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We achieve the general solution of the quintic functional equation f(x +3y) = 5f(x +2y) + 10f (x +
y)—10f(x) +5f(x —y) — f(x —2y) = 120f () and the sextic functional equation f(x +3y) —6f(x +
2y) +15f(x +y) = 20f(x) + 15f (x —y) — 6f (x = 2y) + f(x — 3y) = 720f (y). Moreover, we prove
the stability of the quintic and sextic functional equations in quasi-f-normed spaces via fixed point
method.

1. Introduction and Preliminaries

A basic question in the theory of functional equations is as follows: when is it true that
a function, which approximately satisfies a functional equation, must be close to an exact
solution of the equation? If the problem accepts a unique solution, we say the equation is
stable (see [1]). The first stability problem concerning group homomorphisms was raised by
Ulam [2] in 1940 and affirmatively solved by Hyers [3]. The result of Hyers was generalized
by Rassias [4] for approximate linear mappings by allowing the Cauchy difference operator
CDf(x,y) = f(x + y) - [f(x) + f(y)] to be controlled by e(||x||” + [ly|P). In 1994,
a generalization of Rassias’ theorem was obtained by Gavruta [5], who replaced e(||x|[P +
llyll”) by a general control function ¢(x,y) in the spirit of Rassias’ approach. The stability
problems of several functional equations have been extensively investigated by a number of
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authors, and there are many interesting results concerning this problem (see, e.g., [6-30] and
references therein).

In 1996, Isac and Rassias [30] were the first to provide applications of stability theory
of functional equations for the proof of new fixed point theorems with applications. The
stability problems of several various functional equations have been extensively investigated
by a number of authors using fixed point methods (see [8, 10, 17, 22]).

The functional equation

flx+y)+ f(x-y) =2f(x) +2f(y) (1.1)

is said to be a quadratic functional equation because the quadratic function f(x) = x? is

a solution of the functional equation (1.1). Every solution of the quadratic functional equation
is said to be a quadratic mapping. A quadratic functional equation was used to characterize
inner product spaces.

In 2001, Rassias [25] introduced the cubic functional equation

flx+2y) =3f(x+y) +3f(x) - f(x~y) =6f(y) (1.2)

and established the solution of the Ulam-Hyers stability problem for these cubic mappings.
It is easy to show that the function f(x) = x> satisfies the functional equation (1.2), which is
called a cubic functional equation and every solution of the cubic functional equation is said
to be a cubic mapping. The quartic functional equation

f(x+2y) + f(x-2y) =4f(x +y) +4f (x —y) +6f(x) + 24 (y) (1.3)

was introduced by Rassias [26]. It is easy to show that the function f(x) = x* is a solution of
(1.3). Every solution of the quartic functional equation is said to be a quartic mapping.
In this paper, we achieve the general solutions of the quintic functional equation

f(x+3y) =5f(x+2y) +10f (x +y) —10f(x) + 5f (x —y) = f(x - 2y) =120f (y) ~ (1.4)
and the sextic functional equation

flx+3y)—6f(x+2y) +15f(x+y) —=20f(x) +15f (x — y)

(1.5)
—6f(x-2y) + f(x-3y) =720 (v).

Moreover, we prove the stability of the quintic and sextic functional equations in quasi-
p-normed spaces via fixed point method, and also using Gajda’s example to give two
counterexamples for a singular case. Since f(x) = x° is a solution of (1.4), we say that it
is a quintic functional equation. Similarly, f(x) = x° is a solution of (1.5), and we say that it is
a sextic functional equation. Every solution of the quintic or sextic functional equation is said
to be a quintic or sextic mapping, respectively.

For the sake of convenience, we recall some basic concepts concerning quasi-f-normed
spaces (see [24]).
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Definition 1.1. Let f be a fix real number with 0 < f < 1, and let K denote either R or C. Let
X be a linear space over K. A quasi-f-norm || - || is a real-valued function on X satisfying the
following:

(1) |lx|l > 0 for all x € X and ||x|| = 0 if and only if x = 0;

(2) IAx]|| = |AJP||x|| for all A € K and all x € X;

(3) there is a constant K > 1 such that ||x + y|| < K(||x|| + [|y||) for all x, y € X.

A quasi-p-normed space is a pair (X, || - ||), where || - || is a quasi-f-norm on X. The
smallest possible K is called the modulus of concavity of || - ||. A quasi-p-Banach space is

a complete quasi-f-normed space.
A quasi-p-norm || - || is called a (f, p)-norm (0 < p < 1) if

[l + ylI” < Il + [l 1" (1.6)

for all x,y € X. In this case, a quasi-f-Banach space is called a (8, p)-Banach space. We can
refer to [7, 17] for the concept of quasinormed spaces and p-Banach spaces.

Given a p-norm, the formula d(x, y) := ||x — y|| gives us a translation invariant metric
on X. By the Aoki-Rolewicz theorem, each quasi-norm is equivalent to some p-norm. Since it
is much easier to work with p-norms than quasi-norms, henceforth we restrict our attention
mainly to p-norms.

2. General Solutions to Quintic and Sextic Functional Equations

In this section, let X and Y be vector spaces. In the following theorem, we investigate the
general solutions of the functional equation (1.4) and (1.5). Some basic facts on n-additive
symmetric mappings can be found in [29].

