et al. [17] propose a SQL-based query

rewriting approach which allows enforcing FGAC by

means of dynamically generated authorized views of

database tables. In [17], access control is enforced at cell

level, generating views where all unauthorized cells are

nullified. Agrawal et al. [1] describe an approach to

transform RDBMSs into privacy-aware DBMSs, which

relies on a language that supports the specification of grant

commands at cell level.

Research efforts have also been recently focused on the

integration of FGAC into NoSQL datastores (e.g.,

[10, 12, 16]) and map-reduce analytics platforms (e.g.,

[22]). For instance, Kulkarni [16] has proposed a fine-

grained access control model for key-value systems deno-

ted K-VAC, which has been first designed to operate with

Cassandra,11 and then extended for the integration into

HBase.12 However, the proposed solution is an ad hoc

implementation and cannot be easily ported or adapted to

other systems.

In [10], we have proposed the integration of a purpose-

based model operating at document level into MongoDB.

The successful experience brought us to refine the granu-

larity and generalize the supported policies. Thus, in [12],

we have proposed an access control model operating at

field level which supports content- and context-based

access control policies similar to those of Oracle VPD.

In [22], we have considered the enforcement of FGAC

policies within map-reduce systems. The pairs key-value

extracted from an accessed resource by a map-reduce job

are dynamically modified on the basis of the specified

FGAC policies, before the mapping phase starts the

processing.

Overall, the research on the integration of FGAC into

NoSQL datastores is still in the early stages. More

specifically, for what document-oriented datastores are

concerned, although the initial experiences that we had

with MongoDB allowed us to identify some approaches to

the definition and integration of FGAC into NoSQL sys-

tems, the proposed solutions need to be generalized to

increase their applicability.

3 FGAC Within NoSQL Document-Oriented
Datastores: Issues and Challenges

As briefly introduced in Sect. 1, the goal of this paper is to

discuss how FGAC can be deployed within document-

oriented NoSQL datastores. Although the goal is similar to

the one already addressed within traditional DBMSs,

intrinsic characteristics of the NoSQL scenario make this a

challenge for data security researchers. Table 1 summarizes

the main reasons for which we believe that the enhance-

ment of document-oriented datastores with FGAC features

is a far more complex and challenging tasks than designing

a FGAC framework for RDBMSs.

In the remainder of this section, we shortly consider

each of these points.

Generality A first aspect that should be taken into con-

sideration is the heterogeneity of the existing NoSQL

10 http://docs.oracle.com/database/121/DBSEG/vpd.htm.

11 http://cassandra.apache.org.
12 https://hbase.apache.org.

Fine-Grained Access Control Within NoSQL Document-Oriented Datastores 129

123

http://docs.oracle.com/database/121/DBSEG/vpd.htm
http://cassandra.apache.org
https://hbase.apache.org

datastores and the need to define a general solution rather

than an ad hoc solution operating with a unique NoSQL

database (e.g., [10]). The complexity of the problem is

partially due to the lack of a standard query language.

Indeed, the enforcement approaches defined for RDBMSs

rely on the presence of the relational model and SQL as

unique data model and query language. In contrast, the

variety of NoSQL datastores that have been defined so far,

most of which operating with a different query language,

make the definition of a general approach a very ambitious

task. In addition, the lack of a reference standard has

caused the definition of multiple implementations of the

document-oriented data model, which differ for data

organization features and terminology. For instance, some

document stores do not integrate the concept of collection

(e.g., CouchDB).13

FGAC granularity Let us now start to consider why the

FGAC solutions developed for RDBMSs cannot be reused

for the NoSQL scenario. To make the discussion more

concrete, let us consider Oracle VPD, one of the most

popular FGAC solutions developed for RDBMSs. Oracle

VPD considers table rows as the finest protection objects.

From a data management perspective, table rows of rela-

tional databases correspond to documents of document-

oriented NoSQL datastores, even though documents model

data resources in a less abstract way than rows, as they do

not abstract from the intrinsic structure of a resource, and

thus they do not require one to flatten the resource content.

Example 1 Let us consider a dataset of emails. An email

has a structure providing meta information related to the

message content. For instance, it includes a header and a

body, where the header is in turn characterized by prop-

erties specifying, among others, the email sender, all the

receivers, and the email subject. Within a document store,

emails can be straightforwardly modeled as a document

whose fields are hierarchically organized to match the

email structure. In contrast, the modeling of the same

dataset with the relational model requires to flatten the

structure of an email by removing fields hierarchy.

