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Abstract
For real α and β such that 0≤ α < 1 < β , we denote by S(α,β) the class of
normalized analytic functions f such that α < Re{zf ′(z)/f (z)} < β in U. We find some
properties, including inclusion properties, Fekete-Szegö problem and coefficient
problems of inverse functions.
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1 Introduction
LetH denote the class of analytic functions in the unit discU = {z : |z| < } on the complex
planeC. LetA denote the subclass ofH consisting of functions normalized by f () =  and
f ′() = . Let S denote the subclass of A consisting of univalent functions. Denote by S∗

and K, the class of starlike functions and convex functions, respectively. It is well-known
that K ⊂ S∗ ⊂ S .
We say that f is subordinate to F in U, written as f ≺ F if and only if f (z) = F(w(z)) for

some Schwarz function with w() =  and |w(z)| < , z ∈ U. If F(z) is univalent in U, then
the subordination f ≺ F is equivalent to f () = F() and f (U)⊂ F(U).
Wedenote byS∗(A,B), the class of Janowski starlike functions, namely, the functions sat-

isfying the subordination equation: zf ′(z)/f (z) ≺ (+Az)/(+Bz). Note that S∗(, –) = S∗.
Now, we shall introduce the class of analytic functions used in the sequel.

Definition  Let α and β be real numbers such that  ≤ α <  < β . The function f ∈ A
belongs to the class S(α,β) if f satisfies the following inequality:

α < Re

{
zf ′(z)
f (z)

}
< β (z ∈U).

We remark that for given α, β ( ≤ α <  < β), f ∈ S(α,β) if and only if f satisfies the
following two subordination equations:

zf ′(z)
f (z)

≺  + ( – α)z
 – z

and
zf ′(z)
f (z)

≺  + ( – β)z
 – z

, ()
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since the functions ( + ( – α)z)/( – z) and ( + ( – β)z)/( – z) map U onto the right
half plane, having real part greater than α, and the left half plane, having real part smaller
than β , respectively. The above class S(α,β) is introduced by Kuroki and Owa []. They
investigated coefficient estimates for f ∈ S(α,β) and found the necessary and sufficient
condition for f ∈ S(α,β) using the following subordination.

Lemma  (Kuroki and Owa []) Let f ∈A and  ≤ α <  < β . Then f ∈ S(α,β) if and only
if

zf ′(z)
f (z)

≺  +
β – α

π
i log

(
 – eπ i

–α
β–α z

 – z

)
(z ∈U).

Lemma  means that the function p defined by

p(z) =  +
β – α

π
i log

(
 – eπ i

–α
β–α z

 – z

)
()

maps the unit diskU onto the strip domainwwith α < Re(w) < β .Wenote that the function
f ∈A, given by

f (z) = z exp
{

β – α

π
i
∫ z




t
log

(
 – eπ i

–α
β–α t

 – t

)
dt

}
,

is in the class S(α,β).

2 Inclusion properties
Theorem  For given  ≤ α <  < β , let A and B be real numbers such that

 – α – β

β – α
≤ B < A ≤ β – αβ + α

β – α
. ()

Then S∗(A,B) ⊂ S(α,β).

Proof At first, we note that

– <
 – α – β

β – α
and

β – αβ + α

β – α
< .

For f ∈ S∗(A,B), we know that the following inequality holds:

 –A
 – B

< Re

{
zf ′(z)
f (z)

}
<
 +A
 + B

(z ∈U).

Therefore, it suffices to show that α and β satisfy the following inequalities:

α ≤  –A
 – B

and
 +A
 + B

≤ β . ()

Using inequality (), we can derive that

 + B ≥ ( – α)
β – α

and  +A ≤ β(β – α)
β – α

. ()
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Also,

 – B ≤ (β – )
β – α

and  –A≥ α(β – a)
β – α

. ()

By the above inequalities () and (), we can easily obtain the inequalities (), so the proof
of Theorem  is completed. �

Lemma  (Miller and Mocanu []) Let Ξ be a set in the complex plane C and let b be a
complex number such that Re(b) > . Suppose that a function ψ :C ×U →C satisfies the
condition

ψ(iρ,σ ; z) /∈ Ξ

for all real ρ , σ ≤ –|b – iρ|/(Re(b)) and all z ∈ U. If the function p(z) defined by p(z) =
b + bz + bz + · · · is analytic in U and if

ψ
(
p(z), zp′(z); z

) ∈ Ξ ,

then Re(p(z)) >  in U.