Theorem 2.1. A function f : X — Y is a solution of the functional equation (1.4) if and only if f is
of the form f(x) = A°(x) for all x € X, where A>(x) is the diagonal of the 5-additive symmetric map
A5 : X5 — Y.

Proof. Assume that f satisfies the functional equation (1.4). Replacing x = y = 0 in (1.4), one
gets f(0) = 0. Replacing (x,y) with (0,x) and (x,—x) in (1.4), respectively, and adding the
two resulting equations, we obtain f(-x) = —f(x). Replacing (x, y) with (3x,x) and (0, 2x)
in (1.4), respectively, and subtracting the two resulting equations, we get

5f(5x) — 14 (4x) + 10 (3x) — 120f (2x) + 121 f (x) = 0. 2.1)
Replacing (x,y) with (2x, x) in (1.4), we have

5f(5x) — 25f (4x) + 50 (3x) — 50 (2x) — 575f (x) = 0. (22)
for all x € X. Subtracting (2.1) and (2.2), we find

11f(4x) — 40£(3x) — 70£ (2x) + 696 f (x) = 0 (2.3)
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for all x € X. Replacing (x, y) with (x, x) in (1.4), and multiplying the result by 11, we obtain
11f(4x) —55f(3x) + 110f(2x) — 1419f(x) =0 (2.4)
for all x € X. Subtracting (2.3) and (2.4), one gets

15f(3x) —180f (2x) +2115f(x) =0 (2.5)
for all x € X. Replacing (x, y) with (0, x) in (1.4), and multiplying the result by 15, one finds
15f(3x) —60f(2x) —1725f(x) =0 (2.6)

for all x € X. Subtracting (2.5) and (2.6), we arrive at
f(2x) = 32f (x) = 2 (x) 27)

for all x € X.
On the other hand, one can rewrite the functional equation (1.4) in the form

F0) = 15 F(x+3y) + 3 F(x+29) = f(xty) = 3 f(x =) + 15 (= 2y) +12f (y) =0
(2.8)

for all x € X. By [29, Theorems 3.5 and 3.6], f is a generalized polynomial function of degree
at most 6, that is, f is of the form

fx) = A2(x) + A*(x) + A3(x) + A%(x) + Al (x) + A%(x), forallxeX, (2.9)

where A’(x) = A" is an arbitrary element of Y and A’(x) is the diagonal of the i-additive
symmetric map A; : X! — Y fori=1,2,3,4,5. By f(0) =0and f(-x) = —f(x) forall x € X,
we get A%(x) = A? = 0, and the function f is odd. Thus we have A*(x) = A%(x) = 0. It follows
that f(x) = A(x) + A3(x) + Al(x). By (2.7) and A"(rx) = r"A"(x) whenever x € X and
r € Q, we obtain 2°A3(x) + 2°Al(x) = 23A3(x) + 2A'(x). Hence A'(x) = —4A3(x)/5, and so
A3(x) = Al(x) = 0 for all x € X. Therefore, f(x) = A5(x).

Conversely, assume that f(x) = A%(x) for all x € X, where A’(x) is the diagonal of the
5-additive symmetric map As : X° — Y. From A’(x +y) = A%(x) + A%(y) + 5A%* (x,y) +
10A%(x,y) + 10A%*(x,y) + 5AY(x,y), A’(rx) = r°A’(x), A¥(x,ry) = rA*(x,y),
AP (x,ry) = r?AY(x,y), AP (x,ry) = rPA>(x,y), and A (x,ry) = r*A"*(x,y) (x,y €
X,r € Q), we see that f satisfies (1.4), which completes the proof of Theorem 2.1. O

Theorem 2.2. A function f : X — Y is a solution of the functional equation (1.5) if and only if f is
of the form f(x) = A®(x) for all x € X, where A®(x) is the diagonal of the 6-additive symmetric map
Ag: X0 > Y.

Proof. Assume that f satisfies the functional equation (1.5). Replacing x = y = 0 in (1.5), one
gets f(0) = 0. Substituting y by —y in (1.5) and subtracting the resulting equation from (1.5)
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and then y by x, we obtain f(-x) = f(x). Replacing (x,y) with (0,2x) and (3x,x) in (1.5),

respectively, we get

£(6x) — 6f (4x) — 345 (2x) = 0,

£(6x) = 6f(5x) + 15 (4x) — 20 (3x) + 15f(2x) — 726 f (x) = 0

for all x € X. Subtracting (2.10) and (2.11), we find

6f(5x) — 21f (4x) + 20 £ (3x) — 360 f (2x) + 726 f (x) =0

for all x € X. Replacing (x,y) with (2x,x) in (1.5) and from f(0) = 0 and f(-x)

then multiplying by 6, we obtain
6f(5x) —36f(4x) +90f(3x) —120f (2x) —4224f(x) =0
for all x € X. Subtracting (2.12) and (2.13), one gets

15f (4x) — 70f (3x) — 240f (2x) +4950f (x) = 0

(2.10)
(2.11)

(2.12)

= f(x) and

(2.13)

(2.14)

for all x € X. Replacing (x,y) with (0, x) (and then multiplying by 10) and (x, ) with (x, x)

(and then multiplying by 15) in (1.5), respectively, we find

20f(3x) —120f(2x) —6900f (x) =0
by f(0) =0and f(-x) = f(x), as well as

15f(4x) —90f (3x) +240f (2x) —11190f (x) =0

by f(0) =0and f(-x) = f(x). Subtracting (2.14) and (2.16), one gets

20f(3x) —480f(2x) +16140f (x) =0
for all x € X. Subtracting (2.15) and (2.17), we have