At a first sight, due to the parallelism of concepts

between the relational and document-oriented data model,

fine-grained enforcement mechanisms operating at docu-

ment level could be defined starting from the mechanisms

proposed for RDBMSs. However, additional important

aspects need to be considered. To be more concrete, let us

consider again Oracle VPD. Within Oracle VPD, the key

element of an access control policy is a boolean expression

specified over table attributes and contextual properties.

For instance, referring to the application scenario in

Example 1, an access control policy could grant the access

only to those emails that have been sent to a specific email

address. Within the relational model the fields to, cc, and

bcc are attributes of the email table scheme. In contrast, the

schemaless data model of document-oriented NoSQL

datastores brings to the definition of documents that

include these fields only when the modeled email specify a

receiver of that type, as for instance, an email may not have

a bcc receiver or a cc receiver. As a consequence, a con-

tent-based policy could refer to fields which may not be

included in all the documents. This implies the need to

specify content-based access control policies under a dif-

ferent perspective, that is, not only considering fields val-

ues, but also even considering the structural characteristics

of a document, such as the presence of a field.

Table 1 Aspects affecting the complexity of FGAC solutions for data management systems

Aspect Relational DBMSs Document-oriented NoSQL datastores

Generality Eased by a reference data model Multiple declinations of the same data model

Eased by a reference standard query language Multiple proprietary query languages

FGAC

granularity

Access control granularity up to cell level Field level granularity is often a must due to data modeling choices

Cell level policy specification based on a priori

known tables schema

No a priori assumption on documents structure for specification purposes

Cell level enforcement mechanisms based on a

priory known tables schema

No a priori assumption on documents structure for enforcement purposes

Performance Efficiency is important, but no very strict

constraint, due to the size of traditional

datasets

Efficiency is a must due to the high volumes of data. A proper trade-off

between performance and security is needed, taking into consideration that

performance is among the reasons for which NoSQL datastores are getting

popularity

Enforcement

mechanisms

Query rewriting to enforce access control at row

and cell level

Techniques in the literature not applicable at field level, due to the

schemaless nature of documents

Native support for views No systematic support for views

13 http://www.couchdb.apache.org.

130 P. Colombo, E. Ferrari

123

http://www.couchdb.apache.org

For what access control granularity is concerned, it is

worth noting that depending on the application context and

the adopted modeling choices, document level granularity

may be too coarse grained. As above mentioned, the

hierarchical structure supported by the document-oriented

data model allows representing data without abstracting

from their structural characteristics. This brings one to

define documents with a potential complex structure and

many fields, and, as a consequence, access control policies

can be defined to protect the access to a single field of a

complex document with a hierarchical structure.

Example 2 Let us consider the application scenario

introduced in Example 1, and an access control policy that

regulates the access to field from of an email.14 Let us

suppose that a query that aims at accessing such an email is

submitted for execution, and the access control policy that

regulates the access to from is not satisfied. An access

control framework similar to Oracle VPD cannot prevent

the access to a single unauthorized sender field. In contrast,

it would prevent the access to the whole document con-

taining such a field. Such a mechanism is too restrictive as

all other fields of the considered document could be freely

accessed.

Within relational databases, the limits of row level

access control brought researchers to define cell level

access control mechanisms. For instance, Lefevre et al.

[17] proposed to enforce cell level access control policies

by means of query rewriting. The idea of the proposed

mechanism is that a query q submitted for execution is

rewritten as q0, in such a way that q0 integrates a subquery

that derives an authorized view of each table t accessed by

q and performs the analysis tasks of q on such a view. The

subquery either projects or nullifies the value of cells on the

basis of the satisfaction of the policies specified for them

[17]. This technique requires to know in advance the

scheme of the accessed data, as well as the name of the

attributes that should be projected. In contrast, the

schemaless nature of NoSQL datastores prevents the sys-

tematic use of similar techniques, as each document in a

collection can be characterized by a different set of fields.

Example 3 Let us suppose to specify an access control

policy which prevents the access to the fifth bcc receiver of

an email when a given condition is not satisfied. The policy

is applied to a single email, whose structure is potentially

different from all other documents of the collection as it

may be the only email with 5 bcc receivers. According to

the approach in [17], one should know in advance the

existence of an email with 5 bcc receivers within the

dataset, in order to rewrite the query.

On the basis of the above-mentioned considerations, we

believe that the heterogeneity of the documents collected

within a NoSQL database makes the definition of a field

level access control mechanism a challenging problem.