Theorem  Let f ∈A, / ≤ α <  and Re{zf ′(z)/f (z)} > α in U. Then

Re

{
f (z)
z

}
> γ (α) :=


 – α

(z ∈U). ()

Proof Write γ (α) := γ and note that 
 ≤ γ <  for 

 ≤ α < . Let p be defined by

p(z) =


 – γ

(
zf ′(z)
f (z)

– γ

)
.

Then p is analytic in U, p() =  and

zf ′(z)
f (z)

=  +
( – γ )zp′(z)
( – γ )p(z) + γ

= ψ
(
p(z), zp′(z)

)
,

where

ψ(r, s) =  +
( – γ )s

( – γ )r + γ
. ()

Also,

{
ψ

(
p(z), zp′(z)

)
: z ∈U

} ⊂ {
w ∈C : Re(w) > α

}
:=Ωα .

Now for all real ρ , σ ≤ – 
 ( + ρ),

Re
(
ψ(iρ,σ )

)
= Re

(
 +

( – γ )σ
( – γ )iρ + γ

)
=  +

γ ( – γ )σ
γ  + ( – γ )ρ

≤  –


γ ( – γ )

 + ρ

γ  + ( – γ )ρ .
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Now, we let

g(ρ) =
 + ρ

γ  + ( – γ )ρ . ()

Then

g ′(ρ) =
(γ – )ρ

(γ  + ( – γ )ρ)
,

hence g ′(ρ) =  occurs at only ρ =  and g satisfies

g() =

γ 

and

lim
ρ→∞ g(ρ) =


( – γ )

.

Since / ≤ γ < , we have


γ  ≤ g(ρ) <


( – γ )

,

hence we get

Re
(
ψ(iρ,σ )

) ≤  –


γ ( – γ )


γ  =

γ – 
γ

= α.

This shows that Re{ψ(iρ,σ )} /∈ Ωα . By Lemma , we get Re(p(z)) >  in U, and this shows
that inequality () holds and the proof of Theorem  is completed. �

Theorem  Let f ∈A,  < β < / and Re{zf ′(z)/f (z)} < β in U. Then

Re

{
f (z)
z

}
< δ(β) :=


 – β

(z ∈U). ()

Proof Note that δ := δ(β) = 
–β >  for β > . Let p be defined by

p(z) =


 – δ

(
zf ′(z)
f (z)

– δ

)
.

Then p is analytic in U, p() =  and

zf ′(z)
f (z)

= ψ
(
p(z), zp′(z)

)
,

where ψ is given in (). Also

{
ψ

(
p(z), zp′(z)

)
: z ∈U

} ⊂ {
w ∈C : Re(w) < β

}
:=Ωβ .
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Now, for all real ρ , σ ≤ – 
 ( + ρ),

Re
(
ψ(iρ,σ )

) ≥  –


δ( – δ)g(ρ),

where g(ρ) is given (). Since


( – δ)

< g(ρ)≤ 
δ

for all δ > , we have

Re
(
ψ(iρ,σ )

) ≥ δ – 
δ

= β .

This shows that Re{ψ(iρ,σ )} /∈ Ωβ . By Lemma , we get Re(p(z)) >  in U, and this is
equivalent to

Re

{
f (z)
z

}
< δ (z ∈U),

and the proof of Theorem  is completed. �

Combining the above Theorems  and , we can obtain the following result:

Theorem  Let f ∈A, /≤ α <  < β < / and α < Re{zf ′(z)/f (z)} < β in U. Then

γ (α) < Re

{
f (z)
z

}
< δ(β) (z ∈U),

where γ (α) and δ(β) is given () and ().

3 Some coefficient problems
In this section, we investigate coefficient problems for functions in the class S(α,β). In [],
Kuroki and Owa investigated the coefficient of the function p given by (); the function p
can be written as

p(z) =  +
∞∑
n=

Bnzn,

where

Bn =
(β – α)

nπ
sin

(
 – α

β – α
π

)
.

We denote by Sσ (α,β) the class of bi-univalent functions f such that f ∈ S(α,β) and the
inverse function f – ∈ S(α,β). Srivastava et al. investigated the estimates on the initial
coefficient for certain subclasses of analytic and bi-univalent functions in [, ]. Ali et al.
have studied similar problems in [].
In theorem, we shall solve the Fekete-Szegö problem for f ∈ S(α,β). We need the fol-

lowing lemma:

http://www.journalofinequalitiesandapplications.com/content/2013/1/370
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Lemma  (Keogh andMerkers []) Let p(z) = + cz+ cz + · · · be a function with positive
real part in U. Then, for any complex number ν ,

∣∣c – νc
∣∣ ≤ max

{
, | – ν|}.

The following result holds for the coefficient of f ∈ S(α,β).