360f(2x) =23040f (x)
for all x € X. Hence
f(2x) =2°f(x)

for all x € X.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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On the other hand, one can rewrite the functional equation (1.5) in the form

Fx) = g f(x+3y) + o (x4 29) = 2f(x +y) - 3 (x- )
(2.20)

#15f (x=2) = 5 (x=3y) +36f (y) =0

for all x € X. By [29, Theorems 3.5 and 3.6], f is a generalized polynomial function of degree
at most 6, that is f is of the form,

f(x) = Ab(x) + A%(x) + At (x) + A3(x) + A2(x) + Al(x) + A’(x), forallxeX, (2.21)

where A’(x) = A" is an arbitrary element of Y and Ai(x) is the diagonal of the i-additive
symmetric map A; : X — Yfori=1,234,5,6. By f(0) =0and f(-x) = f(x) forall x € X,
we get A%(x) = A = 0 and the function f is even. Thus we have A%(x) = 0, A*(x) = 0, and
Al(x) = 0. It follows that f(x) = A%(x) + A*(x) + A%(x). By (2.19) and A"(rx) = r"A"(x)
whenever x € X and r € Q, we obtain 20 A*(x) + 20 A?(x) = 2*A*(x) + 22A?(x). Hence A%(x) =
—4A*(x)/5,and so A%(x) = A*(x) = 0 for all x € X. Therefore, f(x) = A®(x).

Conversely, assume that f(x) = A®(x) for all x € X, where A®(x) is the diagonal of the
6-additive symmetric map Ag : X® — Y. From A%(x +y) = A%(x) + A®(y) + 6A> (x,y) +
15A%%(x,y) + 20A%3(x,y) + 15A%*(x,y) + 6A(x,y), A°(rx) = r®A%(x), A>(x,ry) =
rAS(x,y), A% (x,ry) = r’A*?(x,y), A% (x,ry) = A3 (x,y), A% (x,ry) = r*A%(x,y),
and A (x,ry) = rPAY¥(x,y)(x,y € X,r € Q), we see that f satisfies (1.5), which completes
the proof of Theorem 2.2. O

3. Stability of the Quintic Functional Equation

Throughout this section, unless otherwise explicitly stated, we will assume that X is a linear
space, Y is a (f, p)-Banach space with (f,p)-norm | - |ly. Let K be the modulus of concavity
of || - ||[y. We will establish the following stability for the quintic functional equation in quasi-
p-normed spaces. For notational convenience, given a function f : X — Y, we define the
difference operator

Dyf(x,y) = f(x+3y) =5f(x+2y) +10f (x + y) — 10f (x)

(3.1)
+5f(x—y) - f(x-2y) - 120f (y)

forall x,y € X.

Lemma 3.1. Let j € {-1,1} be fixed, s,a € Nwitha >2and ¢ : X — [0, 00) a function such that
there exists an L < 1 with gs(alx) < a/*PLys(x) forall x € X. Let f : X — Y be a mapping satisfying

| f(ax) = a’f ()], < ¢(x) (3.2)
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forall x € X, then there exists a uniquely determined mapping F : X — Y such that F(ax) = a®F (x)
and

[f(x) - F@)|y < mwx) (3.3)
forall x € X.
Proof. Consider the set
Q:={glg: X—Y}, (3:4)
and introduce the generalized metric on Q,
d(g,h) =inf{p>0] [|g(x) - h(x)||y < py(x) VxeX}. (3.5)

It is easy to show that (€, d) is a complete generalized metric space (see [8-10]).
Define a function ] : Q — Qby Jg(x) = a*¢g(a/x) for all x € X. Let g, h € Q be given
such that d(g, h) < ¢, by the definition,

lg(x) —h(x)||, < ep(x), YxeX. (3.6)
Hence

178(x) = Jh(x)|, = a7/

g(ajx> - h<a7x> ||Y < a‘jsﬂstp<a7x> < Leg(x) (3.7)
for all x € X. By definition, d(J g, Jh) < Le. Therefore,
d(Jg, Jh) < Ld(g,h), Vg heQ. (3.8)

This means that ] is a strictly contractive self-mapping of £ with Lipschitz constant L.
It follows from (3.2) that

1 .
d(f ]f) < asp q}(x)/ lf] = 1/ (3 9)
! - L o '
—asﬂtp(x), if j=-1,

for all x € X. Therefore, by [10, Theorem 1.3], | has a unique fixed point F : X — Y in the set
A={geQ: d(g, f) <oo}. This implies that F(ax) = a®°F(x) and

F(x) = lim J"f(x) = lim a7/" f(af"x) (3.10)



8 Journal of Inequalities and Applications

for all x € X. Moreover,

1

—_— . 3.11
1 1] G0

A(f,F) < = d(f,Jf) <

This implies that the inequality (3.3) holds.