Performance An additional challenging aspect is related

to the strict performance requirements that commonly

characterize NoSQL systems, as the access control

enforcement overhead should not compromise the effi-

ciency of the considered systems. Indeed, NoSQL systems

are often used in the back-end of applications where per-

formance and scalability are first class requirements. We

believe that reasonable trade-offs among security, perfor-

mance, and scalability of the proposed enforcement

mechanisms need to be identified, as secure systems with

poor performance may suffer from low usability, but the

same applies to highly efficient insecure databases.

Enforcement mechanisms The literature presents two

main categories of enforcement approaches for FGAC,

namely view-based and query rewriting mechanisms. The

view-based mechanism consists in deriving authorized

views of a resource, on the basis of the specified access

control policies, and granting the permit to access that

views instead of the original data resources. This approach

suffers from several drawbacks. Indeed, different from

relational databases, views are not supported by all NoSQL

datastores, and thus ad hoc implementations are required

within several NoSQL datastores.

The most straightforward solution probably consists in

defining views as temporary collections, which store copies

of authorized documents. Although this naive approach

allows satisfying security requirements, from the engi-

neering perspective the generation and storage of multiple

views of the same resource appears quite impractical, both

in terms of memory and time required for view generation

and serialization. This naive approach suffers from low

efficiency, large memory usage, difficulties to handle

resource updates, and it is not scalable. On the other hand,

disk view serialization may not be a practical solution due

to the variety of views of the protected resources that must

be generated and to the time required for write operations.

Indeed, write on disk operations typically suffer from high

latency, and the definition of multiple views of the same

collection may not be possible for the collection size. In

addition, even assuming that this naive approach can be

used in some application scenarios, this solution requires to

regenerate all views every time the protected resource is

updated. As such, the cost of handling updates depends on

the number of views that have been generated for a pro-

tected resource, and the number of documents that must be

modified within each view.

Let us consider, for instance, the dataset of emails

introduced in Example 1, and let us suppose that the col-

lected emails are stored within a collection cl. The14 from is a sub-field of the email header.

Fine-Grained Access Control Within NoSQL Document-Oriented Datastores 131

123

authorized view of cl is derived by considering all access

control policies specified for cl documents and related

fields. Several different views could be defined for the

same dataset, which differ for the number of documents

characterizing the protected collection, and the number of

fields that characterize any generated image of cl docu-

ments. In addition, every time a document of cl is updated,

it is also necessary to update the corresponding document

of each derived view.

On the basis of the above-mentioned considerations, we

believe that the view-based naive approach can only work

with small datasets, in scenarios with a low number of

stakeholders, which are inherently static.

A second type of enforcement mechanism is based on

query rewriting. To the best of our knowledge, in the lit-

erature on RDBMSs, two different approaches have been

proposed, which operate at row and cell level, respectively.

The first one, implemented by Oracle VPD, operates by

modifying the where clause of a submitted query q through

the conjunction of the selection criteria of q with policy

compliance predicates. This solution does not require any

serialization, as in practice the rewritten query generates an

authorized view at query execution time restricting the

selection criteria of the original query. Oracle VPD oper-

ates at row level, and thus in the NoSQL counter part, it

can only work at document level.

The second mechanism, introduced by Lefevre et al.

[17], operates at cell level, either projecting or nullifying

the value of each cell. The rewritten query is defined in

such a way to include a subquery for each accessed table t,

which substitutes the content of t with an authorized view

of this resource, generated starting from the cell level

access control policies. However, the schema of the

accessed tables must be known in order to perform the

rewriting, and thus, it cannot be directly applied to docu-

ment-oriented datastores, as each document structure is

potentially different from the ones of all other documents

belonging to the same collection.

On the basis of the previous considerations, neither the

view based, nor the query rewriting approaches proposed

for RDBMSs can be directly applied with NoSQL docu-

ment-oriented datastores.

4 Enforcement Strategies

The enhancement of NoSQL datastores with FGAC

requires to identify proper engineering solutions for the

encoding of fine-grained access control policies, the defi-

nition of enforcement monitors and the monitors integra-

tion into a target NoSQL system. In the remainder of this

section, we discuss possible strategies to address the above-

mentioned open issues.

4.1 Policy Encoding

The first considered issue is related to the approach to be

used for the specification of FGAC policies. In the litera-

ture on relational DBMSs, several approaches have been

proposed. For instance, in [6], purpose-based policies

operating at different granularity levels are specified in

dedicated tables. We believe that within NoSQL datastores,

a similar specification approach can be used for access

control policies operating at the collection level. The

policies can be either coarse grained, thus implicitly reg-

ulating the access to the whole referred collection, or fine

grained, thus regulating the access to documents of the

referred collection which satisfy given selection criteria.