Theorem  Let  ≤ α <  < β and let the function f given by f (z) = z +
∑∞

n= anzn be in the
class S(α,β). Then, for a complex number μ,

∣∣a –μa
∣∣ ≤ β – α

π

√
 –  cos

(
 – α

β – α
· π

)

·max

{
;

∣∣∣∣  + ( – μ)
β – α

π
i +

(


– ( – μ)

β – α

π
i
)
eπ i

–α
β–α

∣∣∣∣
}
. ()

Proof Let us consider a function q given by q(z) = zf ′(z)/f (z). Then, since f ∈ S(α,β), we
have q(z) ≺ p(z), where

p(z) =  +
β – α

π
i log

(
 – eπ i

–α
β–α z

 – z

)
.

Let

h(z) =
 + p–(q(z))
 – p–(q(z))

=  + hz + hz + · · · (z ∈U).

Then h is analytic and has positive real part in the open unit disk U. We also have

q(z) = p
(
h(z) – 
h(z) + 

)
(z ∈U). ()

We find from equation () that

a =


Bh

and

a =


Bh –



Bh +



Bh +



B
h


 ,

which imply that

a –μa =


B

(
h – νh

)
,

where

ν =



(
 –

B

B
– B + μB

)
.
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Applying Lemma , we can obtain

∣∣a –μa
∣∣ = 


|B|

∣∣h – νh
∣∣

≤ 


·max
{
; | – ν|}. ()

And substituting

B =
β – α

π
i
(
 – eπ i

–α
β–α

)
()

and

B =
β – α

π
i
(
 – eπ i –α

β–α
)

()

in (), we can obtain the result as asserted. �

Using the above Theorem , we can get the following result.

Corollary  Let the function f , given by f (z) = z +
∑∞

n= anzn, be in the class S(α,β). Also
let the function f –, defined by

f –
(
f (z)

)
= z = f

(
f –(z)

)
, ()

be the inverse of f . If

f –(w) = w +
∞∑
n=

bnwn
(

|w| < r; r >



)
, ()

then

|b| ≤ (β – α)
π

sin

(
 – α

β – α
π

)

and

|b| ≤ β – α

π

√
 –  cos

(
 – α

β – α
· π

)

·max

{
;

∣∣∣∣  – 
β – α

π
i +

(


+ 

β – α

π
i
)
eπ i

–α
β–α

∣∣∣∣
}
.

Proof Relations () and () give

b = –a and b = a – a.

Thus, we can get the estimate for |b| by

|b| = |a| ≤ (β – α)
π

sin

(
 – α

β – α
π

)
,
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immediately. An application of Theorem  (with μ = ) gives the estimates for |b|, hence
the proof of Corollary  is completed. �

Next, we shall estimate on some initial coefficient for the bi-univalent functions f ∈
Sσ (α,β).

Theorem  Let f be given by f (z) = z +
∑∞

n= anzn be in the class Sσ (α,β). Then

|a| ≤ |B|√|B|
|B

 + B – B| ()

and

|a| ≤ |B| + |B – B|, ()

where B and B are given by () and ().

Proof If f ∈ Sσ (α,β), then f ∈ S(α,β) and g ∈ S(α,β), where g = f –. Hence

Q(z) :=
zf ′(z)
f (z)

≺ p(z) and L(z) :=
zg ′(z)
g(z)

≺ p(z),

where p(z) is given by (). Let

h(z) =
 + p–(Q(z))
 – p–(Q(z))

=  + hz + hz + · · ·

and

k(z) =
 + p–(L(z))
 – p–(L(z))

=  + kz + kz + · · · .

Then h and k are analytic and have positive real part in U. Also, we have

Q(z) = p
(
h(z) – 
h(z) + 

)
and L(z) = p

(
k(z) – 
k(z) + 

)
.

By suitably comparing coefficients, we get

a =


Bh, ()

a – a =


Bh –



Bh +



Bh , ()

–a =


Bk ()

and

a – a =


Bk –



Bk +



Bk , ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/370
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where B and B are given by () and (), respectively. Now, considering () and (),
we get

h = –k. ()

Also, from (), (), () and (), we find that

a =
B
 (h + k)

(B
 + B – B)

. ()

Therefore, we have

∣∣a∣∣ ≤ |B|
|B

 + B – B|
(|h| + |k|

) ≤ |B|
|B

 + B – B| .

This gives the bound on |a| as asserted in (). Now, further computations from (), (),
() and () lead to

a =


(
B(h + k) + h (B – B)

)
.

This equation, together with the well-known estimates:

|h| ≤ , |h| ≤  and |k| ≤ 

lead us to inequality (). Therefore, the proof of Theorem  is completed. �
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