To prove the uniqueness of the mapping F, assume that there exists another mapping
G : X — Y which satisfies (3.3) and G(ax) = a°G(x) for all x € X. Fix x € X. Clearly,
F(a/"x) = a/*"F(x) and G(a/"x) = a’*"G(x) for all n € N. Thus

2KL"
v af1-1j|

F(aJ"x) _ f(a"x)

alsn

¥ (x).
(3.12)

IF(x) = G(x)lly < KH

KH G(a'"x) ~ f(al"x)

alsn alsn

Since, for every x € X, lim,,_,,,((2KL")/(a*|1 - Li|))¢(x) = 0, we get G = F. This completes
the proof. O

Theorem 3.2. Let j € {-1,1} be fixed, and let ¢ : X x X — [0, 00) be a function such that there
exists an L < 1 with ¢(2/x,2/y) < 32/PLe(x,y) forall x,y € X. Let f : X — Y be a mapping

satisfying
1Daf () ly < 9(x y) (3.13)

forall x,y € X. Then there exists a unique quintic mapping Q : X — Y such that

[|f(x) - Q)] < p(x) (3.14)

1
3201 Li|

forall x € X, where

2 4 3
P(x) = 205 [K3 (3x, x) +15P¢(0, x) + K3¢(0,2x) + (Zﬁ Kﬁ >((p(0,2x) +(2x, -2x))
K® K* 11PK? 5fK
PK2 p -
+5°K%p(2x, x) + 117 Ko (x, x)+<12ﬂ 24ﬂ+ YT, + 7 > (0,0)
PK3 5PK3
+<%+ e >(<p<o X+, x))]
(3.15)
forall x € X.
Proof. Replacing x = y = 0in (3.13), we get
0 0, 3.16
1f Ol < —59(0,0). (316)
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Replacing x and y by 0 and x in (3.13), respectively, we get
||f(3x) =5f(2x) +10f (x) = 10£(0) + 5f (-x) — f(-2x) = 120f (x) ||, < (0, x) (3.17)
for all x € X. Replacing x and y by x and —x in (3.13), respectively, we have

[l f(=2x) = 5f(=x) + 10 (0) - 10f (x) + 5 (2x) - f(3x) = 120f (-], < op(x, ~x)

(3.18)
for all x € X. By (3.17) and (3.18), we obtain
K
IIf (x) + f(=2)||y < W(q)(o, x) + @(x,-x)) (3.19)
for all x € X. Replacing x and y by 3x and x in (3.13), respectively, we get
|| f(6x) —5f(5x) +10f (4x) — 10f (3x) + 5f(2x) — 121 f (x) ||, < ¢(3x, x) (3.20)
for all x € X. Replacing x and y by 0 and 2x in (3.13), respectively, we find
|| f(6x) — 5f(4x) —10£(0) + 5f (—2x) — f(—4x) — 110f (2x) ||, < ¢(0,2x) (3.21)
for all x € X. By (3.20) and (3.21), we obtain
|I5f (5x) — 14 f (4x) + 10f (3x) + 121 f (x) — 120f (2x) + 5f (2x) +5f (—2x) —10£ (0) ||,
< Ko(3x,x) + Ko(0,2x)
(3.22)
for all x € X. By (3.16), (3.19), and (3.22), we have
|15/ (5x) — 14 f (4x) +10f (3x) + 121 f (x) — 120 (2x) ||,
< K?p(3x,x) + K*¢(0,2x) + ﬁ((p(o, 2x) + p(2x,-2x)) + @(p(o, 0)
for all x € X. Replacing x and y by 2x and x in (3.13), respectively, we get
|| f(5x) — 5f(4x) +10f (3x) — 10f (2x) — 115f (x) - f(0)||, < (2, x) (3.24)

for all x € X. Using (3.16), we have

||l f(5x) = 5f(4x) + 10f (3x) — 10f (2x) - 115f (x) ||, < Ke(2x, x) + %(p(0,0) (3.25)
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for all x € X. Hence

|5 (5x) — 25f (4x) + 50f (3x) — 50 (2x) - 575f (x)||, < 5’ Kep(2x, x) + %(p(o, 0)
(3.26)

for all x € X. By (3.23) and (3.26), we get
[[11f (4x) - 40f (3x) = 70f (2x) + 696 f ()|,

K*
3 3 - -
< K29p(3x,2) + K7 (0,2%) + 5 (9(0,2x) + p(2x, ~2x)) (3.27)

K® K2
= = P K2

+ <12ﬂ + 24ﬂ><p(0,0) + 5 K=p(2x, x)
for all x € X. Replacing x and y by x and x in (3.13), respectively, we have

|| f(4x) = 5f(3x) +10f(2x) +5£(0) — f(-x) = 130£ (x) ||, < ¢(x, x) (3.28)

for all x € X. By (3.16), (3.19), and (3.28), we have

I (4x) - 5£(3x) + 10£(2x) — 129 £ (x) ||,y < Kop(x, x) + %((p(o,x) +p(x,—x)) + %wo,m
(3.29)
for all x € X. Thus
I[11f (4x) — 55 (3x) + 110£ (2x) — 1419£ (x) |,

<1 + K (00,2 + ptx, ) + LK 40,0 o
forall x € X. By (3.27) and (3.30), we obtain
[15f (3x) — 180 £ (2x) + 2115£(x) |,

< K*p(3x, x) + K*¢(0,2x) + % (9(0,2x) + ¢p(2x, -2x))
(3.31)

N K* N K3 N 11°K3
126 24P 24P

>(p(0, 0) + 5P K3p(2x, x) + 11PK?¢(x, x)

11PK*
+
1208

((P(O/ x) + ‘P(x/ _x))
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for all x € X. By (3.16), (3.17), and (3.19), we have
[l f(3x) —4f(2x) = 115f ()|,