However, we believe that FGAC policies should not be

specified within dedicated collections, as, currently, join

operations are not systematically supported by NoSQL

datastores. In contrast, they can be stored within dedicated

fields of the protected documents. In our previous work, we

have used this approach for document level [10] and field

level policies [12].

4.2 Enforcement

Abstracting from language and platform dependent

aspects, we believe that a promising strategy to enforce

FGAC within document-oriented NoSQL datastore con-

sists in combining query rewriting with in memory view

generation. Aware of the efficiency and consistency issues

that affect naive implementations of the view-based

approach (cfr. Sect. 3) and aligned with [17] principles,

we believe that an effective enforcement approach should

combine view generation and query rewriting, taking

maximum benefit from the two mechanisms. According to

the proposed approach, the views: (1) should not be

serialized on disk, but derived in memory at run time and

(2) should be directly generated by the rewritten queries,

on the basis of the execution environment of the access

request. More precisely, let q be a query that is submitted

for execution. At an high level of abstraction, the overall

goal of the approach consists in rewriting q as a query q0

which derives an authorized view cl0 of each collection cl

accessed by q and performs the same analysis tasks as q

accessing the derived views instead of the original col-

lections. Given a query q, the idea is to first derive the

selection criteria sc of q and the set of collections to be

accessed by q. For each collection cl accessed by q, the

criteria specified by sc as well as the access control

policies specified for cl are used to select candidate

documents of cl to be stored into cl0. Denoted with cl00,
the set of candidate documents, for each document d in

cl00, the approach prunes out from d any field f of d such

132 P. Colombo, E. Ferrari

123

that f is referred to by at least a policy p specified for d

fields, but no policy referring to f is satisfied.

At an high level of abstraction, the rationale of view

generation is aligned with the basic principles proposed in

[17], but the schemaless nature of the document-based

model requires a different rewriting mechanism as well as

a different view derivation approach. As pointed out in

Sect. 3, Lefevre et al. approach [17] requires to know in

advance the scheme of the accessed tables. This cannot

occur within the NoSQL scenario, where the structure of

each accessed document is potentially unique and thus

may differ from the ones of all other accessed documents.

For instance, within the email dataset previously consid-

ered, the emails can have a varying number of to/cc/bcc

receivers, whereas some of them may have no to/cc/bcc

receiver. The goal is thus carrying out the projection,

without knowing in advance the fields which characterize

the accessed documents. As such, a possible solution is the

one that operates by analyzing the structure of each doc-

ument at execution time and thus differs from the

methodology in [17], which relies on the a priori knowl-

edge of the accessed tables schema. The idea is to consider

the candidate documents as JSON objects, characterized

by properties representing the document fields. These

properties, which are modeled as key-value pairs, are

iteratively accessed and modified by means of JSON

manipulation functions. Different from [17], where the

attributes to be projected are referred to by name within

the rewritten queries, a possible approach for the NoSQL

scenario consists in referring to the fields to be projected

by position, iteratively considering any property of the

documents.

In order to exemplify the rationale of the proposed

approach and the differences with the one proposed for the

relational model, let us consider again the dataset of emails

referred to in Example 1 and the followings. Let us con-

sider a query q that derives all types of receivers and the

body of the emails that specify a given object. For the sake

of simplicity and the lack of a standard query language for

NoSQL databases, let us consider the SQL representation

of q, which can be straightforwardly defined as select to,

cc, bcc, body from emails where object like ‘‘party’’.

Let us now consider how q can be rewritten on the basis

of Lefevre et al. approach [17] within a RDBMS. For the

sake of simplicity, let us assume that the scheme of an

email is characterized by the fields from, to, cc, bcc, obj

and body, and let us suppose that the access to any email

field is regulated by a policy specified within field p. Let us

suppose the existence of a function compliesWith that

evaluates whether q execution complies with the access

control policies specified for each email field. Listing 1

shows the pseudocode of the rewritten SQL query that

derives the authorized view on email.

According to Listing 1, the outer query accesses the

view generated by the subquery, whereas the subquery

projects email fields, provided that the access control

policies specified for those fields are satisfied. As shown in

Listing 1, any field of emails is explicitly referred to by

name in the subquery.

Let us now consider a possible approach for the NoSQL

scenario. Listing 2 shows the SQL-like pseudocode of the

rewritten query.