<Kp0.) + S 00,0)+ K (90,0 + 90 + K5 (900,29 + g2, 20)

(3.32)

120

for all x € X. Hence
I115£ (3x) - 60f (2x) - 1725 (1),

4 4
5 (9(0,%) + (5, —)) + - (9(0,20) + p(2x,-2x)

(3.33)

P K2 {4
<15°K¢(0,x) + > ; ¢(0,0) + >

for all x € X. By (3.31) and (3.33), we get

|fex) -2F ),

2 4

5 5 K 1<3
K3p(3x, x) + 15P (0, x) + K3p(0,2x) + & (¢(0,2x) + ¢p(2x, -2x))

120ﬂ 24ﬁ
K3 K% 11PK? 5K
+5PK2p(2 +11PK + +——+— )(0,0
¢(2x, x) p(x,x) (12[, YT REyT, 7 > (0,0)
11PK® 5PK®
+<W + >((p(0 x) + ¢p(x, —x))]
=¢(x)

(3.34)

for all x € X. By Lemma 3.1, there exists a unique mapping Q : X — Y such that Q(2x) =
2°Q(x) and

|f(x) - Q)| < P(x) (3.35)

1
32°|1-Li|
for all x € X. It remains to show that Q is a quintic map. By (3.13), we have

<327 (2x, 2y ) <3277 (32°L) g (x,y) = L'p(x,y)  (3.36)

H Dy f (2"x,2"y)
Y

32jn

forall x,y € X and n € N. So

[D,Qx, )|, =0 (3.37)

for all x, y € X. Thus the mapping Q : X — Y is quintic, as desired. O
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Corollary 3.3. Let X be a quasi-a-normed space with quasi-a-norm || - ||x, and let Y be a (B, p)-
Banach space with ( B, p)-norm | - ||y. Let 6, r, s be positive numbers with A := r + s#5p/a and
f X — Y amapping satisfying

104 G ), < &y I (3.38)

forall x,y € X. Then there exists a unique quintic mapping Q : X — Y such that

O¢rs 5
el ae(o ).
W, < 32 -2 ! (3.39)
”f(x) Q(x ”Y = 2)La6€r,5 ”x”)L e <5ﬂ > .
AN M AmAN 4 _I w 4
328 (24 —326) 1T TX x
forall x € X, where
2 4ryal 39al 311P 3cp
g,S::L K3 ”f+£+K2 +1<25f‘2“f+11f5+1<11 +K5 ) (3.40)
’ 1208 24/ 8f 120° 8f
Corollary 3.4. Let X be a quasi-a-normed space with quasi-a-norm || - ||x, and let Y be a (B, p)-

Banach space with ( B, p)-norm || - ||y. Let 6, A be positive numbers with A#5p/aand f : X — Y a
mapping satisfying

1Daf e ) lly < 8l + lvllx) (3.41)

forall x,y € X. Then there exists a unique quintic mapping Q : X — Y such that

Ior=4) 5
W”xl&’ Le <0,;ﬁ>,
1) = Q) < Phage, ) 5p (3.42)
it S 1 "
326 (20« — 326 Il A e < a ’°°>'
forall x € X, where
P S S (3% +2% +1) + K25/ (2 + 1) +2K11F + 15/
120¢
(3.43)
4 3 311p 35p
+3 £+K— 2% 13 K +K5 .
248 8f 1208 8f
Corollary 3.5. Let X be a quasi-a-normed space with quasi-a-norm || - ||x, and let Y be a (B, p)-
Banach space with (B, p)-norm || - ||y. Let 6,1,s be positive numbers with X := r + s#5p/a and

f: X — Y amapping satisfying

1D4f o)y < 8[Ielk w15 + (el + [l )] (3.44)
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forall x,y € X. Then there exists a unique quintic mapping Q : X — Y such that
O6(ers+€1), 1 5p
_ ) - el e <0’ a ) 3.45
VRO =1 25t s e i, Ae <5ﬁ ) o
A /My AAaN 4 s m 4
328 (24 — 326) 1T TX a

forall x € X, where €, and €, are defined as in Corollaries 3.3 and 3.4.

The following example shows that the assumption A #58/a cannot be omitted in

Corollary 3.4. This example is a modification of the example of Gajda [6] for the additive
functional inequality (see also [7]).

Example 3.6. Let ¢ : R — R be defined by

x°, for|x| <1,
o

(3.46)

1, for|x|>1.

Consider that the function f : R — R is defined by
fx) = S o p@n) (3.47)

n=0
for all x € R. Then f satisfies the functional inequality
|f (x+3y) =5 (x +2y) +10f (x +y) - 10f(x) +5f (x ~y) - f (x - 2y) =120/ ()|
) %(les . |y|5> (3.48)

for all x,y € R, but there do not exist a quintic mapping Q : R — R and a constant d > 0
such that [f(x) - Q(x)| < d |x]° forall x € R.

Proof. 1t is clear that f is bounded by 1024/1023 on R. If |x|* + [y|°> = 0 or |x|* + |y|° > 1/1024,
then

1521024 15210242
|Dof (e y)| < 35— < —55— (<P + 1vI°)- (3.49)

Now suppose that 0 < [x|° +|y|* < 1/1024. Then there exists a nonnegative integer k such that

1 5 5 ].
<Pyl L 3.50
Tl Ty (3:50)
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Hence 1024%|x|> < 1/1024,1024%|y|°> < 1/1024, and 4" (x + 3y), 4" (x + 2y), 4" (x - 2y), 4" (x +
y), 4 (x-vy),4"x,4"y € (-1,1) foralln =0,1,...,k - 1. Hence, forn =0,1,..., k-1,
¢(4"(x +3y)) —5¢(4"(x +2y)) +10§(4" (x + y)) ~ 10$(4"x) + 5 (4" (x ~ ¥))
- (4" (x - 29)) ~ 1209 (4"y) = .

(3.51)

From the definition of f and the inequality (3.50), we obtain that

|qu(x,y)| =

ST (x+3y)) - 5IA TP (x +2y)) + 1034 (4 (x + y))
n=0 n=0 n=0
1034 TP x) + 53T (A (x - y)) - ST (x - 2y))
n=0 n=0 n=0
-120514‘5%(4"1/) ‘
n=0

< 24‘5"|¢(4"(x +3y)) - 5¢ (4" (x +2y)) + 10§ (4" (x + y)) - 10p(4"x)

+5¢p(4"(x —y)) - (4" (x - 2y)) - 120 (4"y)|

152 -4°0-0)  152.1024% /, - 5
5 < 1o (KT

<4152 =
n=k
(3.52)

Therefore, f satisfies (3.48) for all x, y € R. Now, we claim that the functional equation (1.4)
is not stable for A = 5 in Corollary 3.4 (a« = = p = 1). Suppose on the contrary that there
exists a quintic mapping Q : R — R and constant d > 0 such that |f(x) - Q(x)| < d |x]* for
all x € R. Then there exists a constant ¢ € R such that Q(x) = cx’ for all rational numbers x
(see [7]). So we obtain that

|f()] < (d + [e])]xP (3.53)

forall x € Q. Let m € Nwith m+1 > d + |c|]. If x is a rational number in (0,4™™), then
4"x € (0,1) foralln =0,1,...,m, and for this x we get

=) n m n\5
Flx) = Z‘i’(fsnx) >3 (445’2) = (m+ D)X > (d +]c)x°, (3.54)
n=0 n=0

which contradicts (3.53). O
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4. Stability of the Sextic Functional Equation

Throughout this section, unless otherwise explicitly stated, we will assume that X is a linear
space, Y is a (f, p)-Banach space with (f, p)-norm | - |ly. Let K be the modulus of concavity
of || - |ly. We will establish the following stability for the sextic functional equation in quasi-
p-normed spaces. For notational convenience, given a function f : X — Y, we define the
difference operator

Dsf(x,y) = f(x+3y) —6f(x+2y) +15f (x +y) = 20f (x) + 15f (x — y) = 6f (x - 2y)

+ f(x=3y) -720f (y)
(4.1)

forall x,y € X.

Theorem 4.1. Let j € {-1,1} be fixed, and let ¢ : X x X — [0, 00) be a function such that there
exists an L < 1 with @(2/x,2/y) < 64PLe(x,y) forall x,y € X. Let f : X — Y be a mapping
satisfying

IDsf (x, )y < (x,y) (4.2)

forall x,y € X. Then there exists a unique sextic mapping S : X — Y such that

1 ~
1 (x) =S|y < PTG (4.3)
forall x € X, where
500) 1 [10PK® + K*(225/ +36F +1) + K3200° 0,0) K7 (0,2x) + KSp(3x, x)
x) = ,0) + —(0,2x) + X, X
P 3608 720 v 28 ¥ v
K9
+ K®6Pp(2x, x) + K*15P¢p(x, x) + Ta40P (p(6x,6x) + ¢(6x,—6x))
KlO K6
+ Y (p(4x, 4x) + p(4x, —4x)) + o (p(3x,3x) + ¢(3x,-3x)) (4.4)
K0 4+ K®(2F + 8F)
YL (p(2x,2x) + p(2x, -2x))

K®(15F +1) + K525F
1208

(p(x, x) + p(x,—x)) + K*10P¢p(0, x)]

forall x € X.
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720ﬂ ’

Replacing y by —y in (4.2), we have

| f(x=3y) —6f(x~2y) +15f(x —y) = 20f (x) + 15f (x +y) - 6f (x +2y)
+f (x+3y) =720f (-y) |y (4.6)
< o(x,-y)

for all x,y € X. By (4.2) and (4.6), we get

K
17 ) = f0ly < =55 (0 x) + 9, =) (4.7)

for all x € X. Replacing x and y by 0 and 2x in (4.2), respectively, we get

||f(6x) - 6f(4x) +15f (2x) —20£ (0) + 15f (-2x) — 6 f (—4x) + f (-6x) — 720 (2x)||,, < ¢(0,2x)

(4.8)
for all x € X. By (4.5), (4.7), and (4.8), we have
[|f(6x) — 6 (4x) - 345f (2x)]|,
< 7—12<ﬂ<p(0, 0) + I;—:(p(o, 2x) + %(({)(6% 6x) + (6x,-6x)) (4.9)

5 5
+ ZIZW (p(4x,4x) + p(4x, —4x)) + % (p(2x,2x) + p(2x,-2x))

for all x € X. Replacing x and y by 3x and x in (4.2), respectively, we have
|| f(6x) — 6f(5x) + 15f (4x) — 20 (3x) + 15f (2x) + f(0) — 726 f (x)]|, < ¢(3x, x) (4.10)
for all x € X. Subtracting (4.9)-(4.10) and using (4.5), we obtain
||6f (5x) — 21 f (4x) +20f (3x) - 360f (2x) + 726 f (x)||,,
10K + K K* K®