Similar to Listing 1, the derivation of the authorized

view is achieved by a subquery, whereas the outer query

simply projects fields of the derived view. In this case, the

subquery generates an authorized image of each email

using JSON manipulation operators. In the pseudo code,

we have used the N1QL operator object,15 which allows

building an object by composition of key-value pairs of

another object, which satisfies a condition. The authorized

email images are thus defined in such a way to include any

field of the original email e for which the specified access

control policies are satisfied. In this case, we do not need to

explicitly refer to the fields to be projected by name, and

thus, it is not required to know in advance the fields

composing the documents.

15 For the sake of simplicity, Listing 2 reports a simplified syntax.

Fine-Grained Access Control Within NoSQL Document-Oriented Datastores 133

123

4.3 Monitor Implementation and Integration

The heterogeneity and variety of existing NoSQL datas-

tores represent one of the main obstacles to the definition of

a general development and integration approach. NoSQL

document-oriented datastores typically provide APIs, often

available for different programming languages, which

support the programmatic interaction with the analysis and

management features. Each set of APIs is a different

interface to the provided services, and the enforcement

monitor should be defined in such a way to regulate the

fruition of these services, regardless they are invoked

trough the APIs or by means of queries expressed with the

supported data analysis languages. Although a possible

integration strategy consists in the programmatic modifi-

cation of the provided services, we believe that this cannot

be a general and portable solution, as it strictly depends on

the technological and architectural characteristics of each

datastore, as well as on the availability of the source code,

while the definition of a general solution requires to

abstract from these aspects.

Due to the client–server nature of NoSQL systems, a

possible way to handle the interaction with the datastore

services is to define the enforcement monitor as a proxy.

More precisely, the monitor should be responsible of the

interaction of the datastore clients with the target server,

exposing services to the clients and executing additional

checks whenever a service is invoked.

Within several NoSQL datastores, the client–server

interaction is achieved by means of dedicated, ad hoc

defined, communication protocols, which regulate the

information exchanged by the counterparts and the related

format. Each message either encodes a client request or a

server response to a client request. Client requests encode

the invocation of analysis or management services provided

by the server, whereas server responses encode the data that

are returned by the server. Whenever a user invokes the

execution of a service, either through an application or by

means of a graphical interface, the request is first encoded

and then sent to the server. Similarly, whenever the server

completes the computation of a command, it encodes the

response as a message sending it to the connected clients. In

order to specify a client for a specific programming lan-

guage, it is thus sufficient to implement an interpreter of the

considered communication protocol, which is capable of

encoding service invocations as messages. This suggests

that, in order to enforce FGAC, one could focus on the

messages exchanged by the clients and the server, rather

than focusing on syntactical aspects of the query languages.

The proxy should thus be defined as an interpreter of the

communication protocol supported by the considered data-

store. This solution has the advantage of ensuring indepen-

dence from APIs and programming languages, which are

typically subject of continuous changes. In contrast, com-

munication protocols are expected to be enhanced, to guar-

antee the interoperability of multiple client–server versions.

5 An Application Scenario: Enhancing MongoDB
with FGAC

In this section, we discuss a possible implementation of the

strategies proposed in Sect. 4 for MongoDB. A thorough

presentation of technical aspects related to design, imple-

mentation, and integration of the proposed enforcement

monitor can be found in [10, 12], which also provides a

thorough discussion related to the efficiency and scalability

of the proposed framework. In this section, we summarize

relevant aspects related to policy specification and the

developed enforcement mechanism.

5.1 Policy Specification

On the basis of the experience illustrated in [10], hereafter

we describe a possible implementation of purpose-based

access control policies, which are one of the most relevant

type of FGAC policies. In this scenario, a policy p is a pair

hr, ei, where r specifies the list of resources for which p has

been specified and e is the list of purposes for which the

access to the protected resources is authorized, which are

selected from a purpose set Ps. Access to a resource

referred to within r is granted, if the access purpose ap

associated with the access request complies with the pur-

poses specified within component e of p. Coarse-grained

policies regulating the access to collections of a database

db have been specified within a dedicated collection cgp. In

contrast, FGAC policies at document and field level have

been directly specified within the protected documents.

Example 4 Let us consider the email dataset introduced

in Example 1, and let us suppose that the considered

dataset collects all the emails in collection cl. Let us now

suppose that three purposed-based access control policies

have been specified, which, respectively, grant: (1) the

access to the collection of emails cl for marketing pur-

poses; (2) the access to email em of cl for analysis pur-

poses; and (3) the access to the list of receivers of em for

research purposes. The first policy is specified as h{cl},
{marketing}i and encoded as a document of collection cgp,

whereas the second and third policies are directly specified

within a dedicated field of em.

5.2 Enforcement Strategies

The enforcement mechanisms for the considered scenario

have been defined on the basis of the strategies introduced

134 P. Colombo, E. Ferrari

123

in Sect. 4. For space limitation, in this paper, we shortly

discuss selected aspects related to the enforcement mech-

anism abstracting from model specific aspects as well as

aspects related to authorization and compliance analysis

within the purpose-based access control model.

The process, illustrated in Fig. 1, starts considering the

query q which is submitted for execution and deriving the

collection cl that is accessed by q. Afterwords, the process

extracts from cgp all the access control policies that have

been specified for cl. Then, the compliance of the access

purpose of q with the purposes specified within the policies

specified for cl is checked. If purpose compliance is satisfied

for at least one policy, the process continues, otherwise it is

immediately blocked due to the missing authorizations.

The process goes on considering FGAC policies speci-

fied for the documents to be accessed by q. Due to limi-

tations of the supported query language, the mechanism is

differentiated on the basis of the type of operation encoded

by q. In particular, we focus here on aggregate and map-

reduce operations, which represent the most advanced

analysis operations of MongoDB. As introduced in Sect. 4,

the enforcement mechanisms should derive an authorized

view cl’ of the collection accessed by q, and rewrite q as q’

in such a way that q’ executes the analysis specified by q on

cl’. Two different rewriting approaches have been used for

the considered operations, as MongoDB adopts a propri-

etary notation for aggregate queries, and Javascript for

map-reduce queries. Abstracting from query language

specific aspects which require a technical background on

MongoDB, the main differences between the proposed

approaches are related to the generation of the authorized

view. In the case of map-reduce queries, the view is gen-

erated using the approach introduced in Sect. 4 and

exemplified in Listing 2. However, different from Listing

2, where SQL-pseudocode is used, map-reduce queries are

defined using Javascript functions. Listing 3 presents an

example of a map-reduce query mrq, which counts the

emails sent to addresses which have received at least one

email.

The authorized view is derived by means of Javascript

instructionswhich precede those performing the analysis and

aggregation. Referring to the example in Listing 3, the query

is rewritten in such away that the first instructions of function

map derive the authorized view of the mapped document.

This is achieved by analyzing all field level policies regu-

lating the access to the document, which according to the

strategy proposed in Sect. 4, are referred to within a dedi-

cated field. Given a document d, for each analyzed policy p

specified for d fields, if the policy predicate of p is not sat-

isfied, the fields referred by p are pruned out from d.

Fig. 1 Enforcement of FGAC within MongoDB

Fine-Grained Access Control Within NoSQL Document-Oriented Datastores 135

123

In contrast, limitations of MongoDB query language do

not allow defining aggregate queries performing the

derivation of the authorized view at the head of the oper-

ations pipeline. In this case, it is not possible to apply the

approach introduced in Sect. 4, and the naive view gener-

ation approach comprising the serialization appears as the

only viable solution. As such, this case is handled with the

generation and sequential execution of two queries, which

generate and serialize the view to a temporary collection

and execute q processing activities on such a temporary

collection.

Example 5 Let us consider an aggregate query agq, which

counts the emails sent to given addresses, whose source

code is shown in Listing 4.

In this case, the rewriting is operated through the

sequential execution of two queries: 1) a map-reduce query

which derives an authorized view of the accessed collec-

tion on the basis of the policy compliance, as introduced

for the example related to Listing 3; and 2) an aggregate

query almost equivalent to agq.

5.3 Implementation

Let us briefly consider selected aspects related to the

development of the enforcement monitor. According to the

guidelines proposed in Sect. 4, the monitor has been

defined as a proxy which analyzes the interaction of

MongoDB clients and server. MongoDB client/server

interaction is achieved by means of the Wire16 communi-

cation protocol, which supports a request–response inter-

action initiated by the clients. The proposed monitor, which

has been designed as an interpreter of the Wire protocol,

analyzes all the requests that are issued by the clients to the

server, rewrites the query execution requests in accordance

with the previously discussed enforcement criteria, and

executes complementary functionalities in support of

access control enforcement, such as deriving access control

policies applied to a resource, evaluating purpose compli-

ance, handling the profiling of the users that issue query

execution requests. The monitor has been developed as a

Java multi-thread application deployed on a node which is

at the interface of the network that hosts the MongoDB

cluster.