0,0) + —(0,2x) +
7op P00+ 550020 + 7o
7

+ —_—
2408

(p(6x,6x) + p(6x,—6x)) (4.11)

(p(4x,4x) + p(4x, —4x)) + % (p(2x,2x) + p(2x,-2x)) + K%p(3x, x)
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for all x € X. Replacing x and y by 2x and x in (4.2), respectively, we have
|| f(5x) — 6f(4x) +15f (Bx) — 20f (2x) — 6 (0) + f(—x) = 705f (x) ||y < ¢(2x, x) (4.12)
for all x € X. Using (4.5) and (4.7), we get

1 (52) 6 (4) + 15f (3) - 20f (22) = 704f ()
K K° , (4.13)
< W‘P(0,0) + Toﬂ((p(x,x) + (p(x, —x)) + K (p(2x, X)

for all x € X. Hence

16f (5x) — 36 (4x) + 90 (3x) — 120 (2x) — 4224 (%) |
K K? (4.14)
< W‘P(O, 0) + w((p(x, x) +p(x,—x)) + K26 p(2x, x)

for all x € X. Subtracting (4.11)—(4.14), we have

|15 f (4x) — 70 (3x) — 240f (2x) + 4950 ()|,
7

L 10K+ K2(36 +1) K
14406

- 7208
K? K?

+ 40 (p(4x,4x) + p(4x, —4x)) + o (p(2x,2x) + p(2x,-2x))

¢(0,0) + I;—;(p(o, 2x) + (p(6x,6x) + (6x,—6x))

(4.15)

K4
+ K3p(3x,x) + W((p(x, x) +¢(x,-x)) + K26Pp(2x, x)

for all x € X. Replacing x and y by 0 and x in (4.2), respectively, we get
| f(8x) = 6f(2x) = 705f (x) =20 (0) + 151 (—x) — 6f (—2x) + f(-3x)||, < ¢(0,x)  (4.16)
for all x € X. By (4.5), (4.7), and (4.16), we have

[|2f (3x) =12 (2x) — 690f (x) ||
KS

0 (p(2x,2x) + p(2x,-2x))

K2 K*
< Ko(0,x) + W(p(O,O) + @((p(x,x) +p(x,—x)) +
5

+ o (p(3x,3x) + ¢(3x,-3x))

(4.17)
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for all x € X. Thus

120 (3x) ~ 120f (2x) — 6900f (x|,

K?5F K*5F
< K10P¢(0, x) + o ¢(0,0) + Z7((,0(x, x) +¢(x,—x)) (4.18)

5 5
+ %(@(Zx, 2x) + ¢(2x,-2x)) + %((p(Bx, 3x) + ¢p(3x,-3x))

for all x € X. Replacing x and y by x and x in (4.2), respectively, and then using (4.5) and
(4.7), we have

|| (4x) - 6f (3x) + 16f(2x) - 746f (x)

K? K*
< Keo(x,x) + @(p(0,0) + Lo (p(x, x) + p(x,—x)) + — 720;3 ((p(Zx, 2x) + p(2x, -2x))
(4.19)

for all x € X. Multiply each side of (4.19) by 15/, we have

1157 (4x) — 90 (3x) + 240 (2x) — 11190 ()|

258 4 4
< K15P¢(x, x) + %q)(0,0) + %((p(x, x) +¢(x,—x)) + f@((p(Zx, 2x) + p(2x, -2x))

(4.20)
for all x € X. By (4.15) and (4.20), we get
|20 £ (3x) — 480 f (2x) + 16140 (x) ||,
Py 10PK® + K3(225/ + 36/ + 1) 0.0 K® 0.2) + Kro(3
< 507 ¢(0,0) + —54(0,2x) + Kip(3x, x)
+ K46ﬂ(p(2x, x) + K215ﬂ(p(x, x) (4.21)

1412013 (ip(6x,62) + (63, -6x)) + = 5 < o7 (94, 4%) + (4, ~4x))

K9 + K52F K5(15% +1)

o5 (p(2x,2x) + p(2x,-2x)) + 1207 (p(x, x) + p(x,-x))
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for all x € X. By (4.18) and (4.21), we obtain

||360f (2x) — 23040 (x) ||,

10PK® + K*(225F + 36F + 1) + K3200° K’ 5
< 7508 ©(0,0) + z—ﬁ(p(O,Zx) + K’p(3x, x)
9
+ K6Pp(2x, x) + K*15P¢p(x, x) + 407 (p(6x,6x) + p(6x,-6x))
KlO K6 (422)
+ m(q)(élx, 4x) + p(4x, —4x)) + @(q)(3x, 3x) + p(3x,-3x))
K10+ K6 (2° + 8F)
(p(2x,2x) + p(2x,-2x))
96F
K®(15f +1) + K525F
( 120)ﬁ (p(x, x) + p(x,—x)) + K*10P¢p(0, x)
for all x € X. Therefore,
|f@0 -22F ()|, < 30) (4.23)
for all x € X.
By Lemma 3.1, there exists a unique mapping S : X — Y such that S(2x) = 2°5(x)
and
1£G) = Sy < gy ) (.24
Y= eab1- L] '

for all x € X. It remains to show that S is a sextic map. By (4.2), we have

D.f (2%, 20"y)
64in

< 6477 (2x,2My ) < 647 (641PL) p(x,y) = L"p(x,y)  (4.25)
Y

forall x,y € X and n € N. So

[DsS(x, v)|ly =0 (4.26)

for all x, y € X. Thus the mapping S : X — Y is sextic, as desired. O

Corollary 4.2. Let X be a quasi-a-normed space with quasi-a-norm || - ||x, and let Y be a (B, p)-
Banach space with (p,p)-norm || - ||y. Let 6,7, s be positive numbers with A := r + s#6 /a, and
f : X — Y be a mapping satisfying