We have extensively tested the developed monitor using

both synthetic datasets and a real dataset, that is, the Enron

corpus, a dataset of email messages comprising over 500K

emails (1.5 GB of data) exchanged by around 150

employees of the Enron corporation [15]. The experiments

targeting the synthetic datasets have considered a bench-

mark of 20 find, aggregate and map-reduce queries, which

have been defined in such a way to ensure different com-

plexity and selectivity levels.17 Similarly, the benchmark

targeting the Enron dataset includes 9 queries of type find,

aggregate and map-reduce which have been inspired by the

analysis functions presented in [21].

For our experiments, we have synthetically defined

FGAC policies in such a way that these provide given

selectivity levels. The experiments have assessed the

enforcement overhead for the considered queries varying

the selectivity of the considered policies. The results have

shown that overall the overhead decreases with the increase

in policy selectivity, due to the reduction of data that are

accessed and analyzed by the queries. The experiments

have shown that the overhead is negligible for find and

map-reduce queries, but it is significant for aggregate

queries. This confirms that the naive implementation of the

view-based approach (cfr Sect. 3), which appears as the

only viable solution for aggregate queries, suffers from low

efficiency. The interested readers can refer to [10, 12] for a

detailed presentation of the empirical results.

The experiences described in [10, 12] show significant

differences between the measured overhead for document

and field level access control policies. The overhead intro-

duced with document level access control policies is low.

Due to the effect of policy selectivity18 with several queries

of the considered benchmark, the execution time of the

rewritten version of the queries is even lower than the exe-

cution time of the original queries. In contrast, the experience

with field level access control policies reveals that the

enforcement overhead varies with the type of the considered

query. More precisely, aggregate queries suffer from a sig-

nificant time overhead, whereas the overhead that has been

measured with map-reduce queries is reasonably low.

16 https://docs.mongodb.com/manual/reference/mongodb-wire-proto

col/.

17 By policy selectivity we mean the percentage of fields which are

pruned out from the documents due to policy specification.
18 We mean the effect of policy enforcement which brings to reduce

the number of documents that are actually accessed.

136 P. Colombo, E. Ferrari

123

https://docs.mongodb.com/manual/reference/mongodb-wire-protocol/
https://docs.mongodb.com/manual/reference/mongodb-wire-protocol/

6 Conclusions and Future Work

NoSQL datastores are getting increasing interest by users

for their outstanding levels of flexibility, scalability, and

performance, and their ability to manage huge data vol-

umes. Despite this popularity, NoSQL datastores suffer

from inappropriate data protection features. We believe

that these shortcoming can be significantly addressed with

the integration of FGAC features into the datastores. The

integration of FGAC into a NoSQL datastore is a novel

research topic that has been only recently addressed and

that can open new research areas and applications. In this

paper, we have discussed issues and challanges arising

from the integration of FGAC features into NoSQL data-

stores. We have also described our experience with the

MongoDB NoSQL datastore.

Our research is still progressing. In particular, we are

currently focusing on recent standardization effort for

NoSQL datastores, such as for instance SQL?? [19], a

query language defined with the goal to become the ref-

erence query language for NoSQL datastores. SQL?? has

been designed to keep compliance with SQL syntax, so that

data analysts with a background on relational databases can

easily migrate to a NoSQL datastore with a small initial

effort. SQL?? is currently supported by AsterixDB19 [2]

and a few other datastores. A proprietary partial imple-

mentation of SQL??, denoted N1QL, is currently sup-

ported by the last version of Couchbase.20 We believe that

the involvement of industrial partners like Couchbase

shows a concrete commercial interest in such a unifying

solution. The availability of a general query language is an

interesting basis for the specification of platform indepen-

dent FGAC enforcement mechanisms, as well as for the

development of multi-platform enforcement monitors.

Compliance with Ethical Standards

Competing of interest The authors declares that they have no

competing of interests.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Agrawal R, Bird P, Grandison T, Kiernan J, Logan S, Rjaibi W

(2005) Extending relational database systems to automatically

enforce privacy policies. In: Proceedings of the 21st IEEE

international conference on data engineering (IEEE ICDE)

2. Alsubaiee S, Altowim Y, Altwaijry H, Behm A, Borkar VR, Bu Y

(2014) Asterixdb: a scalable, open source BDMS, PVLDB ’14,

pp 841–852

3. Bahri L, Carminati B, Ferrari E, Lucia W (2016) LAMP Label-

based access control for more privacy in online social networks.