IDs£ Ceo )y < Bllxlxllylx (4.27)
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forall x,y € X. Then there exists a unique sextic mapping S : X — Y such that

65r,s 6ﬂ
sl ae(0F),
) ) 4.2
[|f(x) = S(x)][y < 24 6¢, ¢ 1 \e L .
a0 (23 - ety 1 7
forall x € X, where
. L wbgal . K744
ETS:ZL K23ﬂr+K26ﬂ2ar+15ﬁ+2 Ko +2 o
7 3600 14400 2407
(4.29)

2.K33%  K3(K*+20 +8/)27+1 2K2(K15F + K +25F)
+ + + .
12° 968 1208

Corollary 4.3. Let X be a quasi-a-normed space with quasi-a-norm || - ||x, and let Y be a ( B,p)-
Banach space with ( B, p)-norm || - ||y. Let 6, A be positive numbers with A#6f/aand f : X — Y
a mapping satisfying

IDsf Ge )y < 6(Ixlx + [yl ) (4.30)

forall x,y € X. Then there exists a unique sextic mapping S : X — Y such that

i”x”)L le (0 @)
64P — ad TIX “a )

1) =S|y < Dlage, ) 6 (4.31)
64[5(2)‘“—64/5) ”x”Xr ')LE <7,00>,

forall x € X, where

£):

4.K’ al 4 - K84al
+K3<3“+1>+K36ﬁ<2“+1>+2-1<-15ﬂ+ 6

+
1440F 2408

KZ K52m\
C 3608 | 28

4-K*3%  4-K*(K*+2/+80)2"  4.K3(K-15/ + K +25F)
+ + + +10°].
12¢ 96/ 120¢

(4.32)

Corollary 4.4. Let X be a quasi-a-normed space with quasi-a-norm || - ||x, and let Y be a ( B, p)-
Banach space with ( B, p)-norm || - |ly. Let 6, r, s be positive numbers with A := r + s #6p/a and
f X — Y amapping satisfying

IDsf Gerw)lly < 8[Ixllx % + (Il + 1yl )] (4.33)
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forall x,y € X. Then there exists a unique sextic mapping Q : X — Y such that

6(51’,5 +5/\) A 6ﬂ
wpn i 1e(0)

21“6(51‘,5 + 5)L) A 613
64[5(21“—64'&) ”x”X/ )LE <7,00>,

[ f(x) =S ly < (4.34)

forall x € X, where €, s and €, are defined as in Corollaries 4.2 and 4.3.
For the case A = 6f3/a, similar to Example 3.6, we have the following counterexample.

Example 4.5. Let ¢ : R — R be defined by

x¢, for |x|<1,
$(x) = (4.35)

1, for |x|>1.

Consider that the function f : R — R is defined by
f(x) =D 4"p4"x) (4.36)
n=0

for all x € R. Then f satisfies the functional inequality

|f(x+3y) —6f(x+2y)+15f(x+y) —20f(x) +15f (x - y)

~6f (x —2y) + f(x - 3y) - 720f (y)| (4.37)
784 - 40963
< s (1Y)

for all x, y € R, but there do not exist a sextic mapping S : R — R and a constant d > 0 such
that |f(x) - S(x)| < d x®forall x € R.

Proof. 1t is clear that f is bounded by 4096/4095 on R. If x° + y® = 0 or x° + y® > 1/4096, then

784-4096 784-4096% / .
<
|Dsf (x,y)| < 4095 s 4095 < >

(4.38)

Now suppose that 0 < x® + 1 < 1/4096. Then there exists a non-negative integer k such that

1 6 6 1

IV SN S 439
1096k2 =X TV Yogghet (4.39)
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Similar to the proof of Example 3.6 we obtain that

781 409" (x* +5°). (4.40)

Therefore, f satisfies (4.37) for all x, y € R. Now, we claim that the functional equation (1.5)
is not stable for A = 6 in Corollary 4.3 (a = f = p = 1). Suppose on the contrary that there
exists a sextic mapping S : R — R and constant d > 0 such that |f(x) - S(x)| < d x® for all
x € R. Then there exists a constant ¢ € R such that S(x) = cx® for all rational numbers x (see
[7]). So we obtain that

|f(0)] < (d +]e])x® (4.41)

forall x € Q. Let m € Nwith m+1 > d + |c|]. If x is a rational number in (0,4™™), then
4"x € (0,1) foralln =0,1,...,m, and for this x we get

[e9) n m n..\6
f(x) = Z"B(;nx) >y (446’2) = (m+1)x°> (d +|c|)x°, (4.42)
n=0 n=0

which contradicts (4.41). O
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