In: Proceedings of the 10th WISTP international conference on

information security theory and practice (WISTP 2016)

4. Browder K, Davidson MA (2002) The virtual private database in

oracle9ir2. Oracle corporation, technical report 2002, oracle

technical white paper

5. Buccafurri F, Lax G, Nicolazzo S, Nocera A (2016) A middle-

ware to allow fine-grained access control of twitter applications.

In: Proceedings of the international conference on mobile, secure

and programmable networking (MSPN’2016)

6. Byun J, Li N (2008) Purpose based access control for privacy

protection in relational database systems. VLDB J 17(4):603–619

7. Cattell R (2011) Scalable SQL and NoSQL data stores. SIGMOD

Rec 39(4):12–27

8. Colombo P, Ferrari E (2014) Enforcement of purpose based

access control within relational database management systems.

IEEE Trans Knowl Data Eng (TKDE) 26(11):2703–2716

9. Colombo P, Ferrari E (2015) Efficient enforcement of action-

aware purpose-based access control within relational database

management systems. IEEE Trans Knowl Data Eng

27(8):2134–2147

10. Colombo P, Ferrari E (2015) Enhancing MongoDB with purpose

based access control. In: IEEE transactions on dependable and

secure computing (in press)

11. Colombo P, Ferrari E (2015) Privacy aware access control for big

data: a research roadmap. Big Data Res 2(4):145–154. ISSN

2214-5796, Elsevier

12. Colombo P, Ferrari E (2016) Towards virtual private NoSQL

datastores. In: 2016 IEEE 32nd international conference on data

engineering (ICDE), Helsinki, Finland, pp 193–204

13. Jahid S, Mittal P, Borisov N (2011) EASiER: encryption-based

access control in social networks with efficient revocation. In:

Proceedings of the 6th ACM symposium on information, com-

puter and communications security (ACM ASIACCS 2011)

14. Jin X, Wang L, Luo T, Du W (2013) Fine-grained access control

for HTML5-based mobile applications in android. In: Proceed-

ings of the 16th information security conference (ISC)

15. Klimt B, Yang Y (2004) The enron corpus: a new dataset for

email classification research. In: Machine learning: ECML 2004.

Springer, pp. 217–226

16. Kulkarni D (2013) A fine-grained access control model for key-

value systems. In: Proceedings of the third ACM conference on

data and application security and privacy, pp 161–164. ACM

17. LeFevre K, Agrawal R, Ercegovac V, Ramakrishnan R, Xu Y,

DeWitt D (2004) Limiting disclosure in hippocratic databases. In:

Mario A, Nascimento M, Tamer Z, Donald K, Rene JM, Jos A,

Blakeley B, Schiefer K (eds) Proceedings of the thirtieth inter-

national conference on very large data bases (VLDB ’04), vol 30.

VLDB Endowment, pp 108–119

18. Okman L, Gal-Oz N, Gonen Y, Gudes E, Abramov J (2011)

Security issues in NoSQL databases. In IEEE TrustCom

19. Ong KW, Papakonstantinou Y, Vernoux R (2014) The SQL??

unifying semi-structured query language, and an expressiveness

benchmark of SQL-on-Hadoop, NoSQL and NewSQL databases.

CoRR, abs/1405.3631

20. Rizvi S, Mendelzon A, Sudarshan S, Roy P (2004) Extending

query rewriting techniques for fine-grained access control. In:

Proceedings of the 2004 ACM SIGMOD international conference

on management of data (SIGMOD ’04). ACM, New York, NY,

USA, pp 551–562

19 https://asterixdb.apache.org.
20 http://www.couchbase.com.

Fine-Grained Access Control Within NoSQL Document-Oriented Datastores 137

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://asterixdb.apache.org
http://www.couchbase.com

21. Russell MA (2013) Mining the social web: data mining Face-

book, Twitter, LinkedIn, Google?, GitHub, and More. OReilly

Media, Inc

22. Ulusoy H, Colombo P, Ferrari E, Kantarcioglu M, Pattuk E

(2015) GuardMR: fine-grained security policy enforcement for

MapRe- duce systems. In: ACM ASIACCS

138 P. Colombo, E. Ferrari

123

	Fine-Grained Access Control Within NoSQL Document-Oriented Datastores
	Abstract
	Introduction
	Related Work
	FGAC Within NoSQL Document-Oriented Datastores: Issues and Challenges
	Enforcement Strategies
	Policy Encoding
	Enforcement
	Monitor Implementation and Integration

	An Application Scenario: Enhancing MongoDB with FGAC
	Policy Specification
	Enforcement Strategies
	Implementation

	Conclusions and Future Work
	Open Access
	